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Introduction

• Traditional subdivision of Pattern Recognition:

Statistical approach Structural approach (graphs)
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Statistical Approach

Advantages:

• Theoretically well founded

• Many powerful algorithms available

Disadvantages:

• Dimension of feature vectors fixed

• Only unary feature values, but no rela-
tions can be modeled
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Structural Approach

Advantages:

• Representation size is variable

• Higher representational power (structural

relationships)

Disadvantages:

• Lack of mathematical structure in the
graph domain

• Lack of algorithmic tools
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Vectors vs. Graphs

vectors graphs

representational power - +

available tools + -
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Vectors vs. Graphs

vectors graphs

representational power - +

available tools + +

• Embedding graphs in vector spaces makes available all algorithmic tools

developed for feature based object representations

• Close relationship to graph kernels
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Graph Based Representation

• A graph is defined by

g = (V, E, µ, ν), where
◦ V is the finite set of nodes

◦ E ⊆ V × V is the set of
edges

◦ µ : V → L is the node
labeling function

◦ ν : E → L is the edge
labeling function
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Graph Embedding

• Definition: Let G be a set of graphs. A graph embedding is a function

ϕ : G → Rn

mapping graphs to n-dimensional vectors, i.e.,

ϕ(g) = (x1, . . . , xn)′

• Previous work in graph embedding:

◦ Spectral methods [Kosinov, Caelli, 2004], [Luo, Wilson and Hancock,
2005], [Shokoufandeh et al. 2005]

◦ Heat kernel [Bai and Hancock, 2005]

◦ Riemannian approach [Robles-Kelly and Hancock, 2007]

◦ Quantum commute times [Qiu and Hancock, 2007]
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Graph Embedding

Characteristics of previous works:

• Solid methodological foundation

• Often restricted to special classes of graphs

• Robustness to noise may be an issue

Contribution of this work:

• Applicable to any type of graphs

• Robust against various types of distortions, due to the use of graph edit
distance
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Background

• Method described in this paper is inspired by
dissimilarity space embedding proposed by Duin and
Pekalska

• Power of this approach mainly demonstrated on feature
vector representations, although much more generally
applicable

• Later investigated for string representations

• In this paper extension to graphs
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Graph Edit Distance

Define the dissimilarity of graphs by the minimum amount of distortion that is

needed to transform one graph into another

• Distortions ei: deletions, insertions, substitutions of nodes and edges

• Edit path S = e1, . . . , en: a sequence of edit operations that transform
g1 into g2

• Cost function: Measuring the strength of a given distortion

• Edit distance d(g1, g2): Minimum cost edit path between two graphs
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Graph Edit Distance

Define the dissimilarity of graphs by the minimum amount of distortion that is

needed to transform one graph into another

• Distortions ei: deletions, insertions, substitutions of nodes and edges

• Edit path S = e1, . . . , en: a sequence of edit operations that transform
g1 into g2

• Cost function: Measuring the strength of a given distortion

• Edit distance d(g1, g2): Minimum cost edit path between two graphs
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Graph Embedding

• Graph set: G = {g1, . . . , gt}
• Graph edit distance: d(gi, gj)

• Prototype set: P = {p1, . . . , pn}
• The mapping

ϕP
n : G → Rn

is defined as the function

ϕP
n (g) &→ (d(g, p1), . . . , d(g, pn))
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Distance in the Embedding Space

||ϕP
n (g) − ϕP

n (g′)|| = 〈ϕP
n (g), ϕP

n (g)〉 + 〈ϕP
n (g′), ϕP

n (g′)〉 − 2〈ϕP
n (g), ϕP

n (g′)〉

=
n∑

i=1

d(g, pi)2 +
n∑

i=1

d(g′, pi)2 − 2
n∑

i=1

d(g, pi)d(g′, pi)

=
n∑

i=1

(d(g, pi) − d(g′, pi))2

• The Euclidean distance of a pair of graphs g and g′ in the vector space is
equal to the sum of squared differences between the edit distances of g
and g′ to the prototype graphs
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Prototype Selectors

• Problem: Appropriate choice of the prototype set P = {p1, . . . , pn} that
leads to a good performance of the resulting classifier in the vector
space

• We distinguish between class-wise and class-independent selection:

