Parametric Models
Part III: Hidden Markov Models

Selim Aksoy
Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr
Discrete Markov Processes
(Markov Chains)

- The goal is to make a sequence of decisions where a particular decision may be influenced by earlier decisions.
- Consider a system that can be described at any time as being in one of a set of N distinct states w_1, w_2, \ldots, w_N.
- Let $w(t)$ denote the actual state at time t where $t = 1, 2, \ldots$.
- The probability of the system being in state $w(t)$ is $P(w(t)|w(t - 1), \ldots, w(1))$.
First-Order Markov Models

• We assume that the state $w(t)$ is conditionally independent of the previous states given the predecessor state $w(t - 1)$, i.e.,

$$P(w(t)|w(t-1), \ldots, w(1)) = P(w(t)|w(t-1)).$$

• We also assume that the Markov Chain defined by $P(w(t)|w(t-1))$ is time homogeneous (independent of the time t).
First-Order Markov Models

• A particular *sequence of states* of length T is denoted by

$$\mathcal{W}^T = \{w(1), w(2), \ldots, w(T)\}.$$

• The model for the production of any sequence is described by the *transition probabilities*

$$a_{ij} = P(w(t) = w_j | w(t-1) = w_i)$$

where $i, j \in \{1, \ldots, N\}$, $a_{ij} \geq 0$, and $\sum_{j=1}^{N} a_{ij} = 1, \forall i$.
First-Order Markov Models

• There is no requirement that the transition probabilities are symmetric ($a_{ij} \neq a_{ji}$, in general).

• Also, a particular state may be visited in succession ($a_{ii} \neq 0$, in general) and not every state need to be visited.

• This process is called an observable Markov model because the output of the process is the set of states at each instant of time, where each state corresponds to a physical (observable) event.
First-Order Markov Model Examples

Consider the following 3-state first-order Markov model of the weather in Ankara:

- w_1: rain/snow
- w_2: cloudy
- w_3: sunny

$$\Theta = \{a_{ij}\} = \begin{pmatrix}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8
\end{pmatrix}$$
First-Order Markov Model Examples

- We can use this model to answer the following question: Starting with sunny weather on day 1 (given), what is the probability that the weather for the next seven days will be “sunny-sunny-rainy-rainy-sunny-cloudy-sunny” ($W^8 = \{w_3, w_3, w_3, w_1, w_1, w_3, w_2, w_3\}$)?

- Solution:

\[
P(W^8|\Theta) = P(w_3, w_3, w_3, w_1, w_1, w_3, w_2, w_3) \\
= P(w_3)P(w_3|w_3)P(w_3|w_3)P(w_1|w_3) \\
P(w_1|w_1)P(w_3|w_1)P(w_2|w_3)P(w_3|w_2) \\
= P(w_3) a_{33} a_{33} a_{31} a_{11} a_{13} a_{32} a_{23} \\
= 1 \times 0.8 \times 0.8 \times 0.1 \times 0.4 \times 0.3 \times 0.1 \times 0.2 \\
= 1.536 \times 10^{-4}
\]
First-Order Markov Model Examples

- Consider another question: Given that the model is in a known state, what is the probability that it stays in that state for exactly \(d \) days?

- Solution:

\[
W^{d+1} = \{ w(1) = w_i, w(2) = w_i, \ldots, w(d) = w_i, w(d+1) = w_j \neq w_i \} \\
P(W^{d+1}|\Theta, w(1) = w_i) = (a_{ii})^{d-1}(1 - a_{ii}) \\
E[d|w_i] = \sum_{d=1}^{\infty} d (a_{ii})^{d-1} (1 - a_{ii}) = \frac{1}{1 - a_{ii}}
\]

- For example, the expected number of consecutive days of sunny weather is 5, cloudy weather is 2.5, rainy weather is 1.67.

First-Order Hidden Markov Models

- We can extend this model to the case where the observation (output) of the system is a probabilistic function of the state.

- The resulting model, called a Hidden Markov Model (HMM), has an underlying stochastic process that is not observable (it is hidden), but can only be observed through another set of stochastic processes that produce a sequence of observations.
First-Order Hidden Markov Models

• We denote the observation at time t as $v(t)$ and the probability of producing that observation in state $w(t)$ as $P(v(t)|w(t))$.

