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Model Driven «— Data Driven

Model of a house Are these houses?

o ¢ Classifier

OOO

o O o

Non-Houses

Observations of houses X{ ——

o sms RPWODW 2
%
TUDelft



The Pattern Recognition System

Representation  » Generalization

Objects T i

N Feature Space Representatigh
—_ .
o Decision Function Generalization
°
Class B o
°
X2 o
(area)
Class A

(perimeter)xq ———»

Learning from examples
Finding concepts (classes) from observations
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Representation

Object representation
Vector representations
Features
Samples (Pixels)
Dissimilarities
Dimensionality problems
Non-vectorial representations

Class representation
Sampling: aselective - selective
Supervised - Unsupervised
Number of objects

o osms RPWDM 4
%
TUDelft



Feature Representation

Probability FAFA(X)

Feature Space Density PgFg(X)
O
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Due to reduction essentially different objects are represented identically

The feature representation needs a statistical (probabilistic) generalization
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Feature Space Assumptions, The Ideal World
e A (small) set of informative features

e Euclidean analysis is possible (after feasible corrections)

e Classes have known, not very different priors
e Natural classes (e.g. correspond to a unsupervised clustering result)

e Training set is representative for the problem
e.g. aselectively drawn from the same universe as the test set
sufficiently large for the given feature size
classes do not drift
labels are correct

In this ideal world we can nicely study generalization procedures
Applicable?
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Classifier typology

Each classifier has a problem for which it is the best classifier
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Decision Tree Neural Network

Can we create a

library of problems corresponding to the library of classifiers?
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Bad Features — More Features - Complexity Problem

sample size

Number of features (parameters) K -

The real world, first problem: peaking
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No Feature Reduction

The feature representation enforces class overlap.
To be solved by a probabilistic approach.

However:

Are densities needed in high dimensional spaces?
Are classes to be represented by densities?

Can we construct domain based classifiers?
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Example Dissimilarity Space: NIST Digits 3 and 8
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Examples of the raw data
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Small Sample Size

Classification problem R30: ,A‘.’e.r‘?‘QEd error over 5Q e.XPe.ri.ments
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Dimension Resonance and Dipping

Averaged error over 50 experiments
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Support Vector Machine for Small Sample Sizes

Averaged error over 50 experiments
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Pixel Representation: Samples Instead of Features

Features X e Feature S
2 o pace
HRAZ o TSR Lo
@
Moments : o‘ o, ©0 ooo
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Fourier descriptors ® e ® o o OO
Faces © o
? Cl A

16 x 16

Pixels

Pixels are more general, initially complete representation
Large datasets available — good results for OCR
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The Connectivity Problem in the Pixel Representation

Spatial connectivity is lost

X3

Dependent (connected) measurements are represented independently,
The dependency has to be rediscovered from the data.
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The Connectivity Problem in the Pixel Representation

== Spatial connectivity is lost Feature space

Training set %

-

Reshuffle /
?* Pixels

Reshuffling pixels will not change the classification

Test object
Can connectivity be taken into account in the representation?
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High dimensional data often does not overlap

Complete feature representations, which enable the reconstruction
of human recognizable, may yield separable classes.

There is no picture that could be member of different classes.

In some representations classes are separable
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Domains instead of Densities

\

No well sampled training sets are needed.
Classifiers still to be developed.

Class structure «<— Object invariants
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Domain based classification

Don't trust class densities
Estimate for each class a domain
Assign new objects to nearest domain

Outlier dependent
Distances instead of densities

How to construct domain based classifiers?
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No Features: Dissimilarities

Define dissimilarity measure d;; between raw data of objects i and ]

A Y4
\ d

“d11d12d13d14d15d16d,17 not used by NN rule

\‘ B dzTQ22d23d24dzsdz'6d27
: d31d35f133 34“3"35d36d37
Dy = d41d42dA§ﬁ44d45d46d47
Given labeled training set T d5;d52d53d54t|35d56d57
X ) d%1d62d63d64d65566d67
Q o’ d71d72d73d74d75d76a?71\
Unlabeled object x to be classified /dx = (d; dy d3 ds d5 dg dy)

24

The traditional Nearest Neighbor rule (template matching) just finds:

label(argming;inset(d;)),
without using Dt. Can we do any better?
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No Features: Dissimilarities

Define dissimilarity measure d;; between raw data of objects i and ]

A Y4
\ d

“d11d12d13d14d15d16d,17 not used by NN rule

\ . B dzTQ22d23dz4d25dz'6d27

: d31d35fi33 34ngd36d37

2 4

Dr = d41d4zd4§‘0k44d45d46d47 g}f&%ﬁ?ﬁﬁ%ﬁg
Given labeled training set T ds;d52d53d54as,§d56d57
X R d%1d62d63d64d65566d67
Q e CI71C|72C|73d74d75d76a?7Z

’ N

_ e R4 .
Unlabeled object x to be classified d, = (d; dy d3 dg4 ds dg d)

The tradltlc_)nal Nearest Neighbor rule (template matching) just finds: Pekalska, The Dissimilarity
label(argmingzinset(di)), Representation for PR,
without using Dy. Can we do any better? World Scientific, 2005
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Example: Deformable Templates

