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Model Driven ←→ Data Driven

Model of a house Are these houses?

Observations of houses x1

x2

Non-Houses

Houses

Feature Space Representation

Classifier
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The Pattern Recognition System

(area)

(perimeter)x1

x2

Class A

Class B

Objects

Decision Function Generalization

Sensor Representation Generalization

Feature Space Representation

Learning from examples
Finding concepts (classes) from observations



5/10/06 R.P.W. Duin 4

Representation

Object representation
Vector representations

Features
Samples (Pixels)
Dissimilarities
Dimensionality problems

Class representation
Sampling: aselective - selective
Supervised - Unsupervised
Number of objects  

Non-vectorial representations
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Feature  Representation

(area)

(perimeter)x1

x2

Class A

Class B
Objects

Feature Space

Due to reduction essentially different objects are represented identically
 

The feature representation needs a statistical (probabilistic) generalization

x

Probability
Density

PAFA(x)
PBFB(x)
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Feature Space Assumptions, The Ideal World
• A (small) set of informative features

• Euclidean analysis is possible (after feasible corrections)

• Classes have known, not very different priors

• Natural classes (e.g. correspond to a unsupervised clustering result) 

• Training set is representative for the problem
e.g. aselectively drawn from the same universe as the test set
sufficiently large for the given feature size
classes do not drift
labels are correct

In this ideal world we can nicely study generalization procedures 
Applicable?
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Classifier typology

Can we create a
 library of problems corresponding to the library of classifiers?

Fisher Bayes Normal

Decision Tree Neural Network

Each classifier has a problem for which it is the best classifier

Nearest Mean



Classifier Problem Archtypes
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Bad Features → More Features → Complexity Problem

Number of features (parameters) K

ε sample size

The real world, first problem: peaking
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No Feature Reduction

The feature representation enforces class overlap. 
To be solved by a probabilistic approach.

However:

Are densities needed in high dimensional spaces?
Are classes to be represented by densities?

Can we construct domain based classifiers?
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Example Dissimilarity Space: NIST Digits 3 and 8

Examples of the raw data
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Peaking
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Overpeaking
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Classification problem R30:

Training Set Size

Averaged error over 50 experiments

Two normal distributions, overlap: ε* = 0.064:
feature 1 NA(0, 1), NB(3, 1)
feature 2 NA(0, 40), NB(3, 40)
feature 3-30NA(0, 1), NB(0, 1)

Bayes Error

Nearest Mean

Fisher LD

Feature Size

True Error
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Dimension Resonance and Dipping
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Support Vector Machine for Small Sample Sizes
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Pixel Representation: Samples Instead of Features

Features
Shape
Moments
Fourier descriptors
Faces
Morphology

Class A

Class B Feature Space

Pixels are more general, initially complete representation 
Large datasets available → good results for OCR

16 x 16 R256Pixels

x1

x2
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The Connectivity Problem in the Pixel Representation 

Spatial connectivity is lost

x1 x2 x3

x1

x2

x3

Dependent (connected) measurements are represented independently,
The dependency  has to be rediscovered from the data.
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The Connectivity Problem in the Pixel Representation

Reshuffle
Pixels

Feature space

Reshuffling pixels will not change the classification

Training set

Test object

Spatial connectivity is lost

Can connectivity be taken into account in the representation?
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High dimensional data often does not overlap

Complete feature representations, which enable the reconstruction

There is no picture that could be member of different classes.

of human recognizable, may yield separable classes. 

In some representations classes are separable
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Domains instead of Densities

No well sampled training sets are needed.

Classifiers still to be developed.

Class structure ←→ Object invariants
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Domain based classification

How to construct domain based classifiers?

Don’t trust class densities
Estimate for each class a domain
Assign new objects to nearest domain

Outlier dependent
Distances instead of densities
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No Features: Dissimilarities

A B

X

Given labeled training set T

Unlabeled object x  to be classified

The traditional Nearest Neighbor rule (template matching) just finds: 
label(argmintrainset(di)), 
without using DT. Can we do any better?

dx  =    (d1   d2   d3   d4  d5   d6   d7)

DT

d11d12d13d14d15d16d17

d21d22d23d24d25d26d27

d31d32d33d34d35d36d37

d41d42d43d44d45d46d47

d51d52d53d54d55d56d57

d61d62d63d64d65d66d67

d71d72d73d74d75d76d77 
 
 
 
 
 
 
 
 
 
 
 
 

=

Define dissimilarity measure dij between raw data of objects i and j

not used by NN rule
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No Features: Dissimilarities

A B

X

Given labeled training set T

Unlabeled object x  to be classified

The traditional Nearest Neighbor rule (template matching) just finds: 
label(argmintrainset(di)), 
without using DT. Can we do any better?

dx  =    (d1   d2   d3   d4  d5   d6   d7)

DT

d11d12d13d14d15d16d17

d21d22d23d24d25d26d27

d31d32d33d34d35d36d37

d41d42d43d44d45d46d47

d51d52d53d54d55d56d57

d61d62d63d64d65d66d67

d71d72d73d74d75d76d77 
 
 
 
 
 
 
 
 
 
 
 
 

=

Define dissimilarity measure dij between raw data of objects i and j

not used by NN rule

Pekalska, The Dissimilarity
Representation for PR,
World Scientific, 2005 
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Example: Deformable Templates

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit  using deformable templates, 

IEEE-PAMI, vol. 19, no. 12, 1997, 1386-1391.

