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Discrete Markov Processes
(Markov Chains)

• The goal is to make a sequence of decisions where a

particular decision may be influenced by earlier decisions.

• Consider a system that can be described at any time as

being in one of a set of N distinct states w1, w2, . . . , wN .

• Let w(t) denote the actual state at time t where t =
1, 2, . . ..

• The probability of the system being in state w(t) is

P (w(t)|w(t− 1), . . . , w(1)).
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First-Order Markov Models

• We assume that the state w(t) is conditionally

independent of the previous states given the predecessor

state w(t− 1)

P (w(t)|w(t− 1), . . . , w(1)) = P (w(t)|w(t− 1))

• We also assume that the Markov Chain defined by

P (w(t)|w(t− 1)) is time homogeneous (independent of

the time t).
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First-Order Markov Models

• A particular sequence of states of length T is denoted

by

WT = {w(1), w(2), . . . , w(T )}
• The model for the production of any sequence is

described by the transition probabilities

aij = P (w(t) = wj|w(t− 1) = wi)

where i, j ∈ {1, . . . , N}, aij ≥ 0, and
∑N

j=1 aij = 1,∀i.
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First-Order Markov Models

• There is no requirement that the transition probabilities

are symmetric (aij 6= aji, in general).

• Also, a particular state may be visited in succession

(aii 6= 0, in general) and not every state need to be

visited.

• This process is called an observable Markov model

because the output of the process is the set of states at

each instant of time.
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First-Order Markov Model Examples

• Consider the following 3-state Markov model of the

weather in Ankara.
I w1: rain/snow

I w2: cloudy

I w3: sunny

Θ = {aij}

=

0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8


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First-Order Markov Model Examples

• We can use this model to answer the following question: Given

that the weather on day 1 is sunny, what is the probability that the

weather for the next seven days will be “sunny-sunny-rainy-rainy-

sunny-cloudy-sunny” (W8 = {w3, w3, w3, w1, w1, w3, w2, w3})?
• Solution:

P (W8|Θ) = P (w3, w3, w3, w1, w1, w3, w2, w3)

= P (w3)P (w3|w3)P (w3|w3)P (w1|w3)

P (w1|w1)P (w3|w1)P (w2|w3)P (w3|w2)

= P (w3) a33 a33 a31 a11 a13 a32 a23

= 1× 0.8× 0.8× 0.1× 0.4× 0.3× 0.1× 0.2

= 1.536× 10−4
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First-Order Markov Model Examples

• Consider another question: Given that the model is in a known

state, what is the probability that it stays in that state for d days?

• Solution:

Wd+1 = {w(1) = wi, w(2) = wi, . . . , w(d) = wi, w(d+1) = wj 6= wi}

P (Wd+1|Θ, w(1) = wi) = (aii)d−1(1− aii)

E[d|wi] =
∞∑

d=1

d (aii)d−1 (1− aii) =
1

1− aii

• For example, the expected number of consecutive days of sunny

weather is 5, cloudy weather is 2.5, rainy weather is 1.67.
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First-Order Hidden Markov Models

• We can extend this model to the case where the

observation (output) of the system is a probabilistic

function of the state.

• The resulting model, called a Hidden Markov Model

(HMM), has an underlying stochastic process that is

not observable (it is hidden), but can only be observed

through another set of stochastic processes that produce

a sequence of observations.
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First-Order Hidden Markov Models

• We denote the observation at time t as v(t) and the

probability of producing that observation in state w(t)
as P (v(t)|w(t)).

• There are many possible state-conditioned observation

distributions.

• When the observations are discrete, the distributions

bjk = P (v(t) = vk|w(t) = wj)

are probability mass functions where j ∈ {1, . . . , N},
k ∈ {1, . . . ,M}, bjk ≥ 0, and

∑M
k=1 bjk = 1,∀j.
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First-Order Hidden Markov Models

• When the observations are continuous, the distributions

are typically specified using a parametric model family

where the most common family is the Gaussian mixture

bj(x) =
Mj∑
i=1

αji p(x|µji,Σji)

where αji ≥ 0 and
∑Mj

i=1 αji = 1,∀j.
• We will restrict ourselves to discrete observations where

a particular sequence of visible states of length T is

denoted by

VT = {v(1), v(2), . . . , v(T )}
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First-Order Hidden Markov Models

• An HMM is characterized by:

I N , the number of hidden states

I M , the number of distinct observation symbols per

state

I {aij}, the state transition probability distribution

I {bjk}, the observation symbol probability distribution

I {πi = P (w(1) = wi)}, the initial state distribution

I Θ = ({aij}, {bjk}, {πi}), the complete parameter set

of the model
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First-Order HMM Examples

• Consider the “urn and ball” example (Rabiner, 1989):

I There are N large urns in the room.