• There are many possible state-conditioned observation distributions.

• When the observations are discrete, the distributions

$$b_{jk} = P(v(t) = v_k|w(t) = w_j)$$

are probability mass functions where $j \in \{1, \ldots, N\}$, $k \in \{1, \ldots, M\}$, $b_{jk} \geq 0$, and $\sum_{k=1}^{M} b_{jk} = 1, \forall j$.
First-Order Hidden Markov Models

• When the observations are continuous, the distributions are typically specified using a parametric model family where the most common family is the Gaussian mixture

\[
b_j(x) = \sum_{k=1}^{M_j} \alpha_{jk} p(x | \mu_{jk}, \Sigma_{jk})
\]

where \(\alpha_{jk} \geq 0 \) and \(\sum_{k=1}^{M_j} \alpha_{jk} = 1, \forall j \).

• We will restrict ourselves to discrete observations where a particular sequence of visible states of length \(T \) is denoted by

\[
\mathcal{V}^T = \{ v(1), v(2), \ldots, v(T) \}.
\]
First-Order Hidden Markov Models

- An HMM is characterized by:
 - N, the number of hidden states
 - M, the number of distinct observation symbols per state
 - $\{a_{ij}\}$, the state transition probability distribution
 - $\{b_{jk}\}$, the observation symbol probability distribution
 - $\{\pi_i = P(w(1) = w_i)\}$, the initial state distribution
 - $\Theta = (\{a_{ij}\}, \{b_{jk}\}, \{\pi_i\})$, the complete parameter set of the model
First-Order HMM Examples

• Consider the “urn and ball” example (Rabiner, 1989):
 ► There are N large urns in the room.
 ► Within each urn, there are a large number of colored balls where the number of distinct colors is M.
 ► An initial urn is chosen according to some random process, and a ball is chosen at random from it.
 ► The ball’s color is recorded as the observation and it is put back to the urn.
 ► A new urn is selected according to the random selection process associated with the current urn and the ball selection process is repeated.
First-Order HMM Examples

- The simplest HMM that corresponds to the urn and ball selection process is the one where
 - each state corresponds to a specific urn,
 - a ball color probability is defined for each state.

\[
\begin{align*}
\text{URN 1} & \quad \text{URN 2} & \quad \ldots & \quad \text{URN N} \\
\text{P(RED)} &= b_1(1) & \text{P(RED)} &= b_2(1) & \text{P(RED)} &= b_N(1) \\
\text{P(BLUE)} &= b_1(2) & \text{P(BLUE)} &= b_2(2) & \text{P(BLUE)} &= b_N(2) \\
\text{P(GREEN)} &= b_1(3) & \text{P(GREEN)} &= b_2(3) & \text{P(GREEN)} &= b_N(3) \\
\text{P(YELLOW)} &= b_1(4) & \text{P(YELLOW)} &= b_2(4) & \text{P(YELLOW)} &= b_N(4) \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
\text{P(ORANGE)} &= b_1(M) & \text{P(ORANGE)} &= b_2(M) & \text{P(ORANGE)} &= b_N(M) \\
\end{align*}
\]

\[O = \{\text{GREEN, GREEN, BLUE, RED, YELLOW, RED, \ldots...}, \text{BLUE}\}\]
First-Order HMM Examples

- Let’s extend the weather example.
 - Assume that you have a friend who lives in İstanbul and you talk daily about what each of you did that day.
 - Your friend has a list of activities that she/he does every day (such as playing sports, shopping, studying) and the choice of what to do is determined exclusively by the weather on a given day.
 - Assume that İstanbul has a weather state distribution similar to the one in the previous example.
 - You have no information about the weather where your friend lives, but you try to guess what it must have been like according to the activity your friend did.
First-Order HMM Examples

- This process can be modeled using an HMM where the state of the weather is the hidden variable, and the activity your friend did is the observation.
- Given the model and the activity of your friend, you can make a guess about the weather in İstanbul that day.
- For example, if your friend says that she/he played sports on the first day, went shopping on the second day, and studied on the third day of the week, you can answer questions such as:
 - What is the overall probability of this sequence of observations?
 - What is the most likely weather sequence that would explain these observations?
Applications of HMMs

- Speech recognition
- Optical character recognition
- Natural language processing (e.g., text summarization)
- Bioinformatics (e.g., protein sequence modeling)
- Video analysis (e.g., story segmentation, motion tracking)
- Robot planning (e.g., navigation)
- Economics and finance (e.g., time series, customer decisions)
Three Fundamental Problems for HMMs

- **Evaluation problem:** Given the model, compute the probability that a particular output sequence was produced by that model (solved by the forward algorithm).

