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Introduction

• Bayesian Decision Theory shows us how to design an

optimal classifier if we know the prior probabilities P (wi)
and the class-conditional densities p(x|wi).

• Unfortunately, we rarely have complete knowledge of

the probabilistic structure.

• However, we can often find design samples or training

data that include particular representatives of the

patterns we want to classify.
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Introduction

• To simplify the problem, we can assume some parametric

form for the conditional densities and estimate these

parameters using training data.

• Then, we can use the resulting estimates as if they

were the true values and perform classification using the

Bayesian decision rule.

• We will consider only the supervised learning case where

the true class label for each sample is known.
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Introduction

• We will study two estimation procedures:

I Maximum likelihood estimation

– Views the parameters as quantities whose values

are fixed but unknown.

– Estimates these values by maximizing the

probability of obtaining the samples observed.

I Bayesian estimation

– Views the parameters as random variables having

some known prior distribution.

– Observing new samples converts the prior to a

posterior density.
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Maximum Likelihood Estimation

• Suppose we have a setD = {x1, . . . ,xn} of independent

and identically distributed (i.i.d.) samples drawn from

the density p(x|θ).

• We would like to use training samples in D to estimate

the unknown parameter vector θ.

• Define L(θ|D) as the likelihood function of θ with

respect to D as

L(θ|D) = p(D|θ) = p(x1, . . . ,xn|θ) =
n∏

i=1

p(xi|θ).
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Maximum Likelihood Estimation

• The maximum likelihood estimate (MLE) of θ is, by

definition, the value θ̂ that maximizes L(θ|D) and can

be computed as

θ̂ = arg max
θ

L(θ|D).

• It is often easier to work with the logarithm of the

likelihood function (log-likelihood function) that gives

θ̂ = arg max
θ

log L(θ|D) = arg max
θ

n∑
i=1

log p(xi|θ).
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Maximum Likelihood Estimation

• If the number of parameters is p, i.e.,

θ = (θ1, . . . ,θp)T , define the gradient operator

∇θ ≡


∂

∂θ1
...
∂

∂θp

 .

• Then, the MLE of θ should satisfy the necessary

conditions

∇θ log L(θ|D) =
n∑

i=1

∇θ log p(xi|θ) = 0.
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Maximum Likelihood Estimation

• Properties of MLEs:

I The MLE is the parameter point for which the

observed sample is the most likely.

I The procedure with partial derivatives may result in

several local extrema. We should check each solution

individually to identify the global optimum.

I Boundary conditions must also be checked separately

for extrema.

I Invariance property: if θ̂ is the MLE of θ, then for

any function f(θ), the MLE of f(θ) is f(θ̂).
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The Gaussian Case

• Suppose that p(x|θ) = N(µ,Σ).
I When Σ is known but µ is unknown:

µ̂ =
1
n

n∑
i=1

xi

I When both µ and Σ are unknown:

µ̂ =
1
n

n∑
i=1

xi and Σ̂ =
1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T
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The Bernoulli Case

• Suppose that P (x|θ) = Bernoulli(θ) = θx(1 − θ)1−x

where x = 0, 1 and 0 ≤ θ ≤ 1.

• The MLE of θ can be computed as

θ̂ =
1
n

n∑
i=1

xi.
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Bias of Estimators

• Bias of an estimator θ̂ is the difference between the

expected value of θ̂ and θ.

• The MLE of µ is an unbiased estimator for µ because

E[µ̂] = µ.

• The MLE of Σ is not an unbiased estimator for Σ
because E[Σ̂] = n−1

n Σ 6= Σ.

• The sample covariance

S2 =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)T

is an unbiased estimator for Σ.
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Goodness-of-fit

• To measure how well a fitted distribution resembles

the sample data (goodness-of-fit), we can use the

Kolmogorov-Smirnov test statistic.

• It is defined as the maximum value of the absolute

difference between the cumulative distribution function

estimated from the sample and the one calculated from

the fitted distribution.

• After estimating the parameters for different

distributions, we can compute the Kolmogorov-Smirnov

statistic for each distribution and choose the one with

the smallest value as the best fit to our sample.
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Maximum Likelihood Estimation Examples

(a) True pdf is N(10, 4). Estimated pdf is
N(10.1, 3.9).

