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Missing Features

e Suppose that we have a Bayesian classifier that uses the
feature vector x but a subset x, of x are observed and
the values for the remaining features x; are missing.

e How can we make a decision?
» Throw away the observations with missing values.
» Or, substitute x; by their average X; in the training
data, and use x = (x4, Xp).
» Or, marginalize the posterior over the missing
features, and use the resulting posterior

P(w;|xq,Xp) p(Xq, Xp) dXp
Pluyfxg) = -2 LXe X6 PO, Xo) ey
fp(Xga Xb) de
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Expectation-Maximization

e We can also extend maximum likelthood techniques
to allow learning of parameters when some training

patterns have missing features.
e The Expectation-Maximization (EM) algorithm is a

general iterative method of finding the maximum
likelihood estimates of the parameters of a distribution

from training data.
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Expectation-Maximization

e [here are two main applications of the EM algorithm:

» Learning when the data is incomplete or has missing
values.

» Optimizing a likelihood function that is analytically
intractable but can be simplified by assuming the
existence of and values for additional but missing (or
hidden) parameters.

e The second problem is more common in pattern
recognition applications.
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Expectation-Maximization
e Assume that the observed data X is generated by some
distribution.

e Assume that a complete dataset Z = (X', )) exists as
a combination of the observed but incomplete data X
and the missing data ) .

e [ he observations in Z are assumed to be i.i.d. from the
joint density

p(z|®) = p(x,y|®) = p(y|x, ©)p(x]O).
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Expectation-Maximization

e \We can define a new likelihood function
L(®|Z) = L(O|X,Y) =p(X,)V|O)

called the complete-data likelihood where L(®|X) is
referred to as the incomplete-data likelihood.

e The EM algorithm:

» First, finds the expected value of the complete-data

log-likelihood using the current parameter estimates
(expectation step).

» Then, maximizes this expectation (maximization
step).
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Expectation-Maximization

e Define
Q0,08 ) = E[logp(X,Y|©) | X, 0]

as the expected value of the complete-data log-
likelihood w.r.t. the unknown data ) given the observed
data X and the current parameter estimates el

e [ he expected value can be computed as
E|logp(X,Y|0©)|x,00" ] = /10gp(?€,y\@)p(Y\X,G(H))dy-

e [his is called the E-step.
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Expectation-Maximization

e Then, the expectation can be maximized by finding
optimum values for the new parameters © as

O = arg max Q(0O, G)(i_l)).

e [his is called the M-step.

e These two steps are repeated iteratively where each
iteration is guaranteed to increase the log-likelihood.

e The EM algorithm is also guaranteed to converge to a
local maximum of the likelihood function.
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Generalized Expectation-Maximization

e Instead of maximizing Q(@,@(i_l)), the Generalized
Expectation-Maximization algorithm finds some set of
parameters @'Y that satisfy

QO el > Q©,e! )

at each iteration.

e Convergence will not be as rapid as the EM algorithm
but it allows greater flexibility to choose computationally
simpler steps.
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Mixture Densities

e A mixture model is a linear combination of m densities

p(x|®) = Zoszj (x]0;)

where © = (ay, .. .,am,Hl, ..., 0m) such that a; > 0
and > 5" = 1.

® v1,...,q,, are called the mixing parameters.

e pi(x(0;), 7 = 1,...,m are called the component

densities.
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Mixture Densities

e Suppose that X = {x1,...,X,} is a set of observations
i.i.d. with distribution p(x|®).

e The log-likelihood function of ® becomes
log L(®|X) = log Hp(xf,;]@) = Zlog (Zajpj(xilej))
i=1 i=1 j=1
e \We cannot obtain an analytical solution for ® by simply

setting the derivatives of log L(®|X’) to zero because
of the logarithm of the sum.
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Mixture Density Estimation via EM

e Consider X as incomplete and define hidden variables V = {y; }}*_,
where y,; corresponds to which mixture component generated the
data vector x;.

e |In other words, y; = j if the i'th data vector was generated by the
7'th mixture component.

e Then, the log-likelihood becomes

log L(®|X,Y) = logp(X,)|©)

- Z log(p(x4|yi, 05)p(vil03:))

— Z log(ozyz.pyz. (x4 Hyz)) :

1=1
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Mixture Density Estimation via EM

e Assume we have the Initial parameter estimates
09 = (a\",....a!?,0'9 ... 09

m

e Compute

Ofég)pyi (%] H(yg,,;)) B O‘?(jg)pyi (%] Héi))

p(yi’X’ia @(g)) — — m
p(X»,;‘@(g)) Zj:l Oé§-g)pj(X7;‘9§g))

and

p(Y|X, 01 Hp yi|Xi, ©
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Mixture Density Estimation via EM
e Then, Q(©,O9) takes the form

