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Missing Features

• Suppose that we have a Bayesian classifier that uses the

feature vector x but a subset xg of x are observed and

the values for the remaining features xb are missing.

• How can we make a decision?

I Throw away the observations with missing values.

I Or, substitute xb by their average x̄b in the training

data, and use x = (xg, x̄b).
I Or, marginalize the posterior over the missing

features, and use the resulting posterior

P (wi|xg) =
∫

P (wi|xg,xb) p(xg,xb) dxb∫
p(xg,xb) dxb

.
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Expectation-Maximization

• We can also extend maximum likelihood techniques

to allow learning of parameters when some training

patterns have missing features.

• The Expectation-Maximization (EM) algorithm is a

general iterative method of finding the maximum

likelihood estimates of the parameters of a distribution

from training data.
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Expectation-Maximization

• There are two main applications of the EM algorithm:

I Learning when the data is incomplete or has missing

values.

I Optimizing a likelihood function that is analytically

intractable but can be simplified by assuming the

existence of and values for additional but missing (or

hidden) parameters.

• The second problem is more common in pattern

recognition applications.
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Expectation-Maximization

• Assume that the observed data X is generated by some

distribution.

• Assume that a complete dataset Z = (X ,Y) exists as

a combination of the observed but incomplete data X
and the missing data Y.

• The observations in Z are assumed to be i.i.d. from the

joint density

p(z|Θ) = p(x,y|Θ) = p(y|x,Θ)p(x|Θ).
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Expectation-Maximization

• We can define a new likelihood function

L(Θ|Z) = L(Θ|X ,Y) = p(X ,Y|Θ)

called the complete-data likelihood where L(Θ|X ) is

referred to as the incomplete-data likelihood.

• The EM algorithm:

I First, finds the expected value of the complete-data

log-likelihood using the current parameter estimates

(expectation step).

I Then, maximizes this expectation (maximization

step).
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Expectation-Maximization

• Define

Q(Θ,Θ(i−1)) = E
[
log p(X ,Y|Θ) | X ,Θ(i−1)]

as the expected value of the complete-data log-

likelihood w.r.t. the unknown data Y given the observed

data X and the current parameter estimates Θ(i−1).

• The expected value can be computed as

E
[

log p(X ,Y|Θ)|X ,Θ(i−1)
]

=
∫

log p(X ,y|Θ) p(y|X ,Θ(i−1)) dy.

• This is called the E-step.
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Expectation-Maximization

• Then, the expectation can be maximized by finding

optimum values for the new parameters Θ as

Θ(i) = arg max
Θ

Q(Θ,Θ(i−1)).

• This is called the M-step.

• These two steps are repeated iteratively where each

iteration is guaranteed to increase the log-likelihood.

• The EM algorithm is also guaranteed to converge to a

local maximum of the likelihood function.
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Generalized Expectation-Maximization

• Instead of maximizing Q(Θ,Θ(i−1)), the Generalized

Expectation-Maximization algorithm finds some set of

parameters Θ(i) that satisfy

Q(Θ(i),Θ(i−1)) > Q(Θ,Θ(i−1))

at each iteration.

• Convergence will not be as rapid as the EM algorithm

but it allows greater flexibility to choose computationally

simpler steps.
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Mixture Densities

• A mixture model is a linear combination of m densities

p(x|Θ) =
m∑

j=1

αjpj(x|θj)

where Θ = (α1, . . . , αm,θ1, . . . ,θm) such that αj ≥ 0
and

∑m
j=1 αj = 1.

• α1, . . . , αm are called the mixing parameters.

• pj(x|θj), j = 1, . . . ,m are called the component

densities.
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Mixture Densities

• Suppose that X = {x1, . . . ,xn} is a set of observations

i.i.d. with distribution p(x|Θ).

• The log-likelihood function of Θ becomes

log L(Θ|X ) = log
n∏

i=1

p(xi|Θ) =
n∑

i=1

log
( m∑

j=1

αjpj(xi|θj)
)

.

• We cannot obtain an analytical solution for Θ by simply

setting the derivatives of log L(Θ|X ) to zero because

of the logarithm of the sum.
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Mixture Density Estimation via EM

• Consider X as incomplete and define hidden variables Y = {yi}n
i=1

where yi corresponds to which mixture component generated the

data vector xi.

• In other words, yi = j if the i’th data vector was generated by the

j’th mixture component.

• Then, the log-likelihood becomes

log L(Θ|X ,Y) = log p(X ,Y|Θ)

=
n∑

i=1

log(p(xi|yi,θi)p(yi|θi))

=
n∑

i=1

log(αyi
pyi

(xi|θyi
)).
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Mixture Density Estimation via EM

• Assume we have the initial parameter estimates

Θ(g) = (α(g)
1 , . . . , α

(g)
m ,θ

(g)
1 , . . . ,θ(g)

m ).

