
Algorithm-Independent Learning
Issues

Selim Aksoy

Bilkent University

Department of Computer Engineering

saksoy@cs.bilkent.edu.tr

CS 551, Spring 2006

Introduction

• We have seen many learning algorithms and techniques

for pattern recognition.

• Some of these algorithms may be preferred because of

their lower computational complexity.

• Others may be preferred because they take into account

some prior knowledge about the form of the data.

• Even though the Bayes error rate is the theoretical limit

for classifier accuracy, it is rarely known in practice.

CS 551, Spring 2006 1/49

Introduction

• Given practical constraints such as finite training data,

we have seen that no pattern classification method is

inherently superior to any other.

• We will explore several ways to quantify and adjust the

match between a learning algorithm and the problem it

addresses.

• We will also study techniques for integrating the results

of individual classifiers with the goal of improving the

overall decision.

CS 551, Spring 2006 2/49

No Free Lunch Theorem

• Are there any reasons to prefer one classifier or learning

algorithm over another?

• Can we even find an algorithm that is overall superior

to random guessing?

• The no free lunch theorem states that the answer to

these questions is “no”.

• There are no context-independent or usage-independent

reasons to favor one learning or classification method

over another.

CS 551, Spring 2006 3/49

No Free Lunch Theorem

• If one algorithm seems to outperform another in a

particular situation, it is a consequence of its fit to the

particular pattern recognition problem, not the general

superiority of the algorithm.

• It is the type of problem, prior distribution, and other

information that determine which form of classifier

should provide the best performance.

• Therefore, we should focus on important aspects such as

prior information, data distribution, amount of training

data, and cost functions.

CS 551, Spring 2006 4/49

Estimating and Comparing Classifiers

• To compare learning algorithms, we should use test data that are

sampled independently, as in the training set, but with no overlap

with the training set.

• Using the error on points not in the training set (also called the

off-training set error) is important for evaluating the generalization

ability of an algorithm.

• There are at least two reasons for requiring to know the

generalization rate of a classifier on a given problem:

I to see if the classifier performs well enough to be useful,

I to compare its performance with that of a competing design.

CS 551, Spring 2006 5/49

Estimating and Comparing Classifiers

• Estimating the final generalization performance requires making

assumptions about the classifier or the problem or both, and can

fail if the assumptions are not valid.

• Occasionally, our assumptions are explicit (such as in parametric

models), but more often they are implicit and difficult to identify

or relate to the final estimation.

• We will study the following methods for evaluating classifiers:

I Parametric models

I Cross-validation

I Jackknife and bootstrap estimation

I Maximum likelihood model selection

I Bayesian model selection

I Minimum description length principle

CS 551, Spring 2006 6/49

Parametric Models

• One approach for estimating the generalization rate is

to compute it from the assumed parametric model.

• Estimates for the probability of error can be computed

using approximations such as the Bhattacharyya or

Chernoff bounds.

• However, such estimates are often overly optimistic.

• Finally, it is often very difficult to compute the error

rate exactly even if the probabilistic structure is known

completely.

CS 551, Spring 2006 7/49

Cross-Validation

• In simple cross-validation, we randomly split the set of

labeled training samples D into two parts.

• We use one set as the traditional training set for

adjusting model parameters in the classifier, and

the other set as the validation set to estimate the

generalization error.

• Since our goal is to obtain low generalization error, we

train the classifier until we reach a minimum of this

validation error.

CS 551, Spring 2006 8/49

Cross-Validation

Figure 1: The data set D is split into two parts for validation. The first part (e.g.,
90% of the patterns) is used as a standard training set for learning, the other (i.e.,
10%) is used as the validation set. For most problems, the training error decreases
monotonically during training. Typically, the error on the validation set decreases,
but then increases, an indication that the classifier may be overfitting the training
data. In validation, training is stopped at the first minimum of the validation error.

CS 551, Spring 2006 9/49

Cross-Validation

• A simple generalization of this method is m-fold cross-

validation where the training set is randomly divided

into m disjoint sets of equal size.

• Then, the classifier is trained m times, each time with

a different set held out as a validation set.

• The estimated error is the average of these m errors.

