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Learning in Linear Neural Networks: A Survey 
Pierre F. Baldi and Kurt Homik, Member, IEEE 

Absfract- Networks of linear units are the simplest kind of 
networks, where the basic questions related to learning, gen- 
eralization, and self-organization can sometimes be answered 
analytically. We survey most of the known results on linear net- 
works, including: 1) backpropagation learning and the structure 
of the error function landscape, 2) the temporal evolution of 
generalization, and 3) unsupervised learning algorithms and their 
properties. The connections to classical statistical ideas, such as 
principal component analysis (PCA), are emphasized as well as 
several simple but challenging open questions. A few new results 
are also spread across the paper, including an analysis of the 
effect of noise on backpropagation networks and a unified view 
of all unsupervised algorithms. 

I. INTRODUCTION 
HIS paper addresses the problems of supervised and T unsupervised learning in layered networks of linear units 

and, together with a few new results, reviews most of the 
recent literature on the subject. One may expect the topic to 
be fairly restricted, yet it is in fact quite rich and far from being 
exhausted. Since the first approximations of biological neurons 
using threshold gates [ll, the nonlinear aspects of neural 
computations and hardware have often been emphasized and 
linear networks dismissed as uninteresting for being able to 
express linear input-output maps only. Furthermore, multiple 
layers of linear units can always be collapsed by multiplying 
the corresponding weight matrices. So why bother? Non- 
linear computations are obviously extremely important, but 
these arguments should be considered as very suspicious; 
by stressing the input-output relations only, they m i s s  the 
subtle problems of dynamics, structure, and organization that 
normally arise during learning and plasticity, even in simple 
linear systems. There are other reasons why linear networks 
deserve careful attention. General results in the nonlinear case 
are often absent or difficult to derive analytically, whereas 
the linear case can often be analyzed in mathematical detail. 
As in the theory of differential equations, the linear setting 
should be regarded as the first simple case to be studied. More 
complex situations can often be investigated by linearization, 
although this has not been attempted systematically in neural 
networks, for instance in the analysis of backpropagation 
learning. In backpropagation, learning is often started with 
zero or small random initial weights and biases. Thus, at least 
during the initial phase of training, the network is operating 
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Fig. 1. The basic network in the autoassociative case ( m  = n ) .  

in its linear regime. Even when training is completed, one 
often finds several units in the network which are operating in 
their linear range. From the standpoint of theoretical biology, 
it has been argued that certain classes of neurons may be 
operating most of the time in a linear or quasi-linear regime 
and linear input-output relations seem to hold for certain 
specific biological circuits (see [2] for an example). Finally, 
the study of linear networks leads to new interesting questions, 
insights, and paradigms which could not have been guessed 
in advance and to new ways of looking at certain classical 
statistical techniques. 

To begin with, we shall consider a linear network with an 
n-pm architecture comprising one input layer, one hidden 
layer, and one output layer with n, p ,  and m units, respectively 
(Fig. 1). The more general case, with, for instance, multiple 
hidden layers, can be reduced to this simple setting as we 
shall see. A will usually denote the p x n matrix connecting the 
input to the middle layer and B the m x p matrix of connection 
weights from the middle layer to the output. Thus, for instance, 
bi j  represents the strength of the coupling between the jth 
hidden unit and the ith output unit (double indexes are always 
in the post-presynaptic order). The network therefore computes 
the linear function y = BAT. In the usual learning from 
examples setting, we assume that a set of n-dimensional input 
patterns xt (1 5 t 5 T )  is given together with a corresponding 
set of m-dimensional target output patterns yt (1 5 t 5 T )  (all 
vectors are assumed to be column vectors). X = [XI, . . . , ZT] 
and Y = [yl,...,y~] are the n x T and m x T matrices 
having the patterns as their columns. Because of the need 
for target outputs, this form of learning will also be called 
supervised. For simplicity, unless otherwise stated, all the 
patterns are assumed to be centered (i.e., (z) = (y) = 0). The 
symbol ‘‘(.)” will be used for averages over the set of patterns 
or sometimes over the pattern distribution, depending on the 
context. The approximation of one by the other is a central 
problem in statistics, but is not our main concern here. The 
environment is supposed to be stationary but the results could 
be extended to a slowly varying environment to deal with 
plasticity issues. Throughout this paper, learning will often be 
based on the minimization of an error function E depending 
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on the synaptic weights. In the main case of backpropagation, 
the error function is 

where llull represents the Euclidean norm of the vector U. 

When no target outputs are provided, the learning (which 
then must be based on criteria to be specified, such as the 
maximization of the output variance) is unsupervised. An 
important special case of unsupervised learning is the case 
of autoassociation, when the input is used as a teacher (i.e., 
yt = zt).  This is also called autoencoding or identity mapping 
in the literature. 

Learning rules are algorithms for slowly altering the con- 
nection weights to achieve a desirable goal such as the 
minimization of an error function. Often, three different ver- 
sions of the same rule have been given: the “on-line” version 
where the modification is calculated after the presentation 
of each pattern, the “off-line” version where the previous 
modifications are averaged over the cycle of all patterns, and 
the “continuous” version where the discrete changes induced 
by the “off-line” algorithm are approximated continuously by 
a differential equation governing the evolution of the weights 
in time. In some cases, the three formulations can be shown 
to lead to essentially the same results. 

