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Introduction

e In practical multicategory applications, 1t is not unusual
to encounter problems involving tens or hundreds of
features.

e Intuitively, it may seem that each feature is useful for
at least some of the discriminations.

e In general, if the performance obtained with a given set
of features is inadequate, it is natural to consider adding
new features.

e Even though increasing the number of features increases
the complexity of the classifier, it may be acceptable for
an improved performance.
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Introduction

Figure 1: There is a non-zero Bayes error in the one-dimensional x1 space or the
two-dimensional 1, x5 space. However, the Bayes error vanishes in the x1, zo, x3

space because of non-overlapping densities.
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Problems of Dimensionality

e Unfortunately, it has frequently been observed in
practice that, beyond a certain point, adding new
features leads to worse rather than better performance.

e This is called the curse of dimensionality .

e There are two issues that we must be careful about:

» How is the classification accuracy affected by the
dimensionality (relative to the amount of training
data)?

» How is the computational complexity of the classifier
affected by the dimensionality?
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Problems of Dimensionality

e Potential reasons for increase in error include
» wrong assumptions in model selection, or
» estimation errors due to the finite number of
training samples for high-dimensional observations
(overfitting).

e Potential solutions include
» reducing the dimensionality,
» simplifying the estimation.
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Problems of Dimensionality

e Dimensionality can be reduced by
» redesigning the features,
» selecting an appropriate subset among the existing
features,
» combining existing features.

e Estimation errors can be simplified by
» assuming equal covariance for all classes (for the
Gaussian case),
» using prior information and a Bayes estimate,
» using heuristics such as conditional independence.
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Problems of Dimensionality
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Figure 2: Problem of insufficient data is analogous to problems in curve fitting.
The training data (black dots) are selected from a quadratic function plus Gaussian
noise. A tenth-degree polynomial fits the data perfectly but we prefer a second-order
polynomial for better generalization.
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Problems of Dimensionality

e All of the commonly used classifiers can suffer from the
curse of dimensionality.

e While an exact relationship between the probability of
error, the number of training samples, the number of
features, and the number of parameters is very difficult
to establish, some guidelines have been suggested.

e It is generally accepted that using at least ten times
as many training samples per class as the number of
features (n/d > 10) is a good practice.

e The more complex the classifier, the larger should the
ratio of sample size to dimensionality be.
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Feature Reduction

e One approach for coping with the problem of high dimensionality
is to reduce the dimensionality by combining features.

e Issues in feature reduction:
» Linear vs. non-linear transformations.
» Use of class labels or not (depends on the availability of training
data).

» Training objective:
minimizing classification error (discriminative training),
minimizing reconstruction error (PCA),
maximizing class separability (LDA),
retaining interesting directions (projection pursuit),
making features as independent as possible (ICA).
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Feature Reduction

e Linear combinations are particularly attractive because
they are simple to compute and are analytically
tractable.

e Linear methods project the high-dimensional data onto
a lower dimensional space.

e Advantages of these projections include
» reduced complexity in estimation and classification,
» ability to visually examine the multivariate data in
two or three dimensions.
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Feature Reduction

e Given x € R?, the goal is to find a linear transformation
A that gives y = Alx € RY where d' < d.

e Two classical approaches for finding optimal linear
transformations are:

» Principal Components Analysis (PCA): Seeks a
projection that best represents the data in a least-
squares sense.

» Linear Discriminant Analysis (LDA): Seeks a
projection that best separates the data in a least-
squares sense.
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Principal Components Analysis

o Given Xi,...,%, € R?% the goal is to find a d-
dimensional subspace where the reconstruction error
of x; in this subspace is minimized.

e [ he criterion function for the reconstruction error can
be defined in the least-squares sense as

n d’
Ju=D_ | 2 vier =X

i=1 || k=1
where eq, ..., ey are the bases for the subspace (stored
as the columns of A) and y, is the projection of x; onto

that subspace.
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Principal Components Analysis

e |t can be shown that Jy is minimized when e, ..., ey
are the d’ eigenvectors of the scatter matrix

S = Z(Xz' — p)(xi — p)"

having the largest eigenvalues.

e The coefficients y = (y;,...,yy)! are called the
principal components.

e \When the eigenvectors are sorted In descending order
of the corresponding eigenvalues, the greatest variance
of the data lies on the first principal component, the
second greatest variance on the second component, etc.
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Principal Components Analysis

e Often there will be just a few large eigenvalues, and this implies that
the d’-dimensional subspace contains the signal and the remaining
d — d’ dimensions generally contain noise.

e The actual subspace where the data may lie is related to the
intrinsic dimensionality that determines whether the given d-
dimensional patterns can be described adequately in a subspace of
dimensionality less than d.