I Within each urn, there are a large number of colored

balls where the number of distinct colors is M .

I An initial urn is chosen according to some random

process, and a ball is chosen at random from it.

I The ball’s color is recorded as the observation and it

is put back to the urn.
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First-Order HMM Examples

I A new urn is selected according to the random selection

process associated with the current urn and the ball

selection process is repeated.
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First-Order HMM Examples

• Let’s extend the weather example.

I Assume that you have a friend who lives in İstanbul and you

talk daily about what each of you did that day.

I Your friend has a list of activities that she/he does every day

(such as playing sports, shopping, studying) and the choice of

what to do is determined exclusively by the weather on a given

day.

I Assume that İstanbul has a weather state distribution similar

to the one in the previous example.

I You have no information about the weather where your friend

lives, but you try to guess what it must have been like according

to the activity your friend did.
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First-Order HMM Examples

I This process can be modeled using an HMM where the state of

the weather is the hidden variable, and the activity your friend did

is the observation.

I Given the model and the activity of your friend, you can make a

guess about the weather in İstanbul that day.

I For example, if your friend says that she/he played sports on the

first day, went shopping on the second day, and studied on the

third day, you can answer questions such as

– What is the overall probability of this sequence of observations?

– What is the most likely weather sequence that would explain

these observations?
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Applications of HMMs

• Speech recognition

• Optical character recognition

• Natural language processing (e.g., text summarization)

• Bioinformatics (e.g., protein sequence modeling)

• Video analysis (e.g., story segmentation, motion

tracking)

• Robot planning (e.g., navigation)

• Economics and finance (e.g., time series, customer

decisions)
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Three Fundamental Problems for HMMs

• Evaluation problem: Given the model, compute the

probability of a particular output sequence (solved by

the forward algorithm).

• Decoding problem: Given the model, find the most likely

sequence of hidden states which could have generated a

given output sequence (solved by the Viterbi algorithm).

• Learning problem: Given a set of output sequences,

find the most likely set of state transition and output

probabilities (solved by the Baum-Welch algorithm).
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HMM Evaluation Problem

• A particular sequence of observations of length T is

denoted by

VT = {v(1), v(2), . . . , v(T )}

• The probability of observing this sequence can be

computed by enumerating every possible state sequence

of length T

P (VT |Θ) =
∑

all WT

P (VT ,WT |Θ)

=
∑

all WT

P (VT |WT ,Θ)P (WT |Θ)
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HMM Evaluation Problem

• This summation includes NT terms in the form

P (VT |WT )P (WT ) =

(
T∏

t=1

P (v(t)|w(t))

)(
T∏

t=1

P (w(t)|w(t− 1))

)

=
T∏

t=1

P (v(t)|w(t))P (w(t)|w(t− 1))

where P (w(t)|w(t − 1)) for t = 1 is P (w(1)), and is

unfeasible with computational complexity O(NTT ).

• However, a computationally simpler algorithm called the

forward algorithm computes P (VT |Θ) recursively.
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HMM Evaluation Problem

• Define αj(t) as the probability that the HMM is in state

wj at time t having generated the first t observations in

VT

αj(t) = P (v(1), v(2), . . . , v(t), w(t) = wj|Θ)

• αj(t), j = 1, . . . , N can be computed as

αj(t) =

πjbjv(1) t = 1(∑N
i=1 αi(t− 1)aij

)
bjv(t) t = 2, . . . , T

• Then, P (VT |Θ) =
∑N

j=1 αj(T ).
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HMM Evaluation Problem

• Similarly, we can define a backward algorithm where

βi(t) = P (v(t + 1), v(t + 2), . . . , v(T ), w(t) = wi|Θ)

is the probability that the HMM is in state wi at time t

and will generate the remaining observations from t + 1
to T in VT .