It will be convenient to use the notation E,, = (ui i ’ )  where 
the prime denotes transposition of matrices. If both (U) and 
(U) are zero, E,,, is the covariance matrix of U and U. E,,, for 
instance, is a real n x n symmetric nonnegative definite matrix. 
Hence, its eigenvalues can be ordered as A 1  2 . . . 2 A, 2 0. 
For mathematical simplicity, we shall often assume that in 
fact A1 > .. .  > A ,  > 0. This should not be regarded as a 
very restrictive assumption, since this condition can always 
be enforced by, at worst, perturbing the data by infinitesimal 
amounts and attributing these perturbations to “noise.” Many 
conclusions are only slightly different when some eigenvalues 
coincide. 

A good familiarity with linear algebra and basic calculus 
on the part of the reader should be sufficient to follow the 
paper. All the statistical techniques required to understand 
some of the results are briefly reviewed in the second section. 
These include least-squares regression, principal component 
analysis, and discriminant analysis. In Section 111, we treat 
the case of supervised learning with backpropagation and 
the corresponding autoassociative special case. We study the 
landscape of the error function E of (I), its connections to 
the previously mentioned statistical techniques, and several 
consequences and generalizations, including noisy and deep 
networks. In Section IV, we study the problems of validation, 
generalization, and overfitting in a simple one-layer network 
trained to learn the identity map. Under some assumptions, we 
give a complete description of the evolution of the validation 
error as a function of training time. Section V covers a variety 
of unsupervised learning algorithms, based on variance max- 
imizatiodminimization by Hebbian or anti-Hebbian learning 
or other error functions. Some of the more technical proofs 
are deferred to the Appendix. 

11. MATHEMATICAL BACKGROUND 

A. Optimization of Quadratic Forms over Spheres 
Let S be a symmetric n x n matrix. Then all the eigenvalues 

A, of S are real and can be ordered in the form A1 2 
A2 2 . . . 2 A, with corresponding normalized eigenvectors 
u1, . . . , U,. Consider the problem of maximizing the quadratic 
form E(a)  = n’Sa over the sphere of radius p and centered at 
the origin (Ilall 5 p) .  In geometry, it is well known (see, for 
instance, [3]) that the maximum of E is then reached on the 
surface of the sphere in the direction of the first eigenvector, 
that is, at the points f p u l  where E(*pul) = A l p 2 .  If A1  > A 2 ,  

&pul are the only two solutions. Similarly, the maximum of 
E over the intersection of the sphere with the linear space 
orthogonal to u1 is reached at * p u 2 ,  and so forth. Finally, the 
minimum of E over the entire sphere is obtained at fpu,. 
All these properties are easily derived by decomposing a as 
n = C,Q~U, and noticing that E(a)  = E, A,cy:. 

B. Singular Value Decomposition 
Let 2 be an arbitrary IC x 1 matrix with rank r .  Then there 

exist numbers (TI 2 . . . 2 (T, > 0, the singular values of 2, an 
orthogonal k x IC matrix U, and an orthogonal 1 x 1 matrix V 
such that S = U’ZV is a IC x 1 diagonal matrix of the form 

where D = diag(o1, . . . , or) is the diagonal matrix with 
entries 01, . . . , U,. . The decomposition 

2 = usv‘ 
is called the singular value decomposition (SVD) of 2 (it is 
not necessarily unique). The matrices U and V in the SVD 
have the following meaning. As Z‘ZV = VS‘U‘USV‘V = 
VS’S = Vdiag(af,.  . . , oz, 0 , .  . . , 0 ) ,  the columns of V are 
unit-length, mutually perpendicular eigenvectors of 2’2, and 
(T:, . . . ,oz are the nonzero eigenvalues of 2’2. Similarly, the 
columns of U are unit-length, mutually perpendicular eigen- 
vectors of 22’. With the aid of the SVD, the pseudoinverse 
of 2 can easily be given explicitly. If we write 

L J 

then Zi‘ = VS+U‘ is the pseudoinverse of Z (see, for 
instance, [4] and [5] for more details on SVD and pseudoin- 
verses). 

C. Orthogonal Projections 
If L is a linear subspace, we denote by Pcx the orthogonal 

projection of a vector z onto C and by PClx = Qcx = 
x - Pcx its projection onto the orthogonal complement of C. 
If C has dimension 1 and is spanned by the linearly independent 
vectors 21, . . . ,zl, then PLZ = PZZ,  where 2 = [ z 1  , . . . , 211 
and Pz = Z(Z’Z)-lZ’. In particular, if the vectors z, are 
mutually perpendicular unit vectors, the projection of x simply 
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is ZZ’x = zlzix + . . .  + Z & X .  If the matrix 2 is not full 
rank, Pz can still be written as 

Pz = zz+ = U,,; + ’ .  ’ + u,u; 

where ~ 1 ,  . . . , U ,  are the first T columns of the U matrix in 
the SVD of 2 (and T is the rank of 2). 

Consider now the problem of finding a vector w which 
minimizes F(w) = [ I C  - Mw1I2 for a given vector c and a 
matrix M.  In other words, we are looking for the vector in 
the image space of M (the space spanned by the columns of 
M )  which is closest to e. Clearly, by the projection theorem, 
this is the orthogonal projection of c onto the image of M .  
In particular, if M is of full rank, then at the optimum w 
we must have M(M’M)-lM’c = MUJ or, equivalently, 
w = (M’M)-lM’c. The Hessian of F is 2M’M; hence, if 
M is full rank, the Hessian is positive definite and the problem 
is strictly convex without any other critical points. 