e The geometric interpretation of intrinsic dimensionality is that the
entire data set lies on a topological d’-dimensional hypersurface.

e Note that the intrinsic dimensionality is not the same as the
linear dimensionality which is related to the number of significant
eigenvalues of the scatter matrix of the data.
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Examples
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Figure 3: Scatter plot (red dots) and the principal axes for a bivariate sample. The
blue line shows the axis e; with the greatest variance and the green line shows the
axis es with the smallest variance. Features are now uncorrelated.
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Examples

Scatter plot of Iris data
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Figure 4: Scatter plot of the iris data. Diagonal cells show the histogram for each
feature. Other cells show scatters of pairs of features x1,xs, xr3, x4 in top-down
and left-right order. Red, green and blue points represent samples for the setosa,
versicolor and virginica classes, respectively.
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Examples

Scatter plot on three principal axes

Scatter plot on two principal axes
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Figure 5: Scatter plot of the projection of the iris data onto the first two and the
first three principal axes. Red, green and blue points represent samples for the
setosa, versicolor and virginica classes, respectively.
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Linear Discriminant Analysis

e Whereas PCA seeks directions that are efficient for
representation, discriminant analysis seeks directions
that are efficient for discrimination.

e Given X1, ...,%X, € R? divided into two subsets D; and
Dy corresponding to the classes wy and wo, respectively,
the goal is to find a projection onto a line defined as

y=w'x

where the points corresponding to D; and D,y are well
separated.
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Linear Discriminant Analysis
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Figure 6: Projection of the same set of samples onto two different lines in the
directions marked as w. The figure on the right shows greater separation between

the red and black projected points.
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Linear Discriminant Analysis

e The criterion function for the best separation can be
defined as i o
my — M2
W) =23
where m; = #%% D yew, Y i the sample mean and 57 =
D yew, (Y — m;)? is the scatter for the projected samples
labeled w;.

e This is called the Fisher's linear discriminant with the
geometric interpretation that the best projection makes
the difference between the means as large as possible
relative to the variance.
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Linear Discriminant Analysis

e To compute the optimal w, we define the scatter
matrices S;

1
S; = Z(X —m;)(x —m;)’ where m; = —— Z X,
xeD; #DZ xeD;
the within-class scatter matrix Sw
Sw = 951+ Sa,
and the between-class scatter matrix Sg

Sg = (m; — my)(m; — m2)T.
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Linear Discriminant Analysis

e T hen, the criterion function becomes

w!Sgw

J(W) B WTSWW

and the optimal w can be computed as
~1
W — SW(m1 — mz).

e Note that, Sw is symmetric and positive semidefinite,
and it is usually nonsingular if n > d. Spg is also
symmetric and positive semidefinite, but its rank is at
most 1.
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Linear Discriminant Analysis

e Generalization to ¢ classes involves ¢ — 1 discriminant
functions where the projection is from a d-dimensional

space to a (¢ — 1)-dimensional s

e [ he scatter matrices S; are com

Si =) (x—my)(x—m;)" w

xeD;

nace (d > c¢).
buted as
1
NEre 11,; — % Z X.

e [ he within-class scatter matrix Sw is computed as

ESwav’ - :§f:: E;i.
1=1
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Linear Discriminant Analysis

e [ he between-class scatter matrix Sg Is computed as

C

Sg = » (#D;)(m; — m)(m; —m)"

i—1
1 .

where m = = § x 1s the total mean vector.
n X

e Then, the criterion function becomes
W'SpW
J(W) = ’ 0 ’
W' SwW]|
where W is the d-by-(c — 1) transformation matrix and
| - | represents the determinant.
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Linear Discriminant Analysis

e It can be shown that J(W) is maximized when the
columns of W are the eigenvectors of S;&SB having
the largest eigenvalues.

e Because Sg is the sum of ¢ matrices of rank one or less,
and because only ¢ — 1 of these are independent, Sy is
of rank ¢ — 1 or less. Thus, no more than ¢ — 1 of the
eigenvalues are nonzero.

e Once the transformation from the d-dimensional original
feature space to a lower dimensional subspace is done
using PCA or LDA, parametric or non-parametric
methods can be used to train Bayesian classifiers.
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Examples
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Figure 7: Scatter plot and the PCA and LDA axes for a bivariate sample with two
classes. Histogram of the projection onto the first LDA axis shows better separation
than the projection onto the first PCA axis.
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Examples

Scatter plot and the PCA and LDA axes or

Histogram of projection onto principal axis
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Figure 8: Scatter plot and the PCA and LDA axes for a bivariate sample with two
classes. Histogram of the projection onto the first LDA axis shows better separation
than the projection onto the first PCA axis.
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Examples

-

Figure 9: A satellite image and the first six PCA bands. Histogram equalization
was applied to all images for better visualization.
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Examples

Figure 10: A
applied to all images for better visualization.
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satellite image and the six LDA bands.
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Examples

Figure 11: A satellite image and the first six PCA bands. Histogram equalization
was applied to all images for better visualization.
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Examples

Figure 12: A satellite image and the six LDA bands. Histogram equalization was
applied to all images for better visualization.
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Examples

Figure 13: Example face images. (Taken from
http://www.geop.ubc.ca/CDSST /eigenfaces.html.)
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Examples

Figure 14: Eigenvectors of the face images (often referred to as eigenfaces).
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Feature Reduction

Table 1: Feature reduction methods.