• This technique can be applied to virtually every

classification method, e.g., setting the number of hidden

units in a neural network, finding the width of the

Gaussian window in Parzen windows, choosing the value

of k in the k-nearest neighbor classifier, etc.

CS 551, Spring 2006 10/49

Cross-Validation

• Once we train a classifier using cross-validation, the validation

error gives an estimate of the accuracy of the final classifier on the

unknown test set.

• If the true but unknown error rate of the classifier is p and if k of

the n i.i.d. test samples are misclassified, then k has a binomial

distribution, and the fraction of test samples misclassified is exactly

the maximum likelihood estimate p̂ = k
n.

• The properties of this estimate for the parameter p of a binomial

distribution are well known, and can be used to obtain confidence

intervals as a function of the error estimate and the number of

examples used.

CS 551, Spring 2006 11/49

Jackknife Estimation

• In the jackknife approach, we estimate the accuracy of

a given algorithm by training the classifier n separate

times, each time using the training set D for which a

different single training point has been deleted.

• This is the m = n limit of m-fold cross-validation, also

called the leave-one-out estimate.

• Each resulting classifier is tested on the single deleted

point, and the jackknife estimate of the accuracy is the

average of these individual errors.

CS 551, Spring 2006 12/49

Bootstrap Estimation

• A bootstrap data set is created by randomly selecting n

points from the training set D, with replacement.

• Bootstrap estimation of classification accuracy consists

of training m classifiers, each with a different bootstrap

data set, and testing on other bootstrap data sets.

• The final estimate is the average of these bootstrap

accuracies.

CS 551, Spring 2006 13/49

Maximum Likelihood Model Selection

• The goal of maximum likelihood model selection is to

choose the model that best explains the training data.

• Let Mi represent a candidate model and let D represent

the training data.

• The posterior probability of any given model can be

computed using the Bayes rule

P (Mi|D) =
P (D|Mi)P (Mi)

p(D)
∝ P (D|Mi)P (Mi)

where the data-dependent term P (D|Mi) is the

evidence for the particular model Mi, and P (Mi) is

our subjective prior over the space of all models.
CS 551, Spring 2006 14/49

Maximum Likelihood Model Selection

• In practice, the data-dependent term dominates and the

prior is often neglected in the computation.

• Therefore, in maximum likelihood model selection, we

find the maximum likelihood parameters for each of the

candidate models, calculate the resulting likelihoods,

and select the model with the largest such likelihood.

CS 551, Spring 2006 15/49

Maximum Likelihood Model Selection

Figure 2: The evidence is shown for three models of different expressive power or
complexity. Model h1 is the most expressive and model h3 is the most restrictive
of the three. If the actual data observed is D0, then maximum likelihood model
selection states that we should choose h2, which has the highest evidence.

CS 551, Spring 2006 16/49

Bayesian Model Selection

• Bayesian model selection uses the full information

over priors when computing the posterior probabilities

P (Mi|D).

• In particular, the evidence for a particular model is the

integral

P (D|Mi) =
∫

p(D|θ,Mi) p(θ|D,Mi) dθ

where θ describes the parameters in the candidate

model.

CS 551, Spring 2006 17/49

Bayesian Model Selection

• The posterior p(θ|D,Mi) is often peaked at θ̂ so the

evidence integral can be approximated as

P (D|Mi) ' P (D|θ̂,Mi)︸ ︷︷ ︸
best-fit

likelihood

p(θ̂|Mi)∆θ︸ ︷︷ ︸
Occam factor

.

• The Occam factor is the ratio of the volume in the

parameter space that corresponds to the prior range

of model parameters (∆0θ) and the volume that

corresponds to the data (∆θ)

Occam factor = p(θ̂|Mi)∆θ =
∆θ

∆0θ
.

CS 551, Spring 2006 18/49

Bayesian Model Selection

• The Occam factor has magnitude less than 1, where it

is the factor by which the model space collapses by the

presence of data.

• The more the training data, the smaller the range of

parameters that are proportionate with it, and thus the

greater this collapse in the parameter space and the

larger the Occam factor.

• Once the posteriors for different models have been

calculated, we select the one having the highest such

posterior.