D. Least-Squares Regression 
The problem of linear regression is the following. Given a 

set of n-dimensional input vectors x1 , . . . , XT and a set of m- 
dimensional target vectors y 1 ,  . . . , yT, find an m x n matrix A 
which minimizes E ( A )  = (lly - Axil2). In other words, linear 
regression is exactly the usual learning problem in a linear 
network without any hidden units. Since the output units are 
completely uncoupled, the connection weights for each of them 
can be synthesized separately and therefore one needs only to 
consider the case m = 1, where we write A = a’. In this 
case, the problem has a simple geometrical interpretation: find 
a hyperplane through the origin in (n  + 1)-dimensional space 
which best fits (in the least-squares sense) a cloud of T points 
with coordinates (xi, ~ 1 ) ’ .  . . . , (xk, y ~ ) ’ .  Now 

E(a)  = ((y - a’x)2) = u’C,,a - 2Cy,a + (y2) 

and the gradient of E with respect to a is 

V E  = 2C,,a - 2C,,. 

E is continuous, differentiable, and bounded below by zero 
and therefore it must reach its minimum for a vector a 
satisfying Czxa  = CZy. If E,, is positive definite, then there 
is a unique solution given by 

a = ( 2 )  

and, in addition, E is strictly convex (with Hessian 2C,,) 
and so without any local minima (or even without any other 
critical point). The landscape is therefore as simple as possible, 
and this remains true even if some of the connections are 
forced in advance to take some fixed values, typically zero in 
the case of “local” connectivity (this introduces linear, thus 
convex, restrictions on the set of possible weights). When 
m > 1, everything goes through mutatis mutandis. In the case 
where E,, is positive definite, the unique optimal A is called 
the slope matrix of the regression of y on z and is given by 

A = Ey,CL2 

which generalizes (2) ,  taking into account that A = a’ 
in one dimension. (Formally, to reduce the m-dimensional 

case it is sufficient to notice that E can be rewritten as 
E ( A )  = Ilvec(Y)-(X’@I)vec(A)112/T, where 63 denotes the 
Kronecker product of two matrices and “vec” is an operator 
which transforms a matrix into a vector by stacking its columns 
one above the other. See [6] for details.) In particular, even 
if the connectivity between the input and the output is local, 
the problem remains convex and without local minima and 
therefore, in principle, easy to learn by a gradient-descent 
type of mechanism. Finally, notice that if for an input xt we 
approximate the corresponding output pattern yt by its linear 
estimate Gt = CyzC;:xt, then the covariance matrix of the 
estimates is given by C = ($6’) = Cy,C;2EZy. 

E. Principal Comonent Analysis 
Suppose we are given a collection of T objects. For each 

object xt, the measurements of the same n characteristics 
xl,t, * . . , x,,t are available. Assume it is desired to extract 
some “structure” or “main features” from this collection of 
data. For efficient classification, it is obviously useful to 
compress the high-dimensional input data into something low 
dimensional without discarding too much relevant information. 
Of course, there are several different techniques for feature 
extraction and data compression. One of the simplest and most 
general-purpose ones is a statistical method known as principal 
component analysis (PCA). 

By possibly subtracting the average (x), we can think of 
the data set x+(l 5 i 5 n,  1 5 t 5 T) as a cloud of 
T points in n-dimensional Euclidean space centered around 
the origin. To capture the main features of the data set, 
PCA is looking for directions along which the dispersion or 
variance of the point cloud is maximal, that is, looking for 
a subspace C such that the projection of the points zt onto 
C has maximal variance. If C is the line spanned by the 
unit vector a, the projection P L ~  is given by Pax = a d z  
with squared length llP,~11~ = (a’x)’ = a’zx’a. Hence, 
the average dispersion of the data set in the direction of the 
line is (llPaxl12) = (a’xx’a) = a’(xx’)a = a’C,,a, where 
E,, = (xx’) is the data covariance matrix. PCA looks for a 
unit vector a* which maximizes a’C,,a over the set of all 
unit vectors. If A1 > . . . > A, > 0 are the eigenvalues of C,, 
with eigenvectors ul ,  . . . , U,, then, by the previous result on 
quadratic forms in Section 11-A, we know that a* = u1 (or 
equivalently -ul)  is the answer. 

To sum up, PCA starts by finding the direction in which the 
dispersion of the cloud is maximal, which is the direction 7L1 

of the first eigenvector of the data covariance matrix. The first 
“feature” which is extracted is the first principal component 
uixt .  The component of the data “explained” by the first 
principal component is the projection onto the line spanned 
by ~ 1 .  What remains unexplained is the dispersion of the 
residual xt - Pu,xt which is just the projection Qulxt of xt 
onto the orthogonal complement of ~ 1 .  In a second step, we 
proceed as before, but with the points xt replaced by Qulxt.  
That is we look for straight lines C perpendicular to the line 
spanned by u1 such that the projections of the points Qulxt 
have maximal variance. This amounts to finding a unit vector 
b*, perpendicular to ~ 1 ,  which maximizes b’C,,b over all unit 
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vectors perpendicular to u1. Again, by the previous result, we 
know the answer is b* = 4 ~ ~ 2 ,  and so forth. At the kth step, 
we look for lines c k  perpendicular to the space spanned by 
U ] ,  . . . , U&] such that the projections of the points xt along 
LI, have maximal dispersion. This is achieved by choosing 
LI, as the line spanned by uk. 