Examples of deformed templates

SIS I S

Matching new objects x to various templates y

class(x) = class(argminy(D(x, Y)))

Dissimilarity measure appears to be non-metric

A.K. Jain, D. Zongker, Representation and recognition of handwritten digit using deformable templates,
TEEE-PAMIL, vol. 19, no. 12, 1997, 1386-1391.
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Three Approaches Compared for the Zongker Data

Digit data
0.2 I
—— RLDC; Rep. Set
—— LP; Rep. Set
N — RLDC; Embed.
\,\\ - - 1-NN
NN == 3-NN

-

0.1

~ —_— - =

i
e -

Averaged generalization error

Dissimilarity Space

0 500 1000 1500
Size of the representation set R

Dissimilarity Space better than Embedding better than Nearest Neighbor Rule
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The Non-Euclidean World of Pattern Recognition

Weighted edit-distance for strings Single Linkage Clustering
object /8 object 425

F - 149 g

S/

Bunke’s Chicken Dataset
object 419 D(A,C) > D(A,B) + D(B,C)

The Fisher Criterion

A~ Hp A B
c
X —»

2
J(A,B) = |“'A2‘ HBZ| J(A,C) = 0; J(A,B) = large; J(C,B) = small = J(A,B)
Gp * Op
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Class Representation Problems

universe

training set
f epresentative
subset ’

bjects to be recognized

training | Recognition

system
execution

unknown priors
skewed problems

il sampled problems
label uncertainty

What to do if no good definition population drift

of the universe can be found?
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ROC, AUC

Receiver Operator Curve (ROC)

Feature Space

1= €qjass 2
— |
Eclass_1 Area Under the Curve (AUC)
AUC: Robust performance measure AUC optimizing classifiers may find ‘good’ directions
(unknown priors/costs, unbalanced sampling) @ in case of higly overlapping, ill defined classes
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One-class problems

training set of a single class only + an outlier in a sea of outliers

How to generalize well: no empty areas included
stay outside boundary objects

What is a proper one-class classifier?
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Feature 2

An Opportunity: Large Unlabeled Training Set

Unlabeled Training Set
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Feature 1

Feature 2

Dataset Density

Feature 1

Given: A large, but finite, unlabeled training set X, or a density function.

Ask labels for a small set of objects (of given size), X;.

Task: design a classifier, or label X,.
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Approaches

Selective Sampling:
e Determine a small set of objects from X, that represents the dataset well

o Ask for the labels: X;
e Train a classifier

Active learning
o Select (at random?) an initially small training set. Ask for the labels, X,

e Compute a classifier
o Select, given the classifier and X,,, more objects, ask the labels, extend X;
e Repeat

Semi-Supervised Learning
e Compute classifiers from X; combined with X,
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The use of unlabeled objects and active learning

Donl Assume labeling is expensive
R
: .3.::0:.;:'::3:::. :
PR Can we make us of unlabeled objects
Y for better classification?
B Can we select a few to improve
NCORAR: the classifier?
BT - close to the decision boundary?
@ L - far away from the dec. boundary?
A - at random?

How to make use of unlabeled data to construct classifiers?
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Active Learning: Strategies

Exploitation
Add unlabeled objects close the classifier to the training set.

A\ |
Exploration \

Add remote unlabeled objects that represent unvisited clusters.

Is the set of objects representative for the problem?
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Feature 2

-10¢

Semi - Supervised Learning

Partially labeled dataset
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Feature 1

Can better classifiers be designed by
using labeled and unlabeled objects
simultaneously?

Two possible approaches:
- Combine supervised and
unsupervised models

- Label propagation

Application: learn from the test set!

How to build a good semi-supervised classifier?
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Semi Supervised Learning:
Combining Supervised and Unsupervised Models

0.4+
_ 035 Another example of ‘dipping’?
=]
&
S 0.3F
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= 30 Labeled
r
20.25"
2
o

0.2:

300 Labeled
_:E__ /
“-15f 4 ey 3000 Labeled
10° 10' 10° 10° 10*

Number of Unlabeled records
1. Cohen, F.G. Cozman, N. Sebe, M.C. Cirelo, T.5. Huang, Semisupervised learning of classifiers. theory, algorithms,
and their application to human-computer interaction, IEEE-PAMI, 26, 1553-1566, 2004.
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Learning from the Test Set
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(c)t=15 (d) t =20

20 iterations of soft Parzen

Piotr Juszczak, Learning to recognise, Ph.D. Thesis, Delft Univ. of Technology, 2006
see also Cores 2005.
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Semi-Supervised Learning by Soft Parzen
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The One-Object Classifier (00C)

Highleyman Dataset

AN o
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Feature 1

Feature 1
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Learning curve on Highleyman Dataset
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2. Select a most ‘typical’ object in one of the clusters.

1. Cluster the dataset into two clusters.
3. Ask for its label.

4. Label the clusters accordingly.

5. Compute the classifier.
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Conclusions

Pattern recognition research is solving representation problems
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