CS 551, Spring 2006 19/49

Bayesian Model Selection

Figure 3: In the absence of training data, a particular model hi has available a
large range of possible values of its parameters, denoted ∆0θ. In the presence of a
particular training set D, a smaller range is available. The Occam factor, ∆θ/∆0θ,
measures the fractional decrease in the volume of the model’s parameter space due
to the presence of training data D.

CS 551, Spring 2006 20/49

Minimum Description Length Principle

• The Minimum Description Length (MDL) principle tries

to find a compromise between the model complexity

(still having a good data approximation) and the

complexity of the data approximation (while using a

simple model).

• Under the MDL principle, the best model is the one that

minimizes the sum of the model’s complexity L(M) and

the efficiency of the description of the training data with

respect to that model L(D|M), i.e.,

L(D,M) = L(M) + L(D|M).

CS 551, Spring 2006 21/49

Minimum Description Length Principle

• According to Shannon, the shortest code-length to encode data D
with a distribution p(D|M) under model M is given by

L(D|M) = − log L(M|D) = − log p(D|M)

where L(M|D) is the likelihood function for model M given the

sample D.

• The model complexity is measured as the number of bits required

to describe the model parameters.

• According to Rissanen, the code-length to encode κM real-valued

parameters characterizing n data points is

L(M) =
κM
2

log n

where κM is the number of free parameters in model M and n is

the size of the sample used to estimate those parameters.

CS 551, Spring 2006 22/49

Minimum Description Length Principle

• Once the description lengths for different models have

been calculated, we select the one having the smallest

such length.

• It can be shown theoretically that classifiers designed

with a minimum description length principle are

guaranteed to converge to the ideal or true model in the

limit of more and more data.

CS 551, Spring 2006 23/49

Minimum Description Length Principle

• As an example, let’s derive the description lengths for Gaussian

mixture models with m components.

• The total number of free parameters for different covariance matrix

models are:

Σj = σ2I κM = (m− 1) + md + 1

Σj = σ2
jI κM = (m− 1) + md + m

Σj = diag({σ2
jk}d

k=1) κM = (m− 1) + md + md

Σj = Σ κM = (m− 1) + md +
d(d + 1)

2

Σj = arbitrary κM = (m− 1) + md + m
d(d + 1)

2
where d is the dimension of the feature vectors.

CS 551, Spring 2006 24/49

Minimum Description Length Principle

• The first term describes the mixture weights {αj}m
j=1,

the second term describes the means {µj}m
j=1 and the

third term describes the covariance matrices {Σj}m
j=1.

• Hence, the best m can be found as

m∗ = arg min
m

κM
2

log n−
n∑

i=1

log

 m∑
j=1

αjpj(xi|µj,Σj)

 .

CS 551, Spring 2006 25/49

Minimum Description Length Principle

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

Plot of data and covariances

dim 1

di
m

 2

(a) True mixture
1 2 3 4 5 6 7

1630

1640

1650

1660

1670

1680

1690

1700

1710

MDL for covariance model Σ
j
 = σ2 I

Number of mixture components

D
es

cr
ip

tio
n

le
ng

th

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

Plot of data and covariances

dim 1

di
m

 2

(b) Σj = σ2I
1 2 3 4 5 6 7

1630

1640

1650

1660

1670

1680

1690

1700

1710

MDL for covariance model Σ
j
 = σ

j
2 I

Number of mixture components

D
es

cr
ip

tio
n

le
ng

th

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

Plot of data and covariances

dim 1

di
m

 2

(c) Σj = σ2
j I

1 2 3 4 5 6 7
1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

MDL for covariance model Σ
j
, diagonal

Number of mixture components

D
es

cr
ip

tio
n

le
ng

th

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

Plot of data and covariances

dim 1

di
m

 2

(d) Σj = diag({σ2
jk}

q
k=1

)

1 2 3 4 5 6 7
1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

MDL for covariance model Σ
j
 = Σ

Number of mixture components

D
es

cr
ip

tio
n

le
ng

th

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

Plot of data and covariances

dim 1

di
m

 2

(e) Σj = Σ
1 2 3 4 5 6 7

1620

1630

1640

1650

1660

1670

1680

1690

MDL for covariance model Σ
j
, full

Number of mixture components

D
es

cr
ip

tio
n

le
ng

th

−3 −2 −1 0 1 2 3 4 5

−1

0

1

2

3

4

5

Plot of data and covariances

dim 1

di
m

 2

(f) Σj = arbitrary

Figure 4: Example fits for a sample from a mixture of three bivariate Gaussians.
For each covariance model, description length vs. the number of components (left)
and fitted Gaussians as ellipses at one standard deviations (right) are shown. Using
MDL with the arbitrary covariance matrix gave the smallest description length and
also could capture the true number of components.