- **Decoding problem:** Given the model, find the most likely sequence of hidden states which could have generated a given output sequence (solved by the Viterbi algorithm).

- **Learning problem:** Given a set of output sequences, find the most likely set of state transition and output probabilities (solved by the Baum-Welch algorithm).
HMM Evaluation Problem

• A particular *sequence of observations* of length T is denoted by

$$\mathcal{V}^T = \{v(1), v(2), \ldots, v(T)\}.$$

• The probability of observing this sequence can be computed by enumerating every possible state sequence of length T as

$$P(\mathcal{V}^T | \Theta) = \sum_{\text{all } \mathcal{W}^T} P(\mathcal{V}^T, \mathcal{W}^T | \Theta)$$

$$= \sum_{\text{all } \mathcal{W}^T} P(\mathcal{V}^T | \mathcal{W}^T, \Theta) P(\mathcal{W}^T | \Theta).$$
HMM Evaluation Problem

- This summation includes N^T terms in the form

$$P(V^T | W^T)P(W^T) = \left(\prod_{t=1}^{T} P(v(t)|w(t)) \right) \left(\prod_{t=1}^{T} P(w(t)|w(t-1)) \right)$$

$$= \prod_{t=1}^{T} P(v(t)|w(t))P(w(t)|w(t-1))$$

where $P(w(t)|w(t-1))$ for $t = 1$ is $P(w(1))$.

- It is unfeasible with computational complexity $O(N^T T)$.

- However, a computationally simpler algorithm called the forward algorithm computes $P(V^T | \Theta)$ recursively.
HMM Evaluation Problem

• Define $\alpha_j(t)$ as the probability that the HMM is in state w_j at time t having generated the first t observations in V^T

$$\alpha_j(t) = P(v(1), v(2), \ldots, v(t), w(t) = w_j | \Theta).$$

• $\alpha_j(t), j = 1, \ldots, N$ can be computed as

$$\alpha_j(t) = \begin{cases}
\pi_j b_{jv(1)} & t = 1 \\
\left(\sum_{i=1}^{N} \alpha_i(t-1) a_{ij}\right) b_{jv(t)} & t = 2, \ldots, T.
\end{cases}$$

• Then, $P(V^T | \Theta) = \sum_{j=1}^{N} \alpha_j(T).$
HMM Evaluation Problem

- Similarly, we can define a \textit{backward algorithm} where
 \[
 \beta_i(t) = P(v(t + 1), v(t + 2), \ldots, v(T)|w(t) = w_i, \Theta)
 \]
 is the probability that the HMM will generate the observations from $t + 1$ to T in \mathcal{V}^T given that it is in state w_i at time t.

- $\beta_i(t)$, $i = 1, \ldots, N$ can be computed as
 \[
 \beta_i(t) = \begin{cases}
 1 & t = T \\
 \sum_{j=1}^{N} \beta_j(t + 1)a_{ij}b_{jv(t+1)} & t = T - 1, \ldots, 1.
 \end{cases}
 \]

- Then, $P(\mathcal{V}^T|\Theta) = \sum_{i=1}^{N} \beta_i(1)\pi_i b_{iv(1)}$.
HMM Evaluation Problem

- The computations of both $\alpha_j(t)$ and $\beta_i(t)$ have complexity $O(N^2T)$.
- For classification, we can compute the posterior probabilities

$$P(\Theta|V^T) = \frac{P(V^T|\Theta)P(\Theta)}{P(V^T)}$$

where $P(\Theta)$ is the prior for a particular class, and $P(V^T|\Theta)$ is computed using the forward algorithm with the HMM for that class.

