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Introduction

• Recall Bayesian minimum-error classification: Given an

observation (feature) vector x of a pattern and class-

conditional densities p(x|wi), assign it to the class with

the highest posterior probability P (wi|x).

• We have studied different parametric models to estimate

the class-conditional probability densities:

I Univariate or multivariate Gaussians

I Mixtures of Gaussians

I Hidden Markov Models

• We will study a new class of models, Bayesian Belief

Networks, to model the class-conditional densities.
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Bayesian Networks

• Bayesian networks (BN) are probabilistic graphical

models that are based on directed acyclic graphs.

• They provide a tool to deal with two problems:

uncertainty and complexity.

• Hence, they provide a compact representation of joint

probability distributions using a combination of graph

theory and probability theory.

• The graph structure specifies statistical dependencies

among the variables and the local probabilistic models

specify how these variables are combined.
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Bayesian Networks

• There are two components of a BN model: M = {G,Θ}.
I Each node in the graph G represents a random variable and

edges represent conditional independence relationships.

I The set Θ of parameters specifies the probability distributions

associated with each variable.

• Edges represent “causation” so

no directed cycles are allowed.

• Markov property: Each node is

conditionally independent of

its ancestors given its parents.

Figure 1: An example BN.
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Bayesian Networks

• The joint probability of a set of variables x1, . . . , xn is given as

P (x1, . . . , xn) =
n∏

i=1

P (xi|x1, . . . , xi−1)

using the chain rule.

• The conditional independence relationships encoded in the Bayesian

network state that a node xi is conditionally independent of its

ancestors given its parents πi. Therefore,

P (x1, . . . , xn) =
n∏

i=1

P (xi|πi).

• Once we know the joint probability distribution encoded in the

network, we can answer all possible inference questions about the

variables using marginalization.
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Bayesian Network Examples

Figure 2: P (a, b, c, d, e) =
P (a)P (b)P (c|b)P (d|a, c)P (e|d)

Figure 3:
P (a, b, c, d) = P (a)P (b|a)P (c|b)P (d|c)

Figure 4: P (e, f, g, h) =
P (e)P (f |e)P (g|e)P (h|f, g)
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Bayesian Network Examples

Figure 5: When y is given, x and z are
conditionally independent. Think of x as
the past, y as the present, and z as the
future.

Figure 6: When y is given, x and z
are conditionally independent. Think
of y as the common cause of the two
independent effects x and z.

Figure 7: x and z are marginally
independent, but when y is given, they
are conditionally dependent. This is
called explaining away.
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Bayesian Network Examples

• You have a new burglar alarm installed at home.

• It is fairly reliable at detecting burglary, but also

sometimes responds to minor earthquakes.

• You have two neighbors, Ali and Veli, who promised to

call you at work when they hear the alarm.

• Ali always calls when he hears the alarm, but sometimes

confuses telephone ringing with the alarm and calls too.

• Veli likes loud music and sometimes misses the alarm.

• Given the evidence of who has or has not called, we

would like to estimate the probability of a burglary.
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Bayesian Network Examples

Figure 8: The Bayesian network for the burglar alarm example. Burglary (B) and
earthquake (E) directly affect the probability of the alarm (A) going off, but whether
or not Ali calls (AC) or Veli calls (VC) depends only on the alarm. (Russell and
Norvig, Artificial Intelligence: A Modern Approach, 1995)
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Bayesian Network Examples

• What is the probability that the alarm has sounded but

neither a burglary nor an earthquake has occurred, and

both Ali and Veli call?

P (AC, V C, A,¬B,¬E)

= P (AC|A)P (V C|A)P (A|¬B,¬E)P (¬B)P (¬E)

= 0.90× 0.70× 0.001× 0.999× 0.998

= 0.00062

(capital letters represent variables having the value true,

and ¬ represents negation)

CS 551, Spring 2007 c©2007, Selim Aksoy 9/23



Bayesian Network Examples

• What is the probability that there is a burglary given that Ali calls?

P (B|AC) =
P (B,AC)
P (AC)

=
∑

vc

∑
a

∑
e P (AC|a)P (vc|a)P (a|B, e)P (B)P (e)
P (B,AC) + P (¬B,AC)

=
0.00084632

0.00084632 + 0.0513
= 0.0162

• What about if Veli also calls right after Ali hangs up?

P (B|AC, V C) =
P (B,AC, V C)
P (AC, V C)

= 0.29
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Bayesian Network Examples

Figure 9: Another Bayesian network example. The event that the grass being wet
(W = true) has two possible causes: either the water sprinkler was on (S = true)
or it rained (R = true). (Russell and Norvig, Artificial Intelligence: A Modern
Approach, 1995)
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Bayesian Network Examples

• Suppose we observe the fact that the grass is wet. There

are two possible causes for this: either it rained, or the

sprinkler was on. Which one is more likely?