CS 551, Spring 2006 26/49

Combining Classifiers

• Just like different features capturing different properties of a

pattern, different classifiers also capture different structures and

relationships of these patterns in the feature space.

• An empirical comparison of different classifiers can help us choose

one of them as the best classifier for the problem at hand.

• However, although most of the classifiers may have similar error

rates, sets of patterns misclassified by different classifiers do not

necessarily overlap.

• Not relying on a single decision but rather combining the advantages

of different classifiers is intuitively promising to improve the overall

accuracy of classification.

• Such combinations are variously called combined classifiers,

ensemble classifiers, mixture-of-expert models, or pooled classifiers.

CS 551, Spring 2006 27/49

Combining Classifiers

• Some of the reasons for combining multiple classifiers to solve a

given classification problem can be stated as follows:

I Access to different classifiers, each developed in a different

context and for an entirely different representation/description

of the same problem.

I Availability of multiple training sets, each collected at a

different time or in a different environment, even may use

different features.

I Local performances of different classifiers where each classifier

may have its own region in the feature space where it performs

the best.

I Different performances due to different initializations and

randomness inherent in the training procedure.

CS 551, Spring 2006 28/49

Combining Classifiers

• In summary, we may have different feature sets, training sets,

classification methods, and training sessions, all resulting in a set

of classifiers whose outputs may be combined.

• Combination architectures can be grouped as:

I Parallel: all classifiers are invoked independently and then their

results are combined by a combiner.

I Serial (cascading): individual classifiers are invoked in a linear

sequence where the number of possible classes for a given

pattern is gradually reduced.

I Hierarchical (tree): individual classifiers are combined into a

structure, which is similar to that of a decision tree, where the

nodes are associated with the classifiers.

CS 551, Spring 2006 29/49

Combining Classifiers

• Selecting and training of individual classifiers:

I Combination of classifiers is especially useful if the individual

classifiers are largely independent.

I This can be explicitly forced by using different training sets,

different features and different classifiers.

• Combiner:

I Some combiners are static, with no training required, while

others are trainable.

I Some are adaptive where the decisions of individual classifiers

are evaluated (weighed) depending on the input pattern,

whereas nonadaptive ones treat all input patterns the same.

I Different combiners use different types of output from

individual classifiers: confidence, rank, or abstract.

CS 551, Spring 2006 30/49

Combining Classifiers

• Examples of classifier combination schemes are:

I Majority voting (each classifier makes a binary decision (vote)

about each class and the final decision is made in favor of the

class with the largest number of votes),

I Sum, product, maximum, minimum and median of the posterior

probabilities computed by individual classifiers,

I Class ranking (each class receives m ranks from m classifiers,

the highest (minimum) of these ranks is the final score for that

class),

I Borda count (sum of the number of classes ranked below a

class by each classifier),

I Weighted combination of classifiers.

• We will study different combination schemes using a Bayesian

framework and resampling.

CS 551, Spring 2006 31/49

Bayesian Classifier Combination

• Given c classes w1, . . . , wc with prior probabilities

P (w1), . . . , P (wc), and n feature vectors x1, . . . ,xn, the Bayesian

classifier makes the decision using the posterior probabilities as

assign to wk if k = arg
c

max
j=1

P (wj|x1, . . . ,xn)

= arg
c

max
j=1

p(x1, . . . ,xn|wj)P (wj).

• In a practical situation with limited training data, computing the

joint probability density p(x1, . . . ,xn|wj) for each class will be

difficult.

• However, we can train a separate classifier for each feature vector

and make some assumptions to simplify the decision rule.

CS 551, Spring 2006 32/49

Bayesian Classifier Combination

• Product rule: Assuming that the features x1, . . . ,xn are

conditionally statistically independent given the class, the decision

rule becomes

assign to wk if k = arg
c

max
j=1

[
P (wj)

n∏
i=1

p(xi|wj)
]

= arg
c

max
j=1

[
(P (wj))−(n−1)

n∏
i=1

P (wj|xi)
]

where P (wj|xi) is the posterior probability output of the i’th

classifier under class wj.