After the completion of p steps, we extract the first p princi- 
pal components u/lxt, . . . , uLxt and reduce xt to its projection 
onto the hyperplane spanned by the first p eigenvectors. One 
may be interested in asking whether this is the best possible 
data reduction of the kind under consideration, that is, the 
best possible projection of the data onto a p-dimensional 
hyperplane 3-1 in the sense that the projections of the data 
onto 3-1 have maximal variance. After all, a better result might 
have been achieved by choosing the hyperplane in a single 
step. This, however, is not the case. 

Among all p-dimensional hyperplanes 3-1, the one spanned 
by the first p principal vectors 211, . . . , up is the hyperplane 
such that ( I l P ~ x l l ~ )  is maximal. Equivalently, it is the hy- 
perplane 3-1 which minimizes the average projection error 

It is therefore possible to incrementally build the PCA 
feature extractor. Since 3-1 is the best p-dimensional hyperplane 
we can fit to the n-dimensional point cloud, the “flatter” the 
cloud the better the fit. It is worth investigating how good the 
fit is, that is, how much of the variance in the data set actually 
is explained by the first p principal components. This is easily 
computed, for the variance of the ith component is given by 

(11. - PxxIl”. 

The total variance being equal to the sum of all the eigenvalues 
of E,,, the proportion of total variance explained by the first 
p principal components equals (X,+...+X,)/(Xl+...+X,) . 

In fact, PCA performs “best data compression” among a 
wider class of methods. Let us write U, = [ul,... ,up]  
for the matrix having the first p normalized eigenvectors 
of E,, as its columns and let us stack the first p features 
uix t ,  . . . , ukx, extracted by PCA into a column vector zt .  
Then zt = Vizt  and Pu,xt = UpUbxt = U,zt. Hence, PCA is 
one method that linearly compresses n-dimensional inputs xt 
into p-dimensional vectors zt for some p < n, that is, z = Ax 
for a suitable p x n matrix A.  Linear reconstruction of the data 
can then be achieved by approximating xt by Bzt = BAxt 
for some suitable n x p matrix B. 

Among all p x n matrices A and n x p matrices B ,  
optimal linear data compression (in the sense that the average 
reconstruction error (llx - BAxl12) is minimized) is achieved 
if and only if the global map W = B A  equals the orthogonal 
projection Pup onto the hyperplane spanned by the first p 
eigenvectors of E,,. 

Finally, computing the covariance of two principal compo- 
nents gives that for i # j 

((u:x)(u;z))  = (u:xx’uj) = ‘IL::(22’)Uj  = u:xjuj = 0. 

Thus different components are uncorrelated, and we can think 
of the transformation of xt into the vector of n principal 
components [u’,xt, . . . , udxt]’ as an orthogonal transformation 

of the Euclidean space, such that in the new system of 
coordinates, the components of the points in the cloud are 
uncorrelated and with decreasing variance. Again, if only the 
first few coordinates in the new system vary significantly, we 
may approximately locate points by giving only these few 
coordinates. 

PCA can also be examined from an information-theoretic 
standpoint and shown to be optimal, under simple assump- 
tions, for a different measure. More precisely, consider a 
transmission channel (in our case, one can think of the 
network connecting the input units to the hidden units) with 
n-dimensional centered input vectors having a Gaussian dis- 
tribution with covariance matrix E,, = (xx’). The outputs of 
the channel are constrained to be p-dimensional vectors of the 
form y = Lx, for some p x n matrix L (and, without any 
loss of generality, we can assume that L has rank p , p  < n. 
Hence, y is also Gaussian with covariance matrix LCx,L’. 
Classically, the differential entropy of x is given by (see, for 
instance, [7] for more details) 

H ( z )  = - /p(x) log p(x) dx = log [(are)” det(C,,)] 

where p(x) is the Gaussian density function, and similarly 

H(y)  = log [(2re)Pdet(LE,,L’)]. 

The conditional distribution of x given y (see, for instance, 
[SI) is normal with mean 

Px.y = Ex,c;;Y 

Ezz.y = c,, - EX&;pJyz. 

and covariance matrix 

It can be shown that H(xly), the conditional entropy of x 
given y (i.e., the entropy of the conditional distribution) is 
given by 

~ ( x l y )  = ; log( (2re)”-~yl  ...yn-,) 

where y1 2 . . . 2 yn-, > 0 are the nonzero eigenvalues of 
Czz.y. As the entropy is one way of measuring our uncertainty, 
it is desirable to choose L so as to minimize H(xJy). One can 
show that the optimal L is of the form L = CU; where C is an 
invertible p x p  matrix and U, = [UI,  . . . , U,]. In particular, this 
choice also maximizes the information that y conveys about z 
measured by the mutual information I ( x ,  y)  defined to be 

I(x, Y) = H ( x )  - H(xly) 

~ p C A ( x , y )  = i l o g ( ( 2 r e ) ~ ~ 1  . . .  A,). 

Thus, at least in the Gaussian setting, up to trivial trans- 
formations, the optimal linear map maximizing the mutual 
information is the principal component analyzer. Finally, PCA 
can also be connected to optimal inference methods (see [9]). 