(b) True pdf is 0.5N(10, 0.16)+0.5N(11, 0.25).
Estimated pdf is N(10.5, 0.5).

(c) True pdf is Gamma(4, 4). Estimated pdfs are
N(15.8, 62.1) and Gamma(4.0, 3.9).

(d) Cumulative distribution functions for the
example in (c).

Figure 1: Histograms of samples and estimated densities for different distributions.
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Bayesian Estimation

• Suppose the set D = {x1, . . . ,xn} contains the samples

drawn independently from the density p(x|θ) whose

form is assumed to be known but θ is not known

exactly.

• Assume that θ is a quantity whose variation can be

described by the prior probability distribution p(θ).
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Bayesian Estimation

• Given D, the prior distribution can be updated to form

the posterior distribution using the Bayes rule

p(θ|D) =
p(D|θ)p(θ)

p(D)
where

p(D) =
∫

p(D|θ) p(θ) dθ

and

p(D|θ) =
n∏

i=1

p(xi|θ).
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Bayesian Estimation

• The posterior distribution p(θ|D) can be used to find

estimates for θ (e.g., the expected value of p(θ|D) can

be used as an estimate for θ).

• Then, the conditional density p(x|D) can be computed

as

p(x|D) =
∫

p(x|θ) p(θ|D) dθ

and can be used in the Bayesian classifier.
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MLEs vs. Bayes Estimates

• Maximum likelihood estimation finds an estimate of θ

based on the samples in D but a different sample set

would give rise to a different estimate.

• Bayes estimate takes into account the sampling

variability.

• We assume that we do not know the true value of θ, and

instead of taking a single estimate, we take a weighted

sum of the densities p(x|θ) weighted by the distribution

p(θ|D).
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The Gaussian Case

• Consider the univariate case p(x|µ) = N(µ, σ2) where µ

is the only unknown parameter with a prior distribution

p(µ) = N(µ0, σ
2
0) (σ2, µ0 and σ2

0 are all known).

• This corresponds to drawing a value for µ from the

population with density p(µ), treating it as the true

value in the density p(x|µ), and drawing samples for x

from this density.
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The Gaussian Case

• Given D = {x1, . . . , xn}, we obtain

p(µ|D) ∝
n∏

i=1

p(xi|µ)p(µ)

∝ exp

[
− 1

2

((
n

σ2
+

1
σ2

0

)
µ2 − 2

(
1
σ2

n∑
i=1

xi +
µ0

σ2
0

)
µ

)]
= N(µn, σ2

n)

where

µn =
(

nσ2
0

nσ2
0 + σ2

)
µ̂n +

(
σ2

nσ2
0 + σ2

)
µ0

(
µ̂n =

1
n

n∑
i=1

xi

)
σ2

n =
σ2

0σ
2

nσ2
0 + σ2

.
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The Gaussian Case

• µ0 is our best prior guess and σ2
0 is the uncertainty

about this guess.

• µn is our best guess after observing D and σ2
n is the

uncertainty about this guess.

• µn always lies between µ̂n and µ0.

I If σ0 = 0, then µn = µ0 (no observation can change

our prior opinion).

I If σ0 � σ, then µn = µ̂n (we are very uncertain

about our prior guess).

I Otherwise, µn approaches µ̂n as n approaches

infinity.
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The Gaussian Case

• Given the posterior density p(µ|D), the conditional

density p(x|D) can be computed as

p(x|D) = N(µn, σ
2 + σ2

n)

where the conditional mean µn is treated as if it were

the true mean, and the known variance is increased to

account for our lack of exact knowledge of the mean µ.
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The Gaussian Case

• Consider the multivariate case p(x|µ) = N(µ,Σ)
where µ is the only unknown parameter with a prior

distribution p(µ) = N(µ0,Σ0) (Σ, µ0 and Σ0 are

all known).