◦ class-independent: Selection is executed over the whole graph set to
get n prototypes

◦ class-wise: Selection is performed individually for each of the k

different classes (li prototypes per class ci such that
∑k

i=1 li = n)
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Random Prototype Selector (rps)

• Selects randomly n prototypes from the graph set G
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Spanning Prototype Selector (sps)

• The first prototype selected is the set median graph of G
• Each additional prototype selected by the spanning prototype selector is

the graph the furthest away from the already selected prototype graphs

Pi =





median(G) if i = 1
Pi−1 ∪ {pi} if 1 < i ! n , where pi = argmax

g∈G\Pi−1

min
p∈Pi−1

d(g, p)
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Prototype Selection
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Prototype Selection on Real Data
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Relation to Graph Kernels

• Kernel methods have emerged as a promising new research direction

• Kernel methods have been known for long, but their potential for
intelligent data analysis has been discovered only about 10 years ago

• Originally kernel methods have been developed for feature vectors

• Recently it has been demonstrated that they are applicable to graphs as
well

• Graph kernel methods make available a large spectrum of methods from
computational intelligence, pattern recognition, machine learning, etc.
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Kernel Trick

• Illustration of the kernel trick :
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Kernel Trick

• Illustration of the kernel trick :
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Graph Kernel

• Definition: Let g, g′ ∈ G be graphs and ϕ : G → Rn a function with
n ∈ N. A graph kernel function is a mapping κ : G × G → R such that

κ(g, g′) = 〈ϕ(g), ϕ(g′)〉. "
• If a classifier can be kernelized, it can be run with scalar products
resulting from graphs

• Consequently, all kernel machines can be applied to graphs

• The proposed graph embedding is even more general: it makes not only

all kernel machines, but all algorithms from statistical pattern recognition

available for graphs
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Experimental Evaluation

• Aim: compare classifiers in the embedding space with classifiers in the
graph domain

• Use data sets with a wide range of different characteristics (number of

classes, size of graphs, type of labels, . . .)

• Reference classifiers:

◦ k-NN classifier in graph domain (k-NN)

◦ SVM on graph edit distances: κ(g, g′) = −d(g, g′)2 (Sim)

• Classifier in the vector space:

◦ SVM

• Meta parameters of the vector space embedding optimized on a

validation set: number of prototypes, prototype selection procedure
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Validation Results (Letter Data Set)
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Letter Data Set

• Graphs representing capital letter line drawings, 15 classes, tr 750, va
750, te 750
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Molecule Data Set

• Graphs representing molecules, 2 classes (active and inactive), tr 250,
va 250, te 1500
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Fingerprint Data Set

• Graphs representing fingerprint images, 4 classes (arch, left loop, right

loop, whorl), tr 500, va 300, te 500
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Webpage Data Set

• Graphs representing webpages, 22 classes (Business, Health,

Politics, . . .), tr 780, va 780, te 780
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Additional Data Sets

• Digits

• GREC

• COIL

• Protein

• Mutagenicity

• See poster presentation and
www.iam.unibe.ch/fki/databases/iam-graph-database
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Multiple Classifier Systems

• Multiple Classifier Systems (MCS), also called Ensemble Methods, have
become a focus of intensive research

• They are based on the idea that the errors committed by one classifier
can be corrected by the other ensemble members

• Many methods for building MCS have been proposed recently

• However, the majority of work is based on feature vector representations;
there is almost no work on MCS for graph based representations
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Multiple Classifier Systems
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Standard Methods for MCS Creation

• Bagging (change the training set)

• Boosting (change the training set)

• Random feature subspace (change the features)

• Architecture variation (change the classifier)
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Ensemble Generation

• Use random prototype selection

• Train classifier using the whole training set

• Repeat random prototype selection until desired number of classifiers is
obtained
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Randomized Graph Embedding
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n (g) &→ (d(g, p1), . . . , d(g, pn))
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Randomized Graph Embedding
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Randomized Graph Embedding
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Applying randomized graph embedding m times leads to m different vectorial

descriptions of the same underlying graph
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Experimental Evaluation

• Aim: compare classifiers in the embedding space with classifiers in the

graph domain; compare the best individual SVM with the ensemble

• Combination rules: voting and Borda count
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Letter Dataset