• Compute

p(yi|xi,Θ(g)) =
α

(g)
yi pyi

(xi|θ(g)
yi

)

p(xi|Θ(g))
=

α
(g)
yi pyi

(xi|θ(g)
yi

)∑m
j=1 α

(g)
j pj(xi|θ(g)

j )

and

p(Y|X ,Θ(g)) =
n∏

i=1

p(yi|xi,Θ(g)).
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Mixture Density Estimation via EM

• Then, Q(Θ,Θ(g)) takes the form

Q(Θ,Θ(g)) =
∑
y

log p(X ,y|Θ)p(y|X ,Θ(g))

=
m∑

j=1

n∑
i=1

log(αjpj(xi|θj))p(j|xi,Θ(g))

=
m∑

j=1

n∑
i=1

log(αj)p(j|xi,Θ(g))

+
m∑

j=1

n∑
i=1

log(pj(xi|θj))p(j|xi,Θ(g)).
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Mixture Density Estimation via EM

• We can maximize the two sets of summations for αj

and θj independently because they are not related.

• The estimate for αj can be computed as

α̂j =
1
n

n∑
i=1

p(j|xi,Θ(g))

where

p(j|xi,Θ(g)) =
α

(g)
j pj(xi|θ(g)

j )∑m
t=1 α

(g)
t pt(xi|θ(g)

t )
.
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Mixture of Gaussians

• We can obtain analytical expressions for θj for the special case of

a Gaussian mixture where θj = (µj,Σj) and

pj(x|θj) = pj(x|µj,Σj)

=
1

(2π)d/2|Σj|1/2
exp

[
−1

2
(x− µj)

TΣ−1
j (x− µj)

]
.

• Equating the partial derivative of Q(Θ,Θ(g)) with respect to µj

to zero gives

µ̂j =
∑n

i=1 p(j|xi,Θ(g))xi∑n
i=1 p(j|xi,Θ(g))

.
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Mixture of Gaussians

• We consider five models for the covariance matrix Σj:

I Σj = σ2I

σ̂2 =
1
nd

m∑
j=1

n∑
i=1

p(j|xi,Θ(g))‖xi − µ̂j‖2

I Σj = σ2
jI

σ̂2
j =

∑n
i=1 p(j|xi,Θ(g))‖xi − µ̂j‖2

d
∑n

i=1 p(j|xi,Θ(g))
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Mixture of Gaussians

• Covariance models continued:

I Σj = diag({σ2
jk}d

k=1)

σ̂2
jk =

∑n
i=1 p(j|xi,Θ(g))(xik − µ̂jk

)2∑n
i=1 p(j|xi,Θ(g))

I Σj = Σ

Σ̂ =
1
n

m∑
j=1

n∑
i=1

p(j|xi,Θ(g))(xi − µ̂j)(xi − µ̂j)
T

I Σj = arbitrary

Σ̂j =
∑n

i=1 p(j|xi,Θ(g))(xi − µ̂j)(xi − µ̂j)T∑n
i=1 p(j|xi,Θ(g))

CS 551, Spring 2006 17/24



Mixture of Gaussians

• Summary:

I Estimates for αj, µj and Σj perform both

expectation and maximization steps simultaneously.

I EM iterations proceed by using the current estimates

as the initial estimates for the next iteration.

I The priors are computed from the proportion of

examples belonging to each mixture component.

I The means are the component centroids.

I The covariance matrices are calculated as the

sample covariance of the points associated with each

component.
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Mixture of Gaussians

• Questions:

I How can we find the number of components in the

mixture?

I How can we find the initial estimates for Θ?

I How do we know when to stop the iterations?

– Stop if the change in log-likelihood between two

iterations is less than a threshold.

– Or, use a threshold for the number of iterations.
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Examples

• Mixture of Gaussians examples

• 1-D Bayesian classification examples

• 2-D Bayesian classification examples
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(a) Scatter plot. (b) Same spherical covariance,
log-likelihood = -806.08.

(c) Different spherical covariance,
log-likelihood = -804.21.

(d) Different diagonal covariance,
log-likelihood = -630.46.

(e) Same arbitrary covariance,
log-likelihood = -810.93.

(f) Different arbitrary covariance,
log-likelihood = -523.11.

Figure 1: Fitting mixtures of 5 Gaussians to data from a circular distribution.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gmix_example.mat


(a) True densities and sample histograms. (b) Linear Gaussian classifier with Pe = 0.0914.

(c) Quadratic Gaussian classifier with Pe = 0.0837. (d) Mixture of Gaussian classifier with Pe = 0.0869.

Figure 2: 1-D Bayesian classification examples where the data for each class come
from a mixture of three Gaussians. Bayes error is Pe = 0.0828.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier_example.mat


(a) Scatter plot. (b) Linear Gaussian classifier with Pe = 0.094531.

(c) Quadratic Gaussian classifier with Pe = 0.012829. (d) Mixture of Gaussian classifier with Pe = 0.002026.

Figure 3: 2-D Bayesian classification examples where the data for the classes come
from a banana shaped distribution and a bivariate Gaussian.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier2_example.mat


(a) Scatter plot.

(b) Quadratic Gaussian classifier with Pe = 0.1570. (c) Quadratic Gaussian classifier with Pe = 0.0100.

Figure 4: 2-D Bayesian classification examples where the data for each class come
from a banana shaped distribution.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier3_example.mat