• Under the assumption of equal priors, the rule becomes

assign to wk if k = arg
c

max
j=1

n∏
i=1

P (wj|xi).

CS 551, Spring 2006 33/49

Bayesian Classifier Combination

• Sum rule: Assuming that the posterior probabilities from individual

classifiers will not deviate dramatically from the corresponding prior

probabilities, they can be rewritten as

P (wj|xi) = P (wj)(1 + εji)

where εji � 1.

• Substituting this approximation in the product rule and neglecting

any terms of second and higher order of εji gives the decision rule

assign to wk if k = arg
c

max
j=1

[
(1− n)P (wj) +

n∑
i=1

P (wj|xi)
]
.

• Under the assumption of equal priors, the rule becomes

assign to wk if k = arg
c

max
j=1

n∑
i=1

P (wj|xi).

CS 551, Spring 2006 34/49

Bayesian Classifier Combination

• Max rule: Approximating the sum in the sum rule by the maximum

of the posterior probabilities (1
n

∑n
i=1 ai ≤ maxn

i=1 ai for ai ∈ R)

gives the decision rule

assign to wk if k = arg
c

max
j=1

[
(1− n)P (wj) + n

n
max
i=1

P (wj|xi)
]
.

• Under the assumption of equal priors, the rule becomes

assign to wk if k = arg
c

max
j=1

n
max
i=1

P (wj|xi).

CS 551, Spring 2006 35/49

Bayesian Classifier Combination

• Min rule: Approximating the product in the product rule

by the minimum of the posterior probabilities (
∏n

i=1 ai ≤
minn

i=1 ai for 0 ≤ ai ≤ 1) gives the decision rule

assign to wk if k = arg
c

max
j=1

[
(P (wj))−(n−1)

n
min
i=1

P (wj|xi)
]
.

• Under the assumption of equal priors, the rule becomes

assign to wk if k = arg
c

max
j=1

n
min
i=1

P (wj|xi).

CS 551, Spring 2006 36/49

Bayesian Classifier Combination

• Median rule: Using the fact that median is a robust estimate of

the mean, approximating the sum in the sum rule by the median

of the posterior probabilities gives the decision rule

assign to wk if k = arg
c

max
j=1

n

median
i=1

P (wj|xi)

under the assumption of equal priors.

• Harmonic mean rule: Another measure of central tendency is the

harmonic mean, so replacing the sum in the sum rule by the

harmonic mean gives the decision rule

assign to wk if k = arg
c

max
j=1

[n∑
i=1

(P (wj|xi))−1

]−1

under the assumption of equal priors. Note that this rule is valid

when the posterior probabilities P (wj|xi) are positive.

CS 551, Spring 2006 37/49

Bayesian Classifier Combination

• Majority vote rule: If we set each classifier to make a binary

decision

δki =

1 if k = arg
c

max
j=1

P (wj|xi)

0 otherwise,

approximating the sum in the sum rule by the individual binary

decision outcomes gives the decision rule

assign to wk if k = arg
c

max
j=1

n∑
i=1

δji

under the assumption of equal priors.

• The votes received by each class from individual classifiers are

counted and the final decision is made in favor of the class with

the largest number of votes.

CS 551, Spring 2006 38/49

Bayesian Classifier Combination

• All of these combination methods are based on the conditional

independence assumption.

• Furthermore, some additional conditions need to be satisfied for the

combination methods to improve the classification performance.

• For example, the individual classifiers should not be strongly

correlated in their misclassification, i.e.,

I they should not agree with each other when they misclassify a

sample, or

I at least they should not assign the same incorrect class to a

particular sample.

• This requirement can be satisfied to a certain extent by using

different feature vectors and different classifiers.

CS 551, Spring 2006 39/49

Bayesian Classifier Combination

• These combination algorithms require the output of

individual classifiers to be probabilities.

• When the classifiers provide non-probabilistic output,

these values can be normalized and used in place of the

probabilities.

