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Missing Features

» Suppose that we have a Bayesian classifier that uses the
feature vector x but a subset x, of x are observed and the
values for the remaining features x; are missing.

» How can we make a decision?

» Throw away the observations with missing values.

» Or, substitute x; by their average Xy in the training data, and
use x = (xg,Xp).

» Or, marginalize the posterior over the missing features, and
use the resulting posterior

P(w;|xq,xp) p(Xg, Xp) dXp
P(wi|Xg)_f ( ’ g ) ( g )

fp(xg7 Xb) de
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Expectation-Maximization

» We can also extend maximum likelihood techniques to allow
learning of parameters when some training patterns have
missing features.

» The Expectation-Maximization (EM) algorithm is a general
iterative method of finding the maximum likelihood
estimates of the parameters of a distribution from training
data.
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Expectation-Maximization

» There are two main applications of the EM algorithm:
» Learning when the data is incomplete or has missing values.
» Optimizing a likelihood function that is analytically intractable
but can be simplified by assuming the existence of and
values for additional but missing (or hidden) parameters.

» The second problem is more common in pattern recognition
applications.
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Expectation-Maximization

» Assume that the observed data X is generated by some
distribution.

» Assume that a complete dataset Z = (X, )) exists as a
combination of the observed but incomplete data X and the
missing data ).

» The observations in Z are assumed to be i.i.d. from the joint
density

p(z|®) = p(x,y¥|0) = p(y|x, ©)p(x|O).
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Expectation-Maximization

» We can define a new likelihood function
L(B|Z2) = L(®|X,Y) = p(X,)|O)

called the complete-data likelihood where L(®|X) is
referred to as the incomplete-data likelihood.
» The EM algorithm:
» First, finds the expected value of the complete-data
log-likelihood using the current parameter estimates

(expectation step).
» Then, maximizes this expectation (maximization step).
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Expectation-Maximization

» Define
Q(©,00 ) = E[logp(X,Y|O®) | X, 00V

as the expected value of the complete-data log-likelihood
w.r.t. the unknown data ) given the observed data X and
the current parameter estimates @Y,

» The expected value can be computed as

E[logp(X,Y|©)|x,00 V] = /logp(X,yl@)p(YIX,®(i_1))dy-

» This is called the E-step.
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Expectation-Maximization

» Then, the expectation can be maximized by finding
optimum values for the new parameters © as

0" = arg max Q(O,e0 ),

» This is called the M-step.

» These two steps are repeated iteratively where each
iteration is guaranteed to increase the log-likelihood.

» The EM algorithm is also guaranteed to converge to a local
maximum of the likelihood function.
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Generalized Expectation-Maximization

» Instead of maximizing Q(©, ©"~Y), the Generalized
Expectation-Maximization algorithm finds some set of
parameters O that satisfy

QOY, e 1) > Q(O,e!)

at each iteration.

» Convergence will not be as rapid as the EM algorithm but it
allows greater flexibility to choose computationally simpler
steps.
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Mixture Densities

» A mixture model is a linear combination of m densities
p(x|®) = Z a;pi(x|6;)

where © = (ay,...,ay,, 01, ...,0,,) such that a; > 0 and
Doy =1
» aq,...,q,, are called the mixing parameters.

» p;(x]0;), 7 =1,...,m are called the component densities.
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Mixture Densities

» Suppose that X = {xy,...,x,} is a set of observations i.i.d.
with distribution p(x|©).

» The log-likelihood function of ® becomes
g L(61) = log [ T rx:10) = 3o (3 com il ).
i=1 i=1 j=1

» We cannot obtain an analytical solution for ® by simply
setting the derivatives of log L(®|X") to zero because of the
logarithm of the sum.
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Mixture Density Estimation via EM

» Consider X' as incomplete and define hidden variables
Y = {yi}~, where y; corresponds to which mixture component
generated the data vector x;.

» In other words, y; = j if the ¢'th data vector was generated by the
j’th mixture component.

» Then, the log-likelihood becomes

log L(®[X,)Y) = log p(X,Y|©)

- Z log(p(x;|yi, 03)p(vil0s))
i=1

= Z log(ayipyi (X’iwyi ))-
i=1

CS 551, Spring 2008 (©2008, Selim Aksoy (Bilkent University)



Mixture Density Estimation via EM

» Assume we have the initial parameter estimates
0W = (?,....ai. 6, ... 0.