P (S|W ) =
P (S, W )
P (W )

=
0.2781
0.6471

= 0.430

P (R|W ) =
P (R,W )
P (W )

=
0.4581
0.6471

= 0.708

• We see that it is more likely that the grass is wet because

it rained.
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Applications of Bayesian Networks

• Example applications include:

I Machine learning

I Statistics

I Computer vision

I Natural language

processing

I Speech recognition

I Error-control codes

I Bioinformatics

I Medical diagnosis

I Weather forecasting

• Example systems include:

I Pathfinder medical diagnosis system at Stanford

I Microsoft Office assistant and troubleshooters

I Space shuttle monitoring system at NASA Mission

Control Center in Houston
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Two Fundamental Problems
for Bayesian Networks

• Evaluation (inference) problem: Given the model and

the values of the observed variables, estimate the values

of the hidden nodes.

• Learning problem: Given training data and

prior information (e.g., expert knowledge, causal

relationships), estimate the network structure, or the

parameters of the probability distributions, or both.
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Bayesian Network Evaluation Problem

• If we observe the “leaves” and try to infer the values of

the hidden causes, this is called diagnosis, or bottom-up

reasoning.

• If we observe the “roots” and try to predict the effects,

this is called prediction, or top-down reasoning.

• Exact inference is an NP-hard problem because the

number of terms in the summations (integrals) for

discrete (continuous) variables grows exponentially with

increasing number of variables.
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Bayesian Network Evaluation Problem

• Some restricted classes of networks, namely the singly

connected networks where there is no more than one

path between any two nodes, can be efficiently solved

in time linear in the number of nodes.

• There are also clustering algorithms that convert

multiply connected networks to single connected ones.

• However, approximate inference methods such as

I sampling (Monte Carlo) methods

I variational methods

I loopy belief propagation

have to be used for most of the cases.
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Bayesian Network Learning Problem

• The simplest situation is the one where the network

structure is completely known (either specified by an

expert or designed using causal relationships between

the variables).

• Other situations with increasing complexity are: known

structure but unobserved variables, unknown structure

with observed variables, and unknown structure with

unobserved variables.
Table 1: Four cases in Bayesian network learning.

Observability

Structure Full Partial

Known Maximum Likelihood Estimation EM (or gradient ascent)

Unknown Search through model space EM + search through model space
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Known Structure, Full Observability

• The joint pdf of the variables with parameter set Θ is

p(x1, . . . , xn|Θ) =
n∏

i=1

p(xi|πi,θi)

where θi is the vector of parameters for the conditional

distribution of xi and Θ = (θ1, . . . ,θn).

• Given training data X = {x1, . . . ,xm} where xl =
(xl1, . . . , xln)T , the log-likelihood of Θ with respect to

X can be computed as

log L(Θ|X ) =
m∑

l=1

n∑
i=1

log p(xli|πi,θi).
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Known Structure, Full Observability

• The likelihood decomposes according to the structure

of the network so we can compute the MLEs for each

node independently.

• An alternative is to assign a prior probability density

function p(θi) to each θi and use the training data X
to compute the posterior distribution p(θi|X ) and the

Bayes estimate Ep(θi|X )[θi].

• We will study the special case of discrete variables with

discrete parents.
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Known Structure, Full Observability

• Let each discrete variable xi have ri possible values

(states) with probabilities

p(xi = k|πi = j, θi) = θijk > 0

where k ∈ {1, . . . , ri}, j is the state of xi’s parents and

θi = {θijk} specifies the parameters of the multinomial

distribution for every combination of πi.

• Given X , the MLE of θijk can be computed as

θ̂ijk =
Nijk

Nij

where Nijk is the number of cases in X in which xi = k

and πi = j, and Nij =
∑ri

k=1 Nijk.
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Known Structure, Full Observability

• Thus, learning just amounts to counting (in the case of

multinomial distributions).

• For example, to compute the estimate for the W node

in the water sprinkler example, we need to count

#(W = T, S = T,R = T ),

#(W = T, S = T,R = F ),

#(W = T, S = F,R = T ),
...

#(W = F, S = F,R = F ).
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Known Structure, Full Observability

• Note that, if a particular event is not seen, it will be

assigned a probability of 0.

• We can avoid this using the Bayes estimate with a

Dirichlet(αij1, . . . , αijri
) prior (the conjugate prior for

the multinomial) that gives

θ̂ijk =
αijk + Nijk

αij + Nij

where αij =
∑ri

k=1 αijk and Nij =
∑ri

k=1 Nijk as before.

• αij is sometimes called the equivalent sample size for

the Dirichlet distribution.
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Naive Bayesian Network

• When the dependencies among the features are unknown, we

generally proceed with the simplest assumption that the features

are conditionally independent given the class.

• This corresponds to the naive Bayesian network that gives the

class-conditional probabilities

p(x1, . . . , xn|w) =
n∏

i=1

p(xi|w).

. . .x2x1 xn

w

Figure 10: Naive Bayesian network structure. It looks like a very simple model but
it often works quite well in practice.
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