^D UNIVERSITÄT BERN

SSPR 2008

GRAPH CLASSIFICATION BASED ON DISSIMILARITY SPACE EMBEDDING

Horst Bunke and Kaspar Riesen {bunke,riesen}@iam.unibe.ch Institute of Computer Science and Applied Mathematics University of Bern, Neubrückstrasse 10, CH-3012 Bern (Switzerland) http://www.iam.unibe.ch/~fki/

Acknowledgments

- Michel Neuhaus
- Swiss National Science Foundation
- Swiss National Science Foundation 'National Centers of Competence in Research' Program
- Bob Duin, Ela Pekalska

Contents

- Introduction
- Graph Embedding
- Dissimilarity Space Embedding of Graphs
- Multiple Classifier Systems
- Further Refinements
- Efficient Graph Edit Distance
- Summary and Conclusions

Introduction

b UNIVERSITÄT BERN

• Traditional subdivision of Pattern Recognition:

Statistical approach

Structural approach (graphs)

Statistical Approach

b UNIVERSITÄT BERN

Advantages:

- Theoretically well founded
- Many powerful algorithms available

Disadvantages:

- Dimension of feature vectors fixed
- Only unary feature values, but no relations can be modeled

Structural Approach

b UNIVERSITÄT BERN

Advantages:

- Representation size is variable
- Higher representational power (structural relationships)

Disadvantages:

- Lack of mathematical structure in the graph domain
- Lack of algorithmic tools

Vectors vs. Graphs

b UNIVERSITÄT BERN

b

 \boldsymbol{u}

	vectors	graphs
representational power	-	+
available tools	+	-

Vectors vs. Graphs

	vectors	graphs
representational power	-	+
available tools	+	+

- Embedding graphs in vector spaces makes available all algorithmic tools developed for feature based object representations
- Close relationship to graph kernels

Contents

- Introduction
- Graph Embedding
- Dissimilarity Space Embedding of Graphs
- Multiple Classifier Systems
- Further Refinements
- Efficient Graph Edit Distance
- Summary and Conclusions

Graph Based Representation

- A graph is defined by $g = (V, E, \mu, \nu)$, where
 - \circ V is the finite set of nodes
 - $\circ \quad E \subseteq V \times V \text{ is the set of edges}$
 - $\circ \ \mu: V \to L \text{ is the node} \\ \text{labeling function} \\$
 - $\circ \ \nu: E \to L \text{ is the edge} \\ \text{labeling function} \\$

Graph Embedding

⁶ UNIVERSITÄT BERN

• Definition: Let \mathcal{G} be a set of graphs. A graph embedding is a function

$$\varphi:\mathcal{G}\to\mathbb{R}^n$$

mapping graphs to *n*-dimensional vectors, i.e.,

$$\varphi(g) = (x_1, \dots, x_n)'$$

- Previous work in graph embedding:
 - Spectral methods [Kosinov, Caelli, 2004], [Luo, Wilson and Hancock, 2005], [Shokoufandeh et al. 2005]
 - Heat kernel [Bai and Hancock, 2005]
 - Riemannian approach [Robles-Kelly and Hancock, 2007]
 - Quantum commute times [Qiu and Hancock, 2007]

Graph Embedding

b UNIVERSITÄT BERN

Characteristics of previous works:

- Solid methodological foundation
- Often restricted to special classes of graphs
- Robustness to noise may be an issue

Contribution of this work:

- Applicable to any type of graphs
- Robust against various types of distortions, due to the use of graph edit distance

Background

- Method described in this paper is inspired by dissimilarity space embedding proposed by Duin and Pekalska
- Power of this approach mainly demonstrated on feature vector representations, although much more generally applicable
- Later investigated for string representations
- In this paper extension to graphs

Contents

b UNIVERSITÄT BERN

- Introduction
- Graph Embedding

• Dissimilarity Space Embedding of Graphs

- Multiple Classifier Systems
- Further Refinements
- Efficient Graph Edit Distance
- Summary and Conclusions