• Graph representing capital letter line drawings, 15 classes, tr 750, va
750, te 750
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Molecule Dataset

• Graphs representing molecules, 2 classes (active and inactive), tr 250,
va 250, te 1500
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Fingerprint Dataset

• Graphs representing fingerprint images, 4 classes (arch, left loop, right

loop, whorl), tr 500, va 300, te 500



Graph Classification Based on Dissimilarity Space Embedding 43

Image Dataset

• Graphs representing images, 5 classes (city, countryside, people,

snowy, streets), tr 54, va 54, te 54
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Further Refinements

• Lipschitz embedding:

Instead of individual prototypes p1, . . . , pn, use sets P1, . . . , Pn of
prototypes and define the embedding as

ϕP1,...,Pn
n (g) = (d(g, P1), . . . , d(g, Pn))

• PCA and kernel PCA:
Use all available graphs for the embedding and apply some
dimensionality reduction method; alternatively, the dimensionality
reduction problem can be viewed as a feature selection problem

• Prototype reduction methods for nearest neighbor classification:
Use editing, condensing, and similar procedures
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Further Refinements 2/2

• These methods have the potential of further improvements over the
basic methods discussed so far

• Graph clustering:
Map graphs to a vector space and apply clustering methods in the vector
space rather than in the original graph domain



Graph Classification Based on Dissimilarity Space Embedding 47

Contents

• Introduction

• Graph Embedding

• Dissimilarity Space Embedding of Graphs

• Multiple Classifier Systems

• Further Refinements

• Efficient Graph Edit Distance

• Summary and Conclusions



Graph Classification Based on Dissimilarity Space Embedding 48

Complexity of GED

• The novel graph embedding methods depend on the graph edit distance

• However, the complexity of graph edit distance computation is
exponential

• Possible solutions:

◦ Restriction to special classes of graphs, e.g., graphs with unique
node labels; complexity becomes linear; applications in web text
mining and computer network analysis

◦ Use of approximate (suboptimal) methods

• In our case:

◦ Suboptimal versions of the A* algorithm

◦ Bipartite graph matching
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Bipartite Graph Matching

• Bipartite graph matching, also known as the Hungarian method or
Munkres’ algorithm, provides us with a method to solve the assignment
problem
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optimization problem:
∑n

i=1 ciπi

!= minπ

• Typical applications in operations research (assignment of tasks to

machines)

• The method is optimal for the assignment problem

• It has a time complexity of O(n3)
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Bipartite Graph Matching for GED

• The assignment problem has nothing to do with GED computation

• However GED can be reformulated (simplified) such that Munkres’
algorithm becomes applicable

!"#

• Different reformulations are possible (considering only nodes, or nodes

plus their local edge neighborhood)

• Munkres’ algorithm returns an optimal solution for the assignment
problem

• However, we get only a suboptimal solution for GED
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Experimental Evaluation

• There are two questions to be answered:

◦ How much computation time can be saved by the suboptimal
algorithms?

◦ How much classification accuracy do we loose by applying
suboptimal rather than optimal algorithms?
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Letter Data Set

Method Time [ms]

Tree Search 468.0

Plain 0.2

Adjacency 2.8



Graph Classification Based on Dissimilarity Space Embedding 53

Letter Data Set

Method Time [ms] Accuracy

Tree Search 468.0 80.7

Plain 0.2 84.0 ◦
Adjacency 2.8 84.0 ◦

◦ Statistically significantly better than the reference system
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Suboptimality
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Suboptimality

• Suboptimality mainly leads to an increase of inter-class distances, while
most of the intra-class distances are not strongly affected
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Summary and Conclusions

• Graphs are embedded in vector spaces by means of prototype selection
and graph edit distance

• In this way we can utilize the high representational power of graphs and
make available all pattern recognition methods that have been

developed for feature based object representations

• The proposed method can be applied to classification and clustering
tasks

• It is applicable to any type of graph

• Furthermore, it is applicable not only in conjunction with kernel methods,
but to any other type of algorithm that operates in a feature space
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Summary and Conclusions

• To avoid computational complexity problems, approximate methods for
edit distance computation can be used; they lead to a substantial gain in

computational speed, but don’t compromise classification performance

• The experimental results show superior performance over reference
systems over a spectrum of different applications and graphs with

different characteristics
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