To illustrate the PCA feature extraction technique, con- 
sider the “opedclosed book” data set in Mardia et al. [lo, 
Table 1.2.1, p. 3fl. The data consist of the scores of T = 
88 students on examinations in mechanics, vectors, algebra, 

with value 
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analysis, and statistics (i.e., n = 5, where the first two 
exams were closed book and the other three were open 
book). For each exam, the best possible score was 100. 
It is found that the average score (z) equals (39.0, 50.6, 
50.6, 46.7, 42.3)’ and that the eigenvalues of the covariance 
matrix E,, are given by A 1  = 679.2, A2 = 199.8, A3 = 
102.6, A4 = 83.7 and X5 = 31.8. Hence, the first two 
principal components already explain 80% of the variance 
in the data (and 91% is achieved with the first three). The 
first two eigenvectors are u1 = (0.51,0.37,0.35,0.45,20.53)’ 
and ‘112 = (0.75,0.21, -0.08, -0.30, -0.55)’. These findings 
can easily be interpreted. The authors conclude that “. . .the 
first principal component gives positive weight to all the 
variables and thus represents an average grade. On the other 
hand, the second principal component represents a contrast 
between the open-book and closed-book examinations. . .” For 
example, the scores and first two principal components of the 
two best students are (77, 82, 67, 67, 81), 66.4, and 6.4 and 
(63, 78, 80, 70, 81), 63.7, and -6.4. Even without looking at 
the individual test scores, by considering only the first two 
principal components one would conclude that the overall 
performances of the two students are very similar, but the first 
student did better on closed book and the second one better 
on open-book exams. 

In conclusion, PCA is optimal in the least-mean-square 
sense and can serve two purposes: data compression by 
projecting high-dimensional data into a lower-dimensional 
space and feature extraction by revealing, through the principal 
components, relevant but unexpected structure hidden in the 
data (although an interpretation of these features in terms of 
the original variables may not always be straightforward). 

F. Mean Square Class$er and Discriminant Analysis 

Consider now the problem where the patterns xt must be 
classified into m classes Cl, . . . , C,, with, in general, m << n. 
Thus for every input pattern iCt, there is a binary target output 
pattern yt = (0 , .  . . ,1,. .. ,0)’ where yi,t = 1 if and only if 
xt belongs to Ci. One possible classification method consists 
in finding an m x n matrix L such that ( 1 1  y - Lz(I2) is 
minimal. Needless to say, this is a special case of least-squares 
regression, and, as we have seen, under the usual assumptions 
the optimal L is given by L = EyzE;2 and is called the 
mean-square classifier. 

In many applications n is very large compared to m, and 
therefore it becomes useful to first reduce the dimensionality 
of the input data. One is thus led to find a linear subspace of 
dimension p such that, when projected onto this subspace, the 
patterns xt fall as much as possible into well-defined separated 
clusters facilitating the classification. This problem of finding 
an optimal projection is similar to the one encountered in 
PCA. Because of the clustering, however, a new measure 
must be introduced to compare different projections. Consider 
a projection z = C’x, where C is an n x p matrix. The 
total dispersion (variation) in the x-sample can be decomposed 
into the sum of within-class dispersions and between-class 
dispersions. When the z’s are centered, the total dispersion is 
E,,, and the dispersion between classes can be shown to be 

EzYE;; E,,. Upon projecting the patterns, the corresponding 
total and between classes dispersions of the zt patterns become 
C’C,,C and C’C,,E;;E,,C. A projection is optimal if the 
between classes variation of the z’s is as large as possible 
relative to the total variation. Different cost functions can 
be introduced at this stage. If the size of a variation matrix 
is measured by its determinant (the determinant of a matrix 
measures the volume of the image of a unit cube under the 
corresponding linear map), then we are led to the problem of 
finding an n x p matrix C maximizing the ratio 

E ( C )  = det(C’C,,C,-,lC,,C) 
det (C’C,,C) ’ 

(3) 

The solution is well known. 
All optimal matrices, the so-called discriminant analysis 

(DA) matrices, are of the form H,R, where R is an arbitrary 
p x p invertible matrix and H, has the first p eigenvectors of 
E;:EzYE;tE,, as its columns. 

It is not easy to see what the solutions look like in general. 
There is one case, however, where all optimal solutions can 
easily be described. 

When p = T = rank(&,), an n x p matrix C is a 
DA matrix if and only if the space spanned by the columns 
of C coincides with the space spanned by the rows of the 
mean-square classifier Cy, E;:. 

See, for instance, Kshirsager [8] for more details on DA. 

111. BACKPROPAGATION 

A. The Landscape Properties of E 
We now consider the setting described in the Introduction 

where the learning procedure is based on the minimization 
of the cost function E(A,  B). A complete description of the 
landscape properties of E is given in Baldi and Hornik [6]. 
We shall briefly review the most salient features. E is best 
described in terms of its critical points, that is, the points where 
dE/da i j  = dE/dbi j  = 0. It is first important to observe 
that if C is any p x p invertible matrix, then E ( A , B )  = 
E ( C A , B C - l ) .  Therefore, at any point E really depends on 
the global map W = B A  rather than on A and B. For 
instance, there is an infinite family of pairs of matrices ( A ,  B) 
corresponding to any critical point. Unlike the simple case of 
linear regression, however, W cannot be chosen arbitrarily: 
the network architecture constrains W to have at most rank p. 