Mothod

T'raperty

Commnenls

rincipal Componont
Analysis (PCA)

Lincar map; fast;
cigenvector-hased,

Teaditional, cipenvector based method, also known
a3 Karhunen-Totve expansion; good lor Ganssian
claka,

Linear Discriminank
Analysis

Supervised lHncar mag;
fagt: cigenvector-hased.

Bettor than PCA for clagsiication; fmited Lo {e — 1)
COmMpPanentg with non-zero mgenvidnes.

I'rojection ursuit

Trclependent, Coamponent.

Analysis (ICA)

Kernel POCA

TCA Notwork

Tincar map; iterative;
non-Gaussian.

Mainly used for interactive cxplovatory data-
analyvsis.

Linear map, iterative,
non-Galsaian.

Blind souran H{!p;tﬁif.if‘]n, usedd o de-mixing
nen-Gaussian dirtrilmeed smrees [features).

Nonlitksr maps;
elgenvector-hased.

DI'CA-hased nethod, using a kernel to replace inner
proucdnets of pablorn veclors.

Linear map: itorative,

Nonhnear FCA

Linear map; nan-Gainssian

eriterion; usually iterative

Auto-associative noural network with linoar transfor
functions and just one hidden laver.

“Neurad network approach, possibly nsed for TCA

Monlinear auto-
azsociative network

Nounliroar map; on-Gangs-
slan eriterion; iterative.

Rottlaneck networle with sesevad hiddow Lyors: the
temlinear map is optimized by s nonlincar
IeCONBLEUCLion; put s nseel as te.

Multidhmengional
sealing (MDS), and
Samumon’s projection

SeH-Orpenizing Map
(SOM)

Nonliuear map; iterative.

Often ponr generalization; saiple sise
limited, noise sengitive; mainly wsed for
2-dunensional visaalisntion.

“Nonlinear; iterative.
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Feature Selection

e An alternative to feature reduction that uses linear or
non-linear combinations of features is feature selection
that reduces dimensionality by selecting subsets of
existing features.

e T he first step in feature selection is to define a criterion
function that is typically a function of the classification
error.

e Note that, the use of classification error in the criterion
function makes feature selection procedures dependent
on the specific classifier used.
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Feature Selection

e [he most straightforward approach would require
» examining all (i) possible subsets of size m,
» selecting the subset that performs the best according
to the criterion function.

e The number of subsets grows combinatorially, making
the exhaustive search impractical.

e |terative procedures are often used but they cannot
guarantee the selection of the optimal subset.
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Feature Selection

e Sequential forward selection:

» First, the best single feature is selected.

» T hen, pairs of features are formed using one of the
remaining features and this best feature, and the
best pair is selected.

» Next, triplets of features are formed using one of the
remaining features and these two best features, and
the best triplet is selected.

» T his procedure continues until all or a predefined
number of features are selected.
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Feature Selection

e Sequential backward selection:

» First, the criterion function is computed for all d

features.

» Then, each feature is deleted one at a time, the

criterion function is computed for all subsets with
d — 1 features, and the worst feature is discarded.

» Next, each feature among the remaining d — 1 is
deleted one at a time, and the worst feature is
discarded to form a subset with d — 2 features.

» T his procedure continues until one feature or a
predefined number of features are left.
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Examples

Sequential forward selection

DEM::ELEVATIONK
IKONOS2::BAND1 -
IKONOS2::BAND3 |-
IKONOS2::BAND2 |-
IKONOS2::BAND4 -
IKONOS2_GABOR4::FINESODEG |-
IKONOS2_GABOR4::COARSE90DEG
IKONOS2_GABOR4::FINEODEG
IKONOS2_GABOR4::COARSEODEG -
AERIAL_GABOR1::FINEODEG |-
IKONOS2_GABOR1::COARSEODEG |-
IKONOS2_GABOR1::FINEODEG
IKONOS3::BAND4 -
IKONOS3::BAND3 |-
IKONOS2_GABOR1::FINE9ODEG |
IKONOS2_GABOR1::COARSEQ0DEG |
AERIAL_GABOR2::COARSEODEG |
IKONOS3::BAND1 |-
AERIAL_GABOR1::FINE9ODEG |
AERIAL_GABOR2::FINE9ODEG
AERIAL_GABOR1::COARSE90DEG -
IKONOS3::BAND2 |-
AERIAL_GABOR2::FINEODEG -
AERIAL::BAND1
AERIAL::BAND2 -
AERIAL_GABOR2::COARSE90DEG -
AERIAL::BAND3 -
AERIAL_GABOR1::COARSEODEG |-
56 58 60 62 64 66 68 70 72 74
Classification accuracy