• Given D = {x1, . . . ,xn}, we obtain

p(µ|D) ∝ exp

[
− 1

2

(
µT

(
nΣ−1 + Σ−1

0

)
µ

− 2µT

(
Σ−1

n∑
i=1

xi + Σ−1
0 µ0

))]
.
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The Gaussian Case

• It follows that

p(µ|D) = N(µn,Σn)

where

µn = Σ0

(
Σ0 +

1
n
Σ
)−1

µ̂n +
1
n
Σ
(
Σ0 +

1
n
Σ
)−1

µ0,

Σn =
1
n
Σ0

(
Σ0 +

1
n
Σ
)−1

Σ.
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The Gaussian Case

• Given the posterior density p(µ|D), the conditional

density p(x|D) can be computed as

p(x|D) = N(µn,Σ + Σn)

which can be viewed as the sum of a random vector µ

with p(µ|D) = N(µn,Σn) and an independent random

vector y with p(y) = N(0,Σ).
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The Bernoulli Case

• Consider P (x|θ) = Bernoulli(θ) where θ is the unknown

parameter with a prior distribution p(θ) = Beta(α, β)
(α and β are both known).

• Given D = {x1, . . . , xn}, we obtain

p(θ|D) = Beta

(
α +

n∑
i=1

xi, β + n−
n∑

i=1

xi

)
.
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The Bernoulli Case

• The Bayes estimate of θ can be computed as the

expected value of p(θ|D), i.e.,

θ̂ =
α +

∑n
i=1 xi

α + β + n

=
(

n

α + β + n

)
1
n

n∑
i=1

xi +
(

α + β

α + β + n

)
α

α + β
.
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Conjugate Priors

• A conjugate prior is one which, when multiplied with

the probability of the observation, gives a posterior

probability having the same functional form as the prior.

• This relationship allows the posterior to be used as a

prior in further computations.

Table 1: Conjugate prior distributions.

pdf generating the sample corresponding conjugate prior
Gaussian Gaussian

Exponential Gamma
Poisson Gamma
Binomial Beta

Multinomial Dirichlet
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Recursive Bayes Learning

• What about the convergence of p(x|D) to p(x)?

• Given Dn = {x1, . . . ,xn}, for n > 1

p(Dn|θ) = p(xn|θ)p(Dn−1|θ)

and

p(θ|Dn) =
p(xn|θ) p(θ|Dn−1)∫
p(xn|θ) p(θ|Dn−1) dθ

where

p(θ|D0) = p(θ)
⇒ quite useful if the distributions can be represented

using only a few parameters (sufficient statistics).
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Recursive Bayes Learning

• Consider the Bernoulli case P (x|θ) = Bernoulli(θ)
where p(θ) = Beta(α, β), the Bayes estimate of θ is

θ̂ =
α

α + β
.

• Given the training set D = {x1, . . . , xn}, we obtain

p(θ|D) = Beta(α + m,β + n−m)

where m =
∑n

i=1 xi = #{xi|xi = 1, xi ∈ D}.
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Recursive Bayes Learning

• The Bayes estimate of θ becomes

θ̂ =
α + m

α + β + n
.

• Then, given a new training set D′ = {x1, . . . , xn′}, we

obtain

p(θ|D,D′) = Beta(α + m + m′, β + n−m + n′ −m′)

where m′ =
∑n′

i=1 xi = #{xi|xi = 1, xi ∈ D′}.
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Recursive Bayes Learning

• The Bayes estimate of θ becomes

θ̂ =
α + m + m′

α + β + n + n′
.

• Thus, recursive Bayes learning involves only keeping the

counts m (related to sufficient statistics of Beta) and

the number of training samples n.
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MLEs vs. Bayes Estimates

Table 2: Comparison of MLEs and Bayes estimates.

MLE Bayes
computational
complexity

differential calculus, gradient
search

multidimensional integration

interpretability point estimate weighted average of models
prior information assume the parametric

model p(x|θ)
assume the models p(θ) and
p(x|θ) but the resulting
distribution p(x|D) may not
have the same form as
p(x|θ)

• If there is much data (strongly peaked p(θ|D)) and the

prior p(θ) is uniform, then the Bayes estimate and MLE

are equivalent.
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Classification Error

• To apply these results to multiple classes, separate

the training samples to c subsets D1, . . . ,Dc, with the

samples in Di belonging to class wi, and then estimate

each density p(x|wi,Di) separately.

• Different sources of error:

I Bayes error: due to overlapping class-conditional

densities (related to the features used).

I Model error: due to incorrect model.

I Estimation error: due to estimation from a finite

sample (can be reduced by increasing the amount of

training data).
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