The remarkable property of the landscape of E is the 
absence of local minima in spite of the fact that E is not 
convex (nor is the set of all matrices of rank at most p). E 
is characterized by a unique global minimum (up to multi- 
plication by a matrix C). All other critical points are saddle 
points. The structure of the critical points can be described 
completely. More precisely, assume for simplicity that p 5 
m 5 n and that C = Ey,E;:Czy, the covariance matrix 
of the linear estimates st (see Section 11-D), is full rank 
with m distinct eigenvalues A 1  > . . . > A, and corresponding 
orthonormal eigenvectors u1, . . . , U,. If Z = { 21, . . . , i,} with 
1 5 il < . . . < i, 5 m is any ordered p-index set, let UT 
denote the matrix [uil, . . . , ui,]. Then two full-rank matrices 
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A and B define a critical point of E if and only if there exist 
an ordered p-index set Z and an invertible p x p matrix G 
such that 

A = CUkC,,Ci:, (4) 
B =VzG-’. ( 5 )  

w = Pu,C,,C,-,l (6) 

For such a critical point we have 

and 

E ( A ,  B) = trace(E,,) - Xi.  
i E Z  

Therefore, a critical W of rank p is always the product 
of the ordinary least-squares regression matrix followed by 
an orthogonal projection onto the subspace spanned by p 
eigenvectors of E. The critical map W associated with the 
index set { 1, . . . , p} is the unique local and global minimum 
of E. The remaining ( y )  - 1 p-index sets correspond to saddle 
points. All additional critical points defined by matrices A 
and B which are not of full rank are also saddle points and 
can be characterized in terms of orthogonal projections onto 
subspaces spanned by q eigenvectors, with q < p .  

In the autoassociative case, (4)-(6) become 

A = CU; (7) 
B = UT,-’ (8) 
w = Pu, (9) 

and therefore the unique locally and globally optimal map W 
is the orthogonal projection onto the space spanned by the 
first p eigenvectors of Ezz. 

This analysis links backpropagation in linear networks to 
several classical statistical techniques. In particular, at the 
global minimum of E, if C = I, then the activities in the 
hidden layer are given by u\yt, . . . , ubyt, the principal com- 
ponents of the least-squares estimators ijt (see, for instance, 
[ 81). In the autoassociative mode, these activities are given 
by u\xt, . , ubxt, and correspond to the coordinates of the 
vector xt along the first p eigenvectors of E,, as in the usual 
?CA. In general, if the initial conditions are random, one 
should not expect the backpropagation algorithm to converge 
to an optimum satisfying C = I,. In the autoassociative case, 
this means that the rows of the final A and u1, . . . , up will 
span the same space but A’ # [ U I ,  . . . , U,]. Although at first 
sight this may seem a drawback, it must be regarded as a 
property leading to more robust networks. Indeed, in a physical 
implementation where the compressed version of the data in 
the hidden layer is to be sent to further processing layers, 
it may not be desirable that one of the units, extracting the 
principal component, has a variance much larger than the other 
units (it is known, for instance, that in the case of random 
symmetric matrixes, Xz << XI almost always; see [ll]). A 
more balanced strategy, where all the variances in the hidden 
layer are comparable, is by far preferable and is commonly 
observed in simulations. 

Since the optimal solution can be expressed analytically, 
it can also be obtained effectively with numerical analysis 

techniques without resorting to any descent procedure. As 
pointed out in the Introduction, however, this is not the most 
relevant point of view here where the emphasis is on the 
learning behavior and emergent organizational principles of 
simple adaptive networks. 

One of the central issues in learning from examples is 
the problem of generalization, that is, how does the network 
perform when exposed to a pattern never seen previously? 
In this setting, a precise quantitative answer can be given to 
this question. For instance, in the autoassociative case, the 
distortion of a new pattern is given by its distance to the 
subspace generated by the first p eigenvectors of X z x .  

In the special case where rank(C,,) = r = p ,  Gallinari 
et al. [12] have shown that if an n - p - m architecture 
is trained to classify n-dimensional inputs into m (m < n) 
classes, then the corresponding network performs discriminant 
analysis in the sense that, for an optimal W = BA,A’ is 
a DA matrix. In other words, under these assumptions, the 
projection realized by A‘ maximizes the ratio given in (3). In 
this context, however, either p = r = m, in which case the 
architecture is n - m - m and there is no bottleneck, or r < m 
and then full classification into m categories is not supported 
by the available data and there is no proper data compression 
(only filtering out of linear dependencies). In any case, all the 
network ever learns is to be a mean-square classifier, and this 
can be achieved without any hidden layer. 

B. Deep Networks, Local Connectivity, 
Nonlinearities, and Bias 

In Baldi [13], the case of deep networks with multiple 
hidden layers is briefly examined. It is easy to see that, in 
this case, the main constraint on the network comes from 
its bottleneck, that is, from the hidden layer with smallest 
size p (clearly, p could be attained in more than one hidden 
layer). Although the expression for the critical points may now 
become more involved, the main features of the landscape are 
unchanged: a multiplicity of saddle points, an absence of local 
minima, and a unique optimal input/output map satisfying (6) 
with Z = {l,...,p} . 