Figure 15: Results of sequential forward feature selection for classification of a
satellite image using 28 features. x-axis shows the classification accuracy (%)
and y-axis shows the features added at each iteration (the first iteration is at the
bottom). The highest accuracy value is shown with a star.
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Examples

Sequential backward selection

AERIAL_GABOR2::FINEODEG
AERIAL::BAND2 |-

AERIAL::BAND3 |

IKONOS3::BAND2 |-
AERIAL_GABOR1::COARSEODEG |-
AERIAL_GABOR2::COARSE90DEG |-
AERIAL_GABOR1::FINESODEG [
IKONOS2_GABOR4::FINEODEG |-
IKONOS2::BAND4 |-
IKONOS2_GABOR1::FINEODEG |
IKONOS2_GABOR1::COARSEQ0DEG
IKONOS2_GABOR1::COARSEODEG |-
IKONOS2_GABOR4::COARSEODEG |-
IKONOS2::BAND2 |-
IKONOS3::BAND1 |-
IKONOS2_GABORT1::FINEQODEG |
IKONOS3::BAND4 |-
IKONOS2_GABOR4::COARSE90DEG -
AERIAL_GABOR2::FINE9ODEG [
AERIAL_GABORT1::FINEODEG |-
AERIAL_GABOR2::COARSEODEG -
IKONOS2_GABOR4::FINEQODEG |-
IKONOS2::BAND3 |-
IKONOS2::BAND1 |-
AERIAL_GABOR1::COARSE90DEG |
IKONOS3::BAND3 |-
DEM::ELEVATION|

NONE

54 5I6 5;8 6I0 6I2 6I4 6I6 6I8 7IO 72
Classification accuracy
Figure 16: Results of sequential backward feature selection for classification of a
satellite image using 28 features. z-axis shows the classification accuracy (%) and
y-axis shows the features removed at each iteration (the first iteration is at the
bottom). The highest accuracy value is shown with a star.
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Feature Selection

Table 2: Feature selection methods.

Wothad

Propocty

Clennmient s

Exhaustive Seach

Braucli-and-Bovnd Search

Ewvalirate all [‘d] possible snubsots,

T

Guaranteel (o lind the opthaal snb-
ety not feasible Tor even moder-
atoly Lavpo values of v and o,

Uses the woll-known branch-mud-
Lound scarch method; only a frae-
tiom of all possilile fealee subseks
necel to be cnumeratad o find the
opkimal subset.

CGuaranieed to [ind the optimal sub-
sot provided the coileclon [unction
satislios the monotonlcity propesty;
the weorst-chse complexity of this
adgarithin is exponential,

Best Individnal Features

Faraliare all the me fontuves inedivid-
vallyy seleel the best wm individaal
features,

Seqguential Forward Seloction

{SF4}

Select the besr single featie and
rhen add one featuee at s fioe
which in comhinatinn with the
selocted Tealures maximizes the ori-
torion function.

{(S15)

Start with all the ¢ featuros and sue-
cessively delete one featiire al a
firoee.

Computatlonally simple; nat likely
tex Joad o an optinal subsed,

“Onee a featuro is retained, it canno
b disenrdeed; comnital ionally
abtractive ginee o select a subser of
siwer 2, it ccnunines ouly (d — 17 poassi-
hle subsers,

Omee a featuve is deloted, it caunot
be: hremght back inte the optimal
sithsed; requires more cormpiibation
than sequential forward seleclion,

“Plas talee away ¢F Sobection

Scquential Fovward Tloating Seavel
(SEE'S) and Sequential Backward
Plonting Yearvel {SBES)

Tirst enlargn the feature subwer by
features wsing forward seloction

andl then delelo ¢ feaduros vsing
backwsard selection,

Avords the problon of featnre sihe
sot “nosting” cucountered in 5175
are] SB5 methods; neod to select

valties of §aned r#{f = ),

A poncralization of “plus-f tale
away-i* method; the values of [ and
care deterrmined atomatically and
updated dynamically,
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Summary

e The choice between feature reduction and feature
selection depends on the application domain and the
specific training data.

e Feature selection leads to savings in computational costs
and the selected features retain their original physical
Interpretation.

e Feature reduction with transformations may provide a
better discriminative ability but these new features may
not have a clear physical meaning.
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