Non-Bayesian Classifiers Part I: k-Nearest Neighbor Classifier and Distance Functions

Selim Aksoy
Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

Non-Bayesian Classifiers

- We have been using Bayesian classifiers that make decisions according to the posterior probabilities.
- We have discussed parametric and non-parametric methods for learning classifiers by estimating the probabilities using training data.
- We will study new techniques that use training data to learn the classifiers directly without estimating any probabilistic structure.
- In particular, we will study the k-nearest neighbor classifier, linear discriminant functions and support vector machines, neural networks, and decision trees.

The Nearest Neighbor Classifier

- Given the training data $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ as a set of n labeled examples, the *nearest neighbor classifier* assigns a test point \mathbf{x} the label associated with its closest neighbor in \mathcal{D} .
- Closeness is defined using a distance function.
- Given the distance function, the nearest neighbor classifier partitions the feature space into cells consisting of all points closer to a given training point than to any other training points.

CS 551, Spring 2007 © 2007, Selim Aksoy 2/12

The Nearest Neighbor Classifier

• All points in such a cell are labeled by the class of the training point, forming a *Voronoi tesselation* of the feature space.

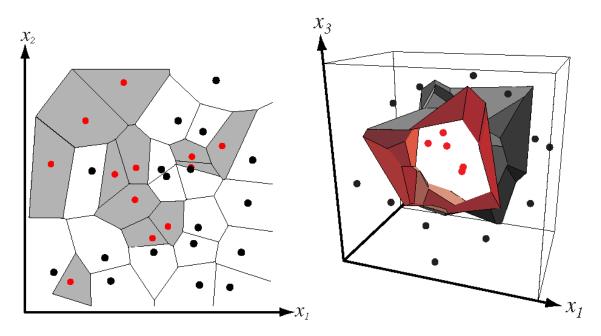


Figure 1: In two dimensions, the nearest neighbor algorithm leads to a partitioning of the input space into Voronoi cells, each labeled by the class of the training point it contains. In three dimensions, the cells are three-dimensional, and the decision boundary resembles the surface of a crystal.

The k-Nearest Neighbor Classifier

- The k-nearest neighbor classifier classifies ${\bf x}$ by assigning it the label most frequently represented among the k nearest samples.
- In other words, a decision is made by examining the labels on the k-nearest neighbors and taking a vote.

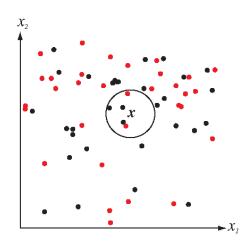


Figure 2: The k-nearest neighbor query forms a spherical region around the test point \mathbf{x} until it encloses k training samples, and it labels the test point by a majority vote of these samples. In the case for k=5, the test point will be labeled as black.

The k-Nearest Neighbor Classifier

- The computational complexity of the nearest neighbor algorithm both in space (storage) and time (search)
 has received a great deal of analysis.
- In the most straightforward approach, we inspect each stored training point one by one, calculate its distance to x, and keep a list of the k closest ones.
- There are some parallel implementations and algorithmic techniques for reducing the computational load in nearest neighbor searches.

The k-Nearest Neighbor Classifier

- Examples of algorithmic techniques include
 - computing partial distances using a subset of dimensions, and eliminating the points with partial distances greater than the full distance of the current closest points,
 - using search trees that are hierarchically structured so that only a subset of the training points are considered during search,
 - ▶ editing the training set by eliminating the points that are surrounded by other training points with the same class label.

Distance Functions

- The nearest neighbor classifier relies on a *metric* or a *distance function* between points.
- For all points \mathbf{x} , \mathbf{y} and \mathbf{z} , a metric $D(\cdot, \cdot)$ must satisfy the following properties:
 - ▶ Nonnegativity: $D(\mathbf{x}, \mathbf{y}) \ge 0$.
 - ▶ Reflexivity: $D(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.
 - ► Symmetry: $D(\mathbf{x}, \mathbf{y}) = D(\mathbf{y}, \mathbf{x})$.
 - ▶ Triangle inequality: $D(\mathbf{x}, \mathbf{y}) + D(\mathbf{y}, \mathbf{z}) \ge D(\mathbf{x}, \mathbf{z})$.
- If the second property is not satisfied, $D(\cdot, \cdot)$ is called a pseudometric.

Distance Functions

ullet A general class of metrics for d-dimensional patterns is the Minkowski metric

$$L_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |\mathbf{x}_i - \mathbf{y}_i|^p\right)^{1/p}$$

also referred to as the L_p norm.

ullet The *Euclidean distance* is the L_2 norm

$$L_2(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |\mathbf{x}_i - \mathbf{y}_i|^2\right)^{1/2}.$$

ullet The Manhattan or city block distance is the L_1 norm

$$L_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^d |\mathbf{x}_i - \mathbf{y}_i|.$$

Distance Functions

ullet The L_{∞} norm is the maximum of the distances along individual coordinate axes

$$L_{\infty}(\mathbf{x}, \mathbf{y}) = \max_{i=1}^{d} |\mathbf{x}_i - \mathbf{y}_i|.$$

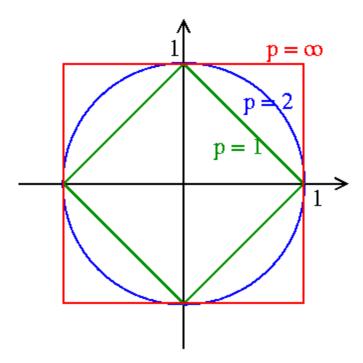


Figure 3: Each colored shape consists of points at a distance 1.0 from the origin, measured using different values of p in the Minkowski L_p metric.

Feature Normalization

- We should be careful about scaling of the coordinate axes when we compute these metrics.
- When there is great difference in the range of the data along different axes in a multidimensional space, these metrics implicitly assign more weighting to features with large ranges than those with small ranges.
- Feature normalization can be used to approximately equalize ranges of the features and make them have approximately the same effect in the distance computation.

Feature Normalization

- The following methods can be used to independently normalize each feature.
- Linear scaling to unit range:

Given a lower bound l and an upper bound u for a feature $x \in \mathbb{R}$,

$$\tilde{x} = \frac{x - l}{u - l}$$

results in \tilde{x} being in the [0,1] range.

• Linear scaling to unit variance:

A feature $x \in \mathbb{R}$ can be transformed to a random variable with zero mean and unit variance as

$$\tilde{x} = \frac{x - \mu}{\sigma}$$

where μ and σ are the sample mean and the sample standard deviation of that feature, respectively.

Feature Normalization

• Normalization using the cumulative distribution function: Given a random variable $x \in \mathbb{R}$ with cumulative distribution function $F_x(x)$, the random variable \tilde{x} resulting from the transformation $\tilde{x} = F_x(x)$ will be uniformly distributed in the [0,1] range.

• Rank normalization:

Given the sample for a feature as $x_1, \ldots, x_n \in \mathbb{R}$, first we find the order statistics $x^{(1)}, \ldots, x^{(n)}$ and then replace each pattern's feature value by its corresponding normalized rank as

$$\tilde{x}_i = \frac{\underset{x_1, \dots, x_n}{\operatorname{rank}}(x_i) - 1}{n - 1}$$

where x_i is the feature value for the i'th pattern. This procedure uniformly maps all feature values to the [0,1] range.