The bottleneck layer imposes a rank restriction on the map 
computed by the network. Additional important constraints 
can be introduced on the geometry of the connections. Often 
connections are assumed to be local, in the sense that a unit 
in one layer receives projections only from a restricted subset 
of elements in the previous layer, for instance according to a 
Gaussian distribution. These geometrical constraints play an 
essential role in self-organizing maps and in several models 
of “linear” cortical development; see for instance Linsker 
[ 141-[ 161 and Miller et al. [ 171. These topics deserve separate 
treatment and will not be addressed here. As mentioned in the 
previous section, however, in the case of a locally connected 
linear network without any hidden layer the landscape of 
the usual quadratic error is again completely devoid of local 
minima. Learning by descent methods should then be efficient. 
The landscape properties of the LMS (least mean square) error 
function of a linear locally connected multilayer network have 
not been carefully studied yet, and the previous results only 
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give lower bounds. In particular, the question whether the 
error function has any local minimum remains open despite 
its disarming simplicity. 

In the case of nonlinear units, few analytical results are 
known, but certainly local minima do appear. An important 
remark, however, has been made by Bourlard and Kamp [ 181. 
In the autoassociative mode, it is natural to use linear units 
in the output layer. Under these conditions, nothing is to be 
gained by using nonlinear elements in the hidden layer. This is 
basically because the network is trying to approximate a linear 
map: the identity function. This result can be extended to any 
linear map. That is, if the set of pairs ( x t ,  yt) of examples is 
such that yt = F ( x t )  for every t with linear F, then nonlinear 
units in the hidden layer can lead to an approximation of F 
which is at best equivalent to the approximation obtainable by 
using linear units exclusively. Reports of simulations in the 
literature confirm this point and sometimes seem to indicate 
that the solution found using nonlinear elements is “close” to 
PCA (Cottrell et al. [19]). 

Finally, if it is not desirable to assume the existence of 
a preprocessing stage where the data are centered, then the 
theory can easily be extended to the case of linear units with 
bias (see, for instance, [18] and [20] for more details). 

C. Noise Analysis 
How robust are the previous results against the effects of 

noise? Different sorts of noise can be introduced, for instance 
at the level of the synaptic weights or of the activation 
functions. To fix the ideas, assume in our case that the 
activation functions in both the hidden layer and the output 
layer are “noisy.” Hence for an input x, the output of the 
hidden layer is w = Ax + n and the activity in the output 
units is z = Bw + e = BAx + Bn + e. Assume that the 
noise terms n and e have mean zero, covariance matrices E,, 
and E,,, and that they are uncorrelated with each other and 
with the patterns x and y. It is also reasonable to assume for 
simplicity that E,, is full rank. We are now interested in the 
problem of minimizing 

,@(A, B )  = (Ily - (BA2 + Bn + e)1I2) 

= E(A, B )  + trace(BC,,B’) + trace(&,). (10) 

Observe that the term trace@,,) is just an additive con- 
stant and has no influence on the variation of E with A 
and B. For any positive p,  E(pA,B/p)  - ,@(A,B) = 
trace(BC,,B’)(l - p 2 ) / p 2 .  Thus, if B # 0 and p > 1, then 
,@(PA, B / p )  < &(A, B) .  As a result, without any additional 
constraints, there is no pair ( A ,  B )  which minimizes E. This 
is intuitively clear, as the network will try to make A as large 
as possible and/or B as small as possible so that the signal 
dominates the noise. It is therefore necessary to restrict the 
power of the signal Ax. One way of accomplishing this is 
to introduce “soft constraint_s” by adding penalty terms like 
(11A~11~) or trace(AA’) to E .  Some results in this direction 
have been obtained in Plumbley [21]. 

The other possibility, which we shall consider here in more 
detail, is to explicitly restrict A to some compact subset A of 
the set of all p x n matrices, for instance, a sphere centered at 

zero (the case of “hard constraints”). This leads to the problem 
of minimizing (10) with A E A and B arbitrary, which clearly 
has a well-defined solution. An optimal A must lie on the 
boundary d A  of A (if not, we could find a p > 1 such that 
p A  E A). 

Let us write E,, = OR, where u>0 measures the noise 
level and R is some structure matrix (the simplest case is 
R = I ,  but if the units are physically close it may be unnatural 
to assume that the individual component_s of the noise are 
uncorrelated). The explicit dependence of E on (T can be taken 
into account by writing 

E(A, B )  = E,(A, B )  
= E(A, B)+a trace(BRB’) +trace( Eee). (1 1) 

As soon as (T 5 1 (for example), it is straightforward to see 
that the solutions of the problem of minimizing-,!? with A E A 
are identical to the solutions of minimizing E with A E A 
and B E B, where B is som? fixed compact set independent 
of o. By ( l l ) ,  as o -+ 0, E ( A , B )  converges uniformly to 
E(A,B)  + trace(C,,) over the compact set A x B. Since 
these two functions differ only by an additive constant, the 
solutions of the noisy constrained problem approach the set 
of all pairs of matrices (A,B) satisfying (4) and ( 5 )  with in 
addition A E A (this automatically forces B to be in B, by 
restricting the matrices C). In other words, if A, is the set of 
all matrices A E A which are optimal for noise level g, then 

lim A, = {A E d A  : A = C U ~ C , , C ~ ~  with invertiblec} 

(provided of course that the latter set is nonempty). That is, 
as is intuitively clear, if (T is very small, the solutions of 
the constrained noisy problem are essentially the same as the 
solutions of the nonnoisy problem. 