» Compute
(il ©9) — W PuCslO)  ailp, (xd657)
p(x;|©'7) S ol ps(x;]0%)
and .
p(V1X,09) = 1] plylxi, ©9).
=1
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Mixture Density Estimation via EM

» Then, Q(©,0Y) takes the form

Q(©,09) = "logp(X,y|@)p(y|X,0)

Yy
= ZZlog ojp; (x410;))p(j|x:, ©9)
=1 1i=1
—ZZlog aj)p(jlxi, ©9)
7j=11i=1
+ZZlog (p;(x110;))p(j|xi, ©9)).
7j=11i=1
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Mixture Density Estimation via EM

» We can maximize the two sets of summations for a;; and 6;
independently because they are not related.

» The estimate for «; can be computed as

N
a; =~ plilxi, O
=1

where " "
a;’ pg (x:/0;”)

Et 1O‘t pt(sz )

p(jlx: ©9) =
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Mixture of Gaussians

» We can obtain analytical expressions for 6; for the special case
of a Gaussian mixture where 6; = (u;, ;) and

p;(x|0;) = pj(x|p;, Ej)
1 1 Ty—1
ZWGXP —§(X_Hj) P (x — pj)| -

» Equating the partial derivative of Q(©,©9)) with respect to 1, to
zero gives

A= S p(ilxi, ©9)x;

T p(ixi, ©9)
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Mixture of Gaussians

» We consider five models for the covariance matrix X;:

>2j:0'21
1 m n
7" = 7 2 ke O = gl
> =071
i

o i plilxi ©9)xi —
! X" p(jlxi, ©9)
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Mixture of Gaussians

» Covariance models continued:
> 2] = dlag({a?k}gzl)
5-2 _ Z:LZI p(]|X’La G(g))(Xlk — ﬂjk)Q

k — n .
’ S p(ilxi, ©9)
R 1 m n .
=D ol ©9)(x; — fug) (xi — fig)"
j=11i=1

» X, = arbitrary
Sy p(ilxs, ©9)) (x; — fig) (i — ;)"
Z:‘Lzl p(]|X'L’ 9(9))

S
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Mixture of Gaussians

» Summary:

» Estimates for o, p; and 3; perform both expectation and
maximization steps simultaneously.

» EM iterations proceed by using the current estimates as the
initial estimates for the next iteration.

» The priors are computed from the proportion of examples
belonging to each mixture component.

» The means are the component centroids.

» The covariance matrices are calculated as the sample
covariance of the points associated with each component.
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Mixture of Gaussians

» Questions:

» How can we find the number of components in the mixture?
» How can we find the initial estimates for ®?
» How do we know when to stop the iterations?
» Stop if the change in log-likelihood between two iterations is
less than a threshold.
» Or, use a threshold for the number of iterations.
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» Mixture of Gaussians examples
» 1-D Bayesian classification examples
» 2-D Bayesian classification examples
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Figure 1: lllustration of the EM algorithm iterations for a mixture of two
Gaussians.
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(a) Scatter plot. (b) Same spherical covari- (c) Different spherical covari-
ance, log-likelihood = -806.08. ance, log-likelihood = -804.21.
P —— o et oo 205 -

(d) Different diagonal covari- (e) Same arbitrary covariance, (f) Different arbitrary covari-
ance, log-likelihood = -630.46. log-likelihood = -810.93. ance, log-likelihood = -523.11.
Figure 2: Fitting mixtures of 5 Gaussians to data from a circular distributio
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gmix_example.mat

Trusdensties andsarle sograms Unear Gausian casifer, P, = 0091400
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(a) True densities and sample histograms. (b) Linear Gaussian classifier with P. =
0.0914.

uadratc Gaussan clss e P, = 0083700 Moture of Gaussian s, P, = 0066600

(c) Quadratic Gaussian classifier with P. =  (d) Mixture of Gaussian classifier with P, =
0.0837. 0.0869.
Figure 3: 1-D Bayesian classification examples where the data for each
class come from a mixture of three Gaussians. Bayes error is P, = 0.0828.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier_example.mat

Unsar Gaussian cissafer. P, = 0094531

(a) Scatter plot. (b) Linear Gaussian classifier with P. =

0.094531.
(c) Quadratic Gaussian classifier with P. =  (d) Mixture of Gaussian classifier with P, =
0.012829. 0.002026.

Figure 4: 2-D Bayesian classification examples where the data for the
classes come from a banana shaped distribution and a bivariate Gaussian
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier2_example.mat
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Quacratc Gaussian cassie, P, =0 157000

(a) Scatter plot. (b) Quadratic Gaussian classifier with P. =
0.1570.

Motureof Gaussian clssifer 2, = 0010000
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(c) Quadratic Gaussian classifier with P, =

0.0100.
Figure 5: 2-D Bayesian classification examples where the data for each
class come from a banana shaped distribution.
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http://www.cs.bilkent.edu.tr/~saksoy/courses/cs551/src/gauss_classifier3_example.mat
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