• Analog output: If the outputs of a classifier are

analog values gj, j = 1, . . . , c, we can use the softmax

transformation

Pj =
egj∑c
i=1 egi

to convert them to probability values Pj.

CS 551, Spring 2006 40/49

Bayesian Classifier Combination

• Rank order output: If the output is a rank order list,

the probability value can be assumed to be linearly

proportional to the rank order of the pattern on the list

(with proper normalization of the sum to 1.0).

• One-of-c output: If the output is a one-of-c

representation, in which a single category is identified,

Pj = 1.0 for the j corresponding to the chosen category,

and 0.0 otherwise.

CS 551, Spring 2006 41/49

Resampling for Classifier Combination

• We have studied using resampling for generating training data and

evaluating the accuracy of different classifiers.

• Resampling methods can also be used to build classifier ensembles.

• We will study:

I bagging , where multiple classifiers are built by bootstrapping

the original training set, and

I boosting , where a sequence of classifiers is built by training each

classifier using data sampled from a distribution derived from

the empirical misclassification rate of the previous classifier.

CS 551, Spring 2006 42/49

Bagging

• Bagging (bootstrap aggregating) uses multiple versions

of the training set, each created by bootstrapping the

original training data.

• Each of these bootstrap data sets is used to train a

different component classifier.

• The final classification decision is based on the vote of

each component classifier.

• Traditionally, the component classifiers are of the same

general form (e.g., all neural networks, all decision trees,

etc.) where their differences are in the final parameter

values due to their different sets of training patterns.

CS 551, Spring 2006 43/49

Bagging

• A classifier/learning algorithm is informally called

unstable if small changes in the training data lead

to significantly different classifiers and relatively large

changes in accuracy.

• Decision trees and neural networks are examples of

unstable classifiers where a slight change in training

patterns can result in radically different classifiers.

• In general, bagging improves recognition for unstable

classifiers because it effectively averages over such

discontinuities.

CS 551, Spring 2006 44/49

Boosting

• In boosting , each training pattern receives a weight

that determines its probability of being selected for the

training set for an individual component classifier.

• If a training pattern is accurately classified, its chance of

being used again in a subsequent component classifier

is reduced.

• Conversely, if the pattern is not accurately classified, its

chance of being used again is increased.

• The final classification decision is based on the weighted

sum of the votes of the component classifiers where the

weight for each classifier is a function of its accuracy.

CS 551, Spring 2006 45/49

Boosting

• The popular AdaBoost (adaptive boost ing) algorithm

allows continuous adding of classifiers until some desired

low training error has been achieved.

• Let αt(xi) denote the weight of pattern xi at trial t,

where α1(xi) = 1/n for every xi, i = 1, . . . , n.

• At each trial t = 1, . . . , T , a classifier Ct is constructed

from the given patterns under the distribution αt where

αt(xi) of pattern xi reflects its probability of occurrence.

• The error εt of this classifier is also measured with

respect to the weights, and consists of the sum of the

weights of the patterns that it misclassifies.

CS 551, Spring 2006 46/49

Boosting

• If εt is greater than 0.5, the trials terminate and T is

set to t− 1.

• Conversely, if Ct correctly classifies all patterns so that

εt is zero, the trials also terminate and T becomes t.

• Otherwise, the weights αt+1 for the next trial are

generated by multiplying the weights of patterns that

Ct classifies correctly by the factor βt = εt/(1− εt) and

then are renormalized so that
∑n

i=1 αt+1(xi) = 1.

• The boosted classifier C∗ is obtained by summing the

votes of the classifiers C1, . . . , CT , where the vote for

classifier Ct is also weighted by log(1/βt).
CS 551, Spring 2006 47/49

Boosting

• Provided that εt is always less than 0.5, it was shown

that the error rate of C∗ on the given patterns under

the original uniform distribution α1 approaches zero

exponentially quickly as T increases.

• A succession of weak classifiers {Ct} can thus be boosted

to a strong classifier C∗ that is at least as accurate as,

and usually much more accurate than, the best weak

classifier on the training data.

• However, note that there is no guarantee of the

generalization performance of a bagged or boosted

classifier on unseen patterns.

CS 551, Spring 2006 48/49

Combining Classifiers

Table 1: Classifier combination methods.

CS 551, Spring 2006 49/49