a-0 

In the Appendix we show that as o -+ m 

min B ,@,(A, B )  = t r a c e & ,  + Xee)  

- a-ltrace(MA’R-lA) + O ( ( T - ~ )  

uniformly over A, where M = E,,C,,. Hence, if o is 
very large, minimizing E, over A is essentially equivalent to 
maximizing @(A) = trace(MA’R-’A) over A. The solution 
set A+ to this “asymptotic problem” depends significantly on 
the choice of the constraint set A. For instance, if A = {A : 
llAll$ = trace(AA’) 5 p } ( l l A l l ~ )  is the so-called Frobenius 
norm of A), then A+ consists of all A of the form fit”, 
where U and U are normalized principal eigenvectors of M and 
R-l, respectively. On the other hand, if A = {A : AA’ = I,} 
(i.e., the rows of A are orthonormal) and R = I ,  then the 
rows of the optimal A span the space of the first p principal 
eigenvectors of M (for details, see the Appendix). Now notice 
that AA’ = I, implies trace(AA’) = p .  Hence in the high- 
noise case, full PCA of M is inferior to extraction of the first 
principal component of M only. Or in other words, it is better 
not to force the rows of A to orthonormality, but allow them 
to cooperate (build “balanced” representations) instead. In this 
sense, if o is very large and A is “rich” enough, the solutions 
of the constrained noisy problem are of maximum redundancy 
where all the hidden units try to do the same thing. 
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Significantly refined results for the autoassociative case 
(where M = E:,) have been given in Diamantaras and 
Homik [22]. They show that for arbitrary invertible E,, and 
orthogonally right-inv-ant A (i.e., AY E A if A E A 
and Y is orthogonal), E is minimized for matrices A of the 
form CU’ for suitable C (as usual, the columns of U are 
the eigenvectors of E,,). Under the constraint AA’ = Ip ,  
the minima are attained at A = Cy=‘=, viui, where V I ,  . . . , up 
are normalized eigenvectors of R-’ with the corresponding 
eigenvalues arranged in decreasing order. Under the Frobenius 
norm constraint trace(AA’) 5 p, the minima are attained at 
A of the form ~ ~ = ’ = ,  fiyiviu:, where the y; and the rank T 

depend on the eigenvalues of E,, and E,,. In particular, if 
E,, = aR as before, then T = r (a)  is nonincreasing with 
.(a) = p for all a sufficiently small and .(a) = 1 for all a 
sufficiently large. This result formalizes the intuition that the 
units should increase “cooperation” along with the noise level. 

Further generalizations are possible by considering nonMSE 
measures of the “size” of the linear reconstruction errors 
w = y - (BA2  + Bn + e ) ;  see Homik [23]. In particular, in the 
Gaussian case, the determinant of (ww’) measures the amount 
of transmitted information, and its constrained maximization is 
intimately related to the INFOMAX principle of Linsker [9]. 

the identity map in a single-layer feedforward linear network. 
With suitable assumptions on the noise, this setting tums 
out to be insightful and to yield analytical results which are 
relevant to what one observes in more complicated situations. 
Here, we first define our framework and derive the basic 
equations, first in the noiseless case and then in the case of 
noisy data. The basic point is to derive an expression for the 
validation function in terms of the statistical properties of the 
population and the training and validation samples. We then 
examine the main results which consist of an analysis of the 
landscape of the validation error as a function of training 
time. Simple simulation results are also presented, and several 
interesting phenomena are described. The results are discussed 
in the conclusion, and some possible extensions are briefly 
mentioned. Mathematical proofs are deferred to the Appendix. 

We consider a simple feedforward network with n input 
units connected by a weight matrix A to n linear output 
units.’ The network is trained to learn the identity function 
(autoassociation) from a set of centered training patterns 
21, . . . , ZT. The connection weights are adjusted by gradient 
descent on the usual LMS error function 

The gradient of E with respect to the weights A is 
IV. GENERALIZATION 

V E  1 ( A  - I ) C  
This section is written with Y. Chauvin and is a modified 

version of the article “Temporal Evolution of Generalization 
During Learning in Linear I’ktWorks” wl. The material, 
copyrighted by MIT Press, was included here with permission 

where E = E,, is the covariance matrix of the training set. 
Thus, the gradient descent learning rule can be expressed as 

from the publisher. A(k + 1) = A ( k )  - v ( A ( k )  - I ) C  

A. Formal Setting 

In practice, the question to be answered is how should one 
allocate limited resources and parameters, such as network 
size and architecture, initial conditions, training time, and 
available examples, to optimize generalization performance? 
One conventional approach is to consider the problem of 
learning as a surface fitting problem. Accordingly, neural 
networks should be very constrained, with a minimal number 
of parameters, to avoid the classical overfitting problem. In 
practice, however, not too much is known about overfitting and 
its onset, both as a function of network parameters and training 
time. Furthermore, the conventional view can be challenged. It 
may be the case, for instance, that a suitable strategy consists 
rather in using networks with a few extra parameters. These 
larger networks must be used in conjunction with nontrivial 
priors in a Bayesian framework and/or trained for shorter 
times, based on a careful monitoring of the validation error 
(“early-stopping”). 

Partial initial results on generalization problems have 
been obtained in recent years in terms of VC (Vap- 
nikxhervonenkis) dimension and statistical mechanics (see, 
for instance, [25]