Q(O,09) =) "logp(X,y|O®)p(y|X, ©)

y

— ZZlog (oipi(x4]05))D (j‘Xia@(g))

71=11=1
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Mixture Density Estimation via EM
e \We can maximize the two sets of summations for «;
and 6, independently because they are not related.

e The estimate for a;; can be computed as
R
Qj = EZ;P(J\X% e'%)

where
(9. (< 1nl9)
p(j’X @(g)) _ O‘j p](Xzyej )
v m _(9) ,9(9) '
thl ;" pr(%4|0;)
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Mixture of Gaussians

e We can obtain analytical expressions for 8, for the special case of
a Gaussian mixture where 6 = (p;, 3;) and

p;(x10;5) = pj(x|pe;, 3j)

1 1 T —1
CHEEEE OXp _§(X_“j) X5 (x = k)

e Equating the partial derivative of Q(@,@)(g)) with respect to
to zero gives

~ Z?:l p(j‘X’ia G)(g))xz

M= 5 ke, @)
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Mixture of Gaussians

e \We consider five models for the covariance matrix Ej:
> Ej e |

) 1 m n | A
5= 3> Pl ) [xi — iy

=1 i=1
> Zj — o1

o i PG, ©'9)Ixs —
] > p(jlxs, ©9)
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Mixture of Gaussians

e Covariance models continued:
» X; = diag({o?, }i_)

05, = ~ :
! Z’i:l p(]‘Xf,;, ®(g))
> 2 =X
R 1 m mn ) R T
B= 133l O i i)
j=1i=
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Mixture of Gaussians

e Summary:

» Estimates for «;, p; and 3, perform both
expectation and maximization steps simultaneously.

» EM iterations proceed by using the current estimates
as the initial estimates for the next iteration.

» The priors are computed from the proportion of
examples belonging to each mixture component.

» T he means are the component centroids.

» The covariance matrices are calculated as the
sample covariance of the points associated with each
component.
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Mixture of Gaussians

e Questions:
» How can we find the number of components in the
mixture?

» How can we find the initial estimates for @7

» How do we know when to stop the iterations?
Stop if the change in log-likelihood between two
iterations is less than a threshold.
Or, use a threshold for the number of iterations.
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Examples

e Mixture of Gaussians examples
e 1-D Bayesian classification examples

e 2-D Bayesian classification examples
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(a) Scatter plot.
log-likelihood = -806.08.

Different diagonal covariance, log-likelihood = -630.461064

05k

Same full covariance, log-likelihood = -810.928655

(b) Same spherical covariance,

(d) Different diagonal covariance, (e)
log-likelihood = -630.46. log-likelihood = -810.93.

Figure 1: Fitting mixtures of 5 Gaussians to
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Same arbitrary covariance,

data

Different spherical covariance, log-likelihood = -804.209824

(c) Different spherical covariance,
log-likelihood = -804.21.

Different full covariance, log-likelihood = -523.114308

(f) Different arbitrary covariance,
log-likelihood = -523.11.

from a circular distribution.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gmix_example.mat

True densities and sample histograms
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(c) Quadratic Gaussian classifier with P, = 0.0837. (d) Mixture of Gaussian classifier with P, = 0.0869.

Figure 2: 1-D Bayesian classification examples where the [data

for each class come
from a mixture of three Gaussians. Bayes error is P, = 0.0828.
CS 551, Spring 2006
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier_example.mat

Scatter plot of two classes
O

6
4
2k
ok
2L
4
6L
1
-8
Quadratic Gaussian classifier, Pe =0.012829
O
o O sample A
o ° + sample B
ol - fitted A
fitted B
" dec.bound.
4|
2
or [e]
2
4}
6|
! L L
8 10

(c) Quadratic Gaussian classifier with P, = 0.012829.

Linear Gaussian classifier, Pe =0.094531

.
O sample A
+ sample B
=== fitted A

- fitted B

== dec.bound.

(b) Linear Gaussian classifier with P, = 0.094531.

Mixture of Gaussian classifier, Pe =0.002026

O sample A
+ sample B
=== fitted A

- fitted B
== dec.bound.

(d) Mixture of Gaussian classifier with P, = 0.002026.

for the classes come

Figure 3: 2-D Bayesian classification examples where the |data

from a banana shaped distribution and a bivariate Gaussian.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier2_example.mat
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(b) Quadratic Gaussian classifier with P, = 0.1570. (c) Quadratic Gaussian classifier with P, = 0.0100.

Figure 4. 2-D Bayesian classification examples where the [datal for each class come
from a banana shaped distribution.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier3_example.mat