- Then, we can select the class with the highest posterior.
HMM Decoding Problem

- Given a sequence of observations \mathcal{Y}^T, we would like to find the most probable sequence of hidden states.
- One possible solution is to enumerate every possible hidden state sequence and calculate the probability of the observed sequence with $O(N^T T)$ complexity.
- We can also define the problem of finding the optimal state sequence as finding the one that includes the states that are individually most likely.
- This also corresponds to maximizing the expected number of correct individual states.
HMM Decoding Problem

• Define $\gamma_i(t)$ as the probability that the HMM is in state w_i at time t given the observation sequence \mathcal{V}^T

$$\gamma_i(t) = P(w(t) = w_i | \mathcal{V}^T, \Theta)$$

$$= \frac{\alpha_i(t) \beta_i(t)}{P(\mathcal{V}^T | \Theta)} = \frac{\alpha_i(t) \beta_i(t)}{\sum_{j=1}^{N} \alpha_j(t) \beta_j(t)}$$

where $\sum_{i=1}^{N} \gamma_i(t) = 1$.

• Then, the individually most likely state $w(t)$ at time t becomes

$$w(t) = w_i', \text{ where } i' = \arg \max_{i=1,\ldots,N} \gamma_i(t).$$
HMM Decoding Problem

- One problem is that the resulting sequence may not be consistent with the underlying model because it may include transitions with zero probability ($a_{ij} = 0$ for some i and j).

- One possible solution is the Viterbi algorithm that finds the single best state sequence \mathcal{W}^T by maximizing $P(\mathcal{W}^T|\mathcal{V}^T, \Theta)$ (or equivalently $P(\mathcal{W}^T, \mathcal{V}^T|\Theta)$).

- This algorithm recursively computes the state sequence with the highest probability at time t and keeps track of the states that form the sequence with the highest probability at time T (see Rabiner (1989) for details).
The goal is to determine the model parameters \(\{a_{ij}\}, \{b_{jk}\} \) and \(\{\pi_i\} \) from a collection of training samples.

Define \(\xi_{ij}(t) \) as the probability that the HMM is in state \(w_i \) at time \(t - 1 \) and state \(w_j \) at time \(t \) given the observation sequence \(\mathcal{V}^T \):

\[
\xi_{ij}(t) = P(w(t - 1) = w_i, w(t) = w_j | \mathcal{V}^T, \Theta)
= \frac{\alpha_i(t - 1) a_{ij} b_{jv(t)} \beta_j(t)}{P(\mathcal{V}^T | \Theta)}
= \frac{\alpha_i(t - 1) a_{ij} b_{jv(t)} \beta_j(t)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_i(t - 1) a_{ij} b_{jv(t)} \beta_j(t)}.
\]
HMM Learning Problem

• $\gamma_i(t)$ defined in the decoding problem and $\xi_{ij}(t)$ defined here can be related as

$$\gamma_i(t - 1) = \sum_{j=1}^{N} \xi_{ij}(t).$$

• Then, \hat{a}_{ij}, the estimate of the probability of a transition from w_i at $t - 1$ to w_j at t, can be computed as

$$\hat{a}_{ij} = \frac{\text{expected number of transitions from } w_i \text{ to } w_j}{\text{expected total number of transitions away from } w_i} = \frac{\sum_{t=2}^{T} \xi_{ij}(t)}{\sum_{t=2}^{T} \gamma_i(t - 1)}.$$
HMM Learning Problem

• Similarly, \hat{b}_{jk}, the estimate of the probability of observing the symbol v_k while in state w_j, can be computed as

$$\hat{b}_{jk} = \frac{\text{expected number of times observing symbol } v_k \text{ in state } w_j}{\text{expected total number of times in } w_j}$$

$$= \frac{\sum_{t=1}^{T} \delta_{v(t),v_k} \gamma_j(t)}{\sum_{t=1}^{T} \gamma_j(t)}$$

where $\delta_{v(t),v_k}$ is the Kronecker delta which is 1 only when $v(t) = v_k$.

• Finally, $\hat{\pi}_i$, the estimate for the initial state distribution, can be computed as $\hat{\pi}_i = \gamma_i(1)$ which is the expected number of times in state w_i at time $t = 1$.
These are called the *Baum-Welch* equations (also called the *EM estimates for HMMs* or the *forward-backward algorithm*) that can be computed iteratively until some convergence criterion is met (e.g., sufficiently small changes in the estimated values in subsequent iterations).

See (Bilmes, 1998) for the estimates \(\hat{b}_j(x) \) when the observations are continuous and their distributions are modeled using Gaussian mixtures.