Matching new objects x to various templates y

class x( ) class minarg y D x y,( )( )( )=

Examples of deformed templates

Dissimilarity measure appears to be non-metric
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Three Approaches Compared for the Zongker Data

0 500 1000 1500
0

0.1

0.2

Size of the representation set R

A
ve

ra
ge

d 
ge

ne
ra

liz
at

io
n 

er
ro

r

Digit data

RLDC; Rep. Set
LP; Rep. Set
RLDC; Embed.
1−NN
3−NN

Nearest neighbor Rule
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Dissimilarity Space better than Embedding better than Nearest Neighbor Rule
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The  Non-Euclidean World of Pattern Recognition

14.9

7.8 4.1

object 78

object 419

object 425

D(A,C)A

B

C

D(A,C) > D(A,B) + D(B,C)

D(A,B) D(B,C)

J A B,( )
µA µB– 2

σA
2 σB

2+
-------------------------=

A B
C

J(A,C) = 0;   J(A,B) = large;   J(C,B) = small ≠ J(A,B)  

Weighted edit-distance for strings Single Linkage Clustering

µA µB–

x

σA σB

The Fisher Criterion

Bunke’s Chicken Dataset
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Class Representation Problems

Recognition

system

training set

representative
subset

universe

objects to be recognized

training

execution

What to do if no good definition
of the universe can be found?

unknown priors
skewed problems
ill sampled problems
label uncertainty
population drift
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ROC, AUC

εclass_1

1− εclass_2

Receiver Operator Curve (ROC)

Area Under the Curve (AUC) 

AUC: Robust performance measure
(unknown priors/costs, unbalanced sampling)

Feature Space

Healthy

Disease

Borderline

AUC optimizing classifiers may find ’good’ directions
in case of higly overlapping, ill defined classes1 2
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One-class problems

What is a proper one-class classifier?

training set of a single class only + an outlier in a sea of outliers

How to generalize well: no empty areas included
stay outside boundary objects
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An Opportunity: Large Unlabeled Training Set

• Given: A large, but finite, unlabeled training set Xu, or a density function.

• Ask labels for a small set of objects (of given size), Xl.

• Task: design a classifier, or label Xu.
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Approaches

Selective Sampling: 
• Determine a small set of objects from Xu that represents the dataset well

• Ask for the labels: Xl

• Train a classifier

Active learning
• Select (at random?) an initially small training set. Ask for the labels, Xl

• Compute a classifier

• Select, given the classifier and Xu,  more objects, ask the labels, extend Xl

• Repeat

Semi-Supervised Learning
• Compute classifiers from Xl combined with Xu 
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The use of unlabeled objects and active learning

How to make use of unlabeled data to construct classifiers?

Can we make us of unlabeled objects
for better classification?

Can we select a few to improve
the classifier?
- close to the decision boundary?
- far away from the dec. boundary?
- at random?

Assume labeling is expensive
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Active Learning: Strategies

Exploitation
Add unlabeled objects close the classifier to the training set.

Exploration
Add remote unlabeled objects that represent unvisited clusters.

Is the set of objects representative for the problem?
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Semi - Supervised Learning

-10 -5 0 5
-10

-5

0

5

Feature 1

Fe
at

ur
e 

2

Partially labeled dataset Can better classifiers be designed by 
using labeled and unlabeled objects 
simultaneously?

Two possible approaches:
- Combine supervised and
    unsupervised models
- Label propagation

Application: learn from the test set!

How to build a good semi-supervised classifier?
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Semi Supervised Learning: 
Combining Supervised and Unsupervised Models

I. Cohen, F.G. Cozman, N. Sebe,M.C. Cirelo,T.S. Huang, Semisupervised learning of classifiers: theory, algorithms, 

and their application to human-computer interaction, IEEE-PAMI, 26, 1553-1566, 2004.

Another example of ’dipping’?
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Learning from the Test Set

2 x 2 training samples and x 98 test samples

20 iterations of soft Parzen

Piotr Juszczak, Learning to recognise, Ph.D. Thesis, Delft Univ. of Technology, 2006
see also Cores 2005.

Soft label propagation
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Semi-Supervised Learning by Soft Parzen
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The One-Object Classifier (OOC)
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Learning curve on Highleyman Dataset

Bayes-Normal-2
One Object Classifier

1. Cluster the dataset into two clusters.

2. Select a most ’typical’ object in one of the clusters.

3. Ask for its label.

4. Label the clusters accordingly.

5. Compute the classifier.
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Conclusions

Pattern recognition research is solving representation problems
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