Representation Related Problems in Pattern Recognition

London, 6 October 2006 Robert P.W. Duin Delft University of Technology The Netherlands

Model Driven \longleftrightarrow Data Driven

2

R.P.W. Duin

The Pattern Recognition System

Finding concepts (classes) from observations

Representation

Object representation

Vector representations Features Samples (Pixels) Dissimilarities Dimensionality problems Non-vectorial representations

Class representation

Sampling: aselective - selective Supervised - Unsupervised Number of objects

Feature Representation

Due to reduction essentially different objects are represented identically

The feature representation needs a statistical (probabilistic) generalization

Feature Space Assumptions, The Ideal World

- A (small) set of informative features
- Euclidean analysis is possible (after feasible corrections)
- Classes have known, not very different priors
- Natural classes (e.g. correspond to a unsupervised clustering result)
- Training set is representative for the problem

 e.g. aselectively drawn from the same universe as the test set
 sufficiently large for the given feature size
 classes do not drift
 labels are correct

In this ideal world we can nicely study generalization procedures Applicable?

Classifier typology

Each classifier has a problem for which it is the best classifier

Can we create a

library of problems corresponding to the library of classifiers?

5/10/06

13 1-NN*

14 K-NN*

48 Parzen

134 Dec-Tree

180 RB-SVM

454 SVM-1

455 Logistic

460 UDA

460 QDA

36 RB-SVM*

50 Parzen

52 1-NN

54 K-NN

103 QDA

111 UDA

139 LDA

142 Logistic

143 SVM-1

89 Dec-Tree

455 LDA

27 Dec-Tree* 30 LM-Neural-Net* 36 RB-SVM 47 RB-Neural-Net 51 Parzen 51 Naive Bayes 52 1-NN 54 K-NN 103 QDA 123 UDA 139 LDA 142 Logistic 143 SVM-1 156 Nearest-Mean 53 UDA* 54 QDA 81 RB-Neural-Net 89 RB-SVM 92 Naive-Bayes 93 Parzen 93 Dec-Tree 99 LM-Neural-Net 102 1-NN 104 K-NN 180 Logistic 193 SVM-1 202 LDA 258 Nearest-Mean 148 Nearest-Mean* 150 LDA* 150 Logistic* 150 SVM-1* 151 UDA 153 QDA 165 Parzen 165 K-NN 179 Naive-Bayes 193 LM-Neural-Net

196 RB-Neural-Net

225 1-NN

226 RB-SVM

228 Dec-Tree

Dec-Tree (44)

Classifier Problem Archtypes

K-NN (6)

232 Dec-Tree

Bad Features \rightarrow More Features \rightarrow Complexity Problem

Number of features (parameters) K —

The real world, first problem: peaking

No Feature Reduction

The feature representation enforces class overlap. To be solved by a probabilistic approach.

However:

Are densities needed in high dimensional spaces? Are classes to be represented by densities?

Can we construct domain based classifiers?

Example Dissimilarity Space: NIST Digits 3 and 8

3333333333333333333333333333

Examples of the raw data

TUDelft

12

5/10/06

Overpeaking

13

5/10/06

Small Sample Size

Dimension Resonance and Dipping

Support Vector Machine for Small Sample Sizes

Pixel Representation: Samples Instead of Features

Pixels are more general, initially complete representation Large datasets available \rightarrow good results for OCR

The Connectivity Problem in the Pixel Representation

Spatial connectivity is lost

Dependent (connected) measurements are represented independently, The dependency has to be rediscovered from the data.

The Connectivity Problem in the Pixel Representation

Can connectivity be taken into account in the representation?

High dimensional data often does not overlap

Complete feature representations, which enable the reconstruction of human recognizable, may yield separable classes.

There is no picture that could be member of different classes.

In some representations classes are separable

Domains instead of Densities

Domain based classification

Don't trust class densities Estimate for each class a domain Assign new objects to nearest domain

Outlier dependent Distances instead of densities

How to construct domain based classifiers?

No Features: Dissimilarities

The traditional Nearest Neighbor rule (template matching) just finds: label(argmin_{trainset}(d_i)), without using D_T . Can we do any better?

″uDelft

No Features: Dissimilarities

The traditional Nearest Neighbor rule (template matching) just finds: label(argmin_{trainset}(d_i)), without using D_T . Can we do any better?

Pekalska, The Dissimilarity Representation for PR, World Scientific, 2005

5/10/06

R.P.W. Duin

Example: Deformable Templates

Examples of deformed templates

Matching new objects x to various templates y $class(x) = class(argmin_y(D(x, y)))$

Dissimilarity measure appears to be non-metric

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit using deformable templates, IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.

Three Approaches Compared for the Zongker Data

Dissimilarity Space better than Embedding better than Nearest Neighbor Rule

The Non-Euclidean World of Pattern Recognition

5/10/06

Class Representation Problems

ROC, AUC

1 AUC: Robust performance measure (unknown priors/costs, unbalanced sampling) 2 AUC optimizing classifiers may find 'good' directions in case of higly overlapping, ill defined classes

One-class problems

How to generalize well: no empty areas included stay outside boundary objects

What is a proper one-class classifier?

An Opportunity: Large Unlabeled Training Set

- Given: A large, but finite, unlabeled training set X_u , or a density function.
- Ask labels for a small set of objects (of given size), X₁.
- Task: design a classifier, or label X_u.

Approaches

Selective Sampling:

- Determine a small set of objects from X_u that represents the dataset well
- Ask for the labels: X₁
- Train a classifier

Active learning

- Select (at random?) an initially small training set. Ask for the labels, X_1
- Compute a classifier
- Select, given the classifier and X_u , more objects, ask the labels, extend X_l
- Repeat

Semi-Supervised Learning

• Compute classifiers from X₁ combined with X_u

R.P.W. Duin

The use of unlabeled objects and active learning

Assume labeling is expensive

Can we make us of unlabeled objects for better classification?

Can we select a few to improve the classifier?

- close to the decision boundary?
- far away from the dec. boundary?
- at random?

How to make use of unlabeled data to construct classifiers?

Exploitation

Add unlabeled objects close the classifier to the training set.

Exploration

Add remote unlabeled objects that represent unvisited clusters.

Is the set of objects representative for the problem?

Semi - Supervised Learning

Can better classifiers be designed by using labeled and unlabeled objects simultaneously?

Two possible approaches:

- Combine supervised and unsupervised models
- Label propagation

Application: learn from the test set!

How to build a good semi-supervised classifier?

Semi Supervised Learning: Combining Supervised and Unsupervised Models

I. Cohen, F.G. Cozman, N. Sebe, M.C. Cirelo, T.S. Huang, Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction, IEEE-PAMI, 26, 1553-1566, 2004.

Learning from the Test Set

2 x 2 training samples and x 98 test samples

Soft label propagation

20 iterations of soft Parzen

Piotr Juszczak, Learning to recognise, Ph.D. Thesis, Delft Univ. of Technology, 2006 see also Cores 2005.

Semi-Supervised Learning by Soft Parzen

The One-Object Classifier (OOC)

- 1. Cluster the dataset into two clusters.
- 2. Select a most 'typical' object in one of the clusters.
- 3. Ask for its label.
- 4. Label the clusters accordingly.
- 5. Compute the classifier.

Pattern recognition research is solving representation problems