• βi(t), i = 1, . . . , N can be computed as

βi(t) =

{
1 t = T∑N

j=1 βj(t + 1)aijbjv(t+1) t = T − 1, . . . , 1

• The computations of both αj(t) and βi(t) have

complexity O(N 2T ).
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HMM Evaluation Problem

• For classification, we can compute the posterior

probabilities

P (Θ|VT) =
P (VT |Θ)P (Θ)

P (VT)

where P (Θ) is the prior for a particular class, and

P (VT |Θ) is computed using the forward algorithm with

the HMM for that class.

• Then, we can select the class with the highest posterior.
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HMM Decoding Problem

• Given a sequence of observations VT , we would like to

find the most probable sequence of hidden states.

• One possible solution is to enumerate every possible

hidden state sequence and calculate the probability of

the observed sequence with O(NTT ) complexity.

• We can also define the problem of finding the optimal

state sequence as finding the one that includes the

states that are individually most likely.

• This also corresponds to maximizing the expected

number of correct individual states.
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HMM Decoding Problem

• Define γi(t) as the probability that the HMM is in state

wi at time t given the observation sequence VT

γi(t) = P (w(t) = wi|VT ,Θ)

=
αi(t)βi(t)
P (VT |Θ)

=
αi(t)βi(t)∑N

j=1 αj(t)βj(t)

where
∑N

i=1 γi(t) = 1.

• Then, the individually most likely state w(t) at time t

becomes

w(t) = wi′ where i′ = arg max
i=1,...,N

γi(t)
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HMM Decoding Problem

• One problem is that the resulting sequence may not be

consistent with the underlying model because it may

include transitions with zero probability (aij = 0 for

some i and j).

• One possible solution is the Viterbi algorithm that

finds the single best state sequence WT by maximizing

P (WT |VT ,Θ) (or equivalently P (WT ,VT |Θ)).

• This algorithm recursively computes the state sequence

with the highest probability at time t and keeps track

of the states that form the sequence with the highest

probability at time T (see (Rabiner, 1989) for details).
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HMM Learning Problem

• The goal is to determine the model parameters {aij},
{bjk} and {πi} from a collection of training samples.

• Define ξij(t) as the probability that the HMM is in

state wi at time t− 1 and state wj at time t given the

observation sequence VT

ξij(t) = P (w(t− 1) = wi, w(t) = wj|VT ,Θ)

=
αi(t− 1) aij bjv(t) βj(t)

P (VT |Θ)

=
αi(t− 1) aij bjv(t) βj(t)∑N

i=1
∑N

j=1 αi(t− 1) aij bjv(t) βj(t)
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HMM Learning Problem

• γi(t) defined in the decoding problem and ξij(t) defined

here can be related as

γi(t− 1) =
N∑

j=1

ξij(t)

• Then, âij, the estimate of the probability of a transition
from wi at t− 1 to wj at t, can be computed as

âij =
expected number of transitions from wi to wj

expected total number of transitions away from wi

=
∑T

t=2 ξij(t)∑T
t=2 γi(t− 1)
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HMM Learning Problem

• Similarly, b̂jk, the estimate of the probability of observing
the symbol vk while in state wj, can be computed as

b̂jk =
expected number of times observing symbol vk in state wj

expected total number of times in wj

=
∑T

t=1 δv(t),vk
γj(t)∑T

t=1 γj(t)

where δv(t),vk
is the Kronecker delta which is 1 only when

v(t) = vk.

• Finally, π̂i, the estimate for the initial state distribution,

can be computed as π̂i = γi(1) which is the expected

number of times in state wi at time t = 1.
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HMM Learning Problem

• These are called the Baum-Welch equations (also

called the EM estimates for HMMs or the forward-

backward algorithm) that can be computed iteratively

until some convergence criterion is met (e.g., sufficiently

small changes in the estimated values in subsequent

iterations).

• See (Bilmes, 1998) for the estimates b̂j(x) when the

observations are continuous and their distributions are

modeled using Gaussian mixtures.
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