Graph Edit Distance

6 UNIVERSITÄT BERN

Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another

- **Distortions** e_i : deletions, insertions, substitutions of nodes and edges
- Edit path $S = e_1, \ldots, e_n$: a sequence of edit operations that transform g_1 into g_2
- **Cost function:** Measuring the strength of a given distortion
- Edit distance $d(g_1, g_2)$: Minimum cost edit path between two graphs

Graph Edit Distance

⁶ UNIVERSITÄT BERN

Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another

- **Distortions** e_i : deletions, insertions, substitutions of nodes and edges
- Edit path $S = e_1, \ldots, e_n$: a sequence of edit operations that transform g_1 into g_2
- Cost function: Measuring the strength of a given distortion
- Edit distance $d(g_1, g_2)$: Minimum cost edit path between two graphs

Graph Embedding

b UNIVERSITÄT BERN

- Graph set: $\mathcal{G} = \{g_1, \ldots, g_t\}$
- Graph edit distance: $d(g_i, g_j)$
- **Prototype set:** $P = \{p_1, ..., p_n\}$
- The mapping

$$\varphi_n^P:\mathcal{G}\to\mathbb{R}^n$$

is defined as the function

$$\varphi_n^P(g) \mapsto (d(g, p_1), \dots, d(g, p_n))$$

Distance in the Embedding Space

⁶ UNIVERSITÄT BERN

$$\begin{aligned} ||\varphi_{n}^{P}(g) - \varphi_{n}^{P}(g')|| &= \langle \varphi_{n}^{P}(g), \varphi_{n}^{P}(g) \rangle + \langle \varphi_{n}^{P}(g'), \varphi_{n}^{P}(g') \rangle - 2 \langle \varphi_{n}^{P}(g), \varphi_{n}^{P}(g') \rangle \\ &= \sum_{i=1}^{n} d(g, p_{i})^{2} + \sum_{i=1}^{n} d(g', p_{i})^{2} - 2 \sum_{i=1}^{n} d(g, p_{i}) d(g', p_{i}) \\ &= \sum_{i=1}^{n} (d(g, p_{i}) - d(g', p_{i}))^{2} \end{aligned}$$

• The Euclidean distance of a pair of graphs *g* and *g'* in the vector space is equal to the sum of squared differences between the edit distances of *g* and *g'* to the prototype graphs

Prototype Selectors

- Problem: Appropriate choice of the prototype set $P = \{p_1, \ldots, p_n\}$ that leads to a good performance of the resulting classifier in the vector space
- We distinguish between **class-wise** and **class-independent** selection:
 - class-independent: Selection is executed over the whole graph set to get n prototypes
 - class-wise: Selection is performed individually for each of the k different classes (l_i prototypes per class c_i such that $\sum_{i=1}^k l_i = n$)

Random Prototype Selector (rps)

b UNIVERSITÄT BERN

• Selects randomly n prototypes from the graph set \mathcal{G}

Spanning Prototype Selector (sps)

^b UNIVERSITÄT BERN

- The first prototype selected is the set median graph of ${\mathcal G}$
- Each additional prototype selected by the spanning prototype selector is the graph the furthest away from the already selected prototype graphs

$$P_i = \begin{cases} median(\mathcal{G}) & \text{if } i = 1\\ P_{i-1} \cup \{p_i\} & \text{if } 1 < i \leq n \text{, where } p_i = \underset{g \in \mathcal{G} \setminus P_{i-1}}{\operatorname{argmax}} \min_{p \in P_{i-1}} d(g, p) \end{cases}$$

Prototype Selection

b UNIVERSITÄT BERN

U

Prototype Selection on Real Data

b UNIVERSITÄT BERN

U

Relation to Graph Kernels

⁶ UNIVERSITÄT BERN

- Kernel methods have emerged as a promising new research direction
- Kernel methods have been known for long, but their potential for intelligent data analysis has been discovered only about 10 years ago
- Originally kernel methods have been developed for feature vectors
- Recently it has been demonstrated that they are applicable to graphs as well
- Graph kernel methods make available a large spectrum of methods from computational intelligence, pattern recognition, machine learning, etc.

Kernel Trick

b UNIVERSITÄT BERN

b

U

• Illustration of the kernel trick:

Kernel Trick

b UNIVERSITÄT BERN

• Illustration of the kernel trick:

Graph Kernel

- **Definition**: Let $g, g' \in \mathcal{G}$ be graphs and $\varphi : \mathcal{G} \to \mathbb{R}^n$ a function with $n \in \mathbb{N}$. A graph kernel function is a mapping $\kappa : \mathcal{G} \times \mathcal{G} \to \mathbb{R}$ such that $\kappa(g,g') = \langle \varphi(g), \varphi(g') \rangle$.
- If a classifier can be kernelized, it can be run with scalar products resulting from graphs
- Consequently, all kernel machines can be applied to graphs
- The proposed graph embedding is even more general: it makes not only all kernel machines, but all algorithms from statistical pattern recognition available for graphs

Experimental Evaluation

⁶ UNIVERSITÄT BERN

- Aim: compare classifiers in the embedding space with classifiers in the graph domain
- Use data sets with a wide range of different characteristics (number of classes, size of graphs, type of labels, ...)
- Reference classifiers:
 - \circ k-NN classifier in graph domain (k-NN)
 - SVM on graph edit distances: $\kappa(g,g') = -d(g,g')^2$ (Sim)
- Classifier in the vector space:

 \circ SVM

• Meta parameters of the vector space embedding optimized on a validation set: number of prototypes, prototype selection procedure

Validation Results (Letter Data Set)

^b UNIVERSITÄT BERN

h

Letter Data Set

b UNIVERSITÄT BERN

 Graphs representing capital letter line drawings, 15 classes, tr 750, va 750, te 750

Molecule Data Set

b UNIVERSITÄT BERN

 Graphs representing molecules, 2 classes (active and inactive), tr 250, va 250, te 1500

Fingerprint Data Set

^b UNIVERSITÄT BERN

• Graphs representing fingerprint images, 4 classes (arch, left loop, right loop, whorl), tr 500, va 300, te 500

Webpage Data Set

b UNIVERSITÄT BERN

• Graphs representing webpages, 22 classes (Business, Health, Politics, ...), tr 780, va 780, te 780

Additional Data Sets

- Digits
- GREC
- COIL
- Protein
- Mutagenicity
- See poster presentation and www.iam.unibe.ch/fki/databases/iam-graph-database

Contents

- Introduction
- Graph Embedding
- Dissimilarity Space Embedding of Graphs
- Multiple Classifier Systems
- Further Refinements
- Efficient Graph Edit Distance
- Summary and Conclusions

Multiple Classifier Systems

⁶ UNIVERSITÄT BERN

- Multiple Classifier Systems (MCS), also called Ensemble Methods, have become a focus of intensive research
- They are based on the idea that the errors committed by one classifier can be corrected by the other ensemble members
- Many methods for building MCS have been proposed recently
- However, the majority of work is based on feature vector representations; there is almost no work on MCS for graph based representations

Multiple Classifier Systems

b UNIVERSITÄT BERN

U

Graph Classification Based on Dissimilarity Space Embedding

Standard Methods for MCS Creation

- Bagging (change the training set)
- Boosting (change the training set)
- Random feature subspace (change the features)
- Architecture variation (change the classifier)

Ensemble Generation

- Use random prototype selection
- Train classifier using the whole training set
- Repeat random prototype selection until desired number of classifiers is obtained

Randomized Graph Embedding

b UNIVERSITÄT BERN

$$v_1 = (x_{11}, x_{12}, x_{13}, x_{14})$$

 $\varphi_n^{\mathcal{P}}(g) \mapsto (d(g, p_1), \dots, d(g, p_n))$

Graph Classification Based on Dissimilarity Space Embedding

Randomized Graph Embedding

b UNIVERSITÄT BERN

The selected graphs become temporarily unavailable for further selection

Randomized Graph Embedding

b UNIVERSITÄT BERN

Applying randomized graph embedding m times leads to m different vectorial descriptions of the same underlying graph

Experimental Evaluation

⁶ UNIVERSITÄT BERN

- Aim: compare classifiers in the embedding space with classifiers in the graph domain; compare the best individual SVM with the ensemble
- Combination rules: voting and Borda count

Letter Dataset

b UNIVERSITÄT BERN

 Graph representing capital letter line drawings, 15 classes, tr 750, va 750, te 750

Molecule Dataset

b UNIVERSITÄT BERN

 Graphs representing molecules, 2 classes (active and inactive), tr 250, va 250, te 1500

Fingerprint Dataset

^b UNIVERSITÄT BERN

 Graphs representing fingerprint images, 4 classes (arch, left loop, right loop, whorl), tr 500, va 300, te 500

Image Dataset

b UNIVERSITÄT BERN

• Graphs representing images, 5 classes (city, countryside, people, snowy, streets), tr 54, va 54, te 54

Contents

- Introduction
- Graph Embedding
- Dissimilarity Space Embedding of Graphs
- Multiple Classifier Systems
- Further Refinements
- Efficient Graph Edit Distance
- Summary and Conclusions

Further Refinements

b UNIVERSITÄT BERN

 Lipschitz embedding: Instead of individual prototypes p₁,..., p_n, use sets P₁,..., P_n of prototypes and define the embedding as

$$\varphi_n^{P_1,\ldots,P_n}(g) = (d(g,P_1),\ldots,d(g,P_n))$$

• PCA and kernel PCA:

Use all available graphs for the embedding and apply some dimensionality reduction method; alternatively, the dimensionality reduction problem can be viewed as a feature selection problem

• Prototype reduction methods for nearest neighbor classification: Use editing, condensing, and similar procedures

Further Refinements 2/2

^b UNIVERSITÄT BERN

- These methods have the potential of further improvements over the basic methods discussed so far
- Graph clustering: Map graphs to a vector space and apply clustering methods in the vector space rather than in the original graph domain

Contents

- Introduction
- Graph Embedding
- Dissimilarity Space Embedding of Graphs
- Multiple Classifier Systems
- Further Refinements
- Efficient Graph Edit Distance
- Summary and Conclusions

Complexity of GED

⁶ UNIVERSITÄT BERN

- The novel graph embedding methods depend on the graph edit distance
- However, the complexity of graph edit distance computation is exponential
- Possible solutions:
 - Restriction to special classes of graphs, e.g., graphs with unique node labels; complexity becomes linear; applications in web text mining and computer network analysis
 - Use of approximate (suboptimal) methods
- In our case:
 - Suboptimal versions of the A* algorithm
 - Bipartite graph matching

Bipartite Graph Matching

⁶ UNIVERSITÄT BERN

 Bipartite graph matching, also known as the Hungarian method or Munkres' algorithm, provides us with a method to solve the assignment problem

optimization problem: $\sum_{i=1}^{n} c_{i\pi_i} \stackrel{!}{=} \min_{\pi}$

- Typical applications in operations research (assignment of tasks to machines)
- The method is optimal for the assignment problem
- It has a time complexity of $O(n^3)$

Bipartite Graph Matching for GED

- The assignment problem has nothing to do with GED computation
- However GED can be reformulated (simplified) such that Munkres' algorithm becomes applicable

- Different reformulations are possible (considering only nodes, or nodes plus their local edge neighborhood)
- Munkres' algorithm returns an optimal solution for the assignment problem
- However, we get only a suboptimal solution for GED

Experimental Evaluation

- There are two questions to be answered:
 - How much computation time can be saved by the suboptimal algorithms?
 - How much classification accuracy do we loose by applying suboptimal rather than optimal algorithms?

Letter Data Set

b UNIVERSITÄT BERN

b

U

Method	Time [ms]
Tree Search	468.0
Plain	0.2
Adjacency	2.8

Letter Data Set

^b UNIVERSITÄT BERN

Method	Time [ms]	Accuracy
Tree Search	468.0	80.7
Plain	0.2	84.0 °
Adjacency	2.8	84.0 0

• Statistically significantly better than the reference system

Suboptimality

b UNIVERSITÄT BERN

U

Suboptimality

^b UNIVERSITÄT BERN

• Suboptimality mainly leads to an increase of inter-class distances, while most of the intra-class distances are not strongly affected

Contents

- Introduction
- Graph Embedding
- Dissimilarity Space Embedding of Graphs
- Multiple Classifier Systems
- Further Refinements
- Efficient Graph Edit Distance
- Summary and Conclusions

Summary and Conclusions

⁶ UNIVERSITÄT BERN

- Graphs are embedded in vector spaces by means of prototype selection and graph edit distance
- In this way we can utilize the high representational power of graphs and make available all pattern recognition methods that have been developed for feature based object representations
- The proposed method can be applied to classification and clustering tasks
- It is applicable to any type of graph
- Furthermore, it is applicable not only in conjunction with kernel methods, but to any other type of algorithm that operates in a feature space

Summary and Conclusions

⁶ UNIVERSITÄT BERN

- To avoid computational complexity problems, approximate methods for edit distance computation can be used; they lead to a substantial gain in computational speed, but don't compromise classification performance
- The experimental results show superior performance over reference systems over a spectrum of different applications and graphs with different characteristics

Related Publications 1/4

^b UNIVERSITÄT BERN

- Efficient Graph Edit Distance
 - Riesen, K. and Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. To be published in IMAVIS.
 - Riesen, K. and Neuhaus, M. and Bunke, H.: Bipartite Graph Matching for Computing the Edit Distance of Graphs. In Proc. 6th Int. Workshop on GbR, 2007.
 - Neuhaus, M. and Riesen, K. and Bunke, H.: Fast Suboptimal Algorithms for the Computation of Graph Edit Distance. In Proc. 11th int. Workshop on SSPR, 2006.
 - Riesen, K. and Fankhauser, S. and Bunke, H.: Speeding up Graph Edit Distance Computation with a Bipartite Heuristic. In Proc. 5th. Int. Workshop on MLG

Related Publications 2/4

- Dissimilarity Space Embedding
 - Riesen, K. and Bunke, H.: Graph Classification Based on Vector Space Embedding. To be published in IJPRAI.
 - Riesen, K. and Neuhaus, M. and Bunke, H.: Graph Embedding in Vector Spaces by Means of Prototype Selection. In Proc. 6th Int. Workshop on GbR, 2007.
 - Riesen, K. and Bunke, H.: Reducing the Dimensionality of Dissimilarity Space Embedding Graph Kernels. To be published in AAI.
 - Riesen, K. and Kilcherr, V. and Bunke, H.: Reducing the Dimensionality of Vector Space Embeddings of Graphs. In Proc. 5th Int. Conf. on MLDM, 2007.
 - Riesen, K. and Bunke, H.: Classifier Ensembles for Vector Space Embedding of Graphs. In Proc. 7th Int. Workshop on MCS, 2007.

Related Publications 3/4

- Dissimilarity Space Embedding
 - Riesen, K. and Bunke, H.: Structural Classifier Ensembles for Vector Space Embedded Graphs. In Proc. 20th Int. Joint Conf. on NN, 2007
 - Riesen, K. and Bunke, H.: Non-linear Transformations of Vector Space Embedded Graphs. In Proc. 8th Int. Workshop on PRIS, 2008.
 - Riesen, K. and Bunke, H.: On Lipschitz Embeddings of Graphs. In Proc. 12th International Conference on KES, 2008.
 - Riesen, K. and Bunke, H.: Kernel *k*-Means Clustering Applied to Vector Space Embeddings of Graphs. In Proc. 3rd IAPR Workshop ANNPR, 2008

Related Publications 4/4

- Databases
 - Riesen, K. and Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In Proc. 12th int. Workshop on SSPR, 2008.
 - o www.iam.unibe.ch/fki/databases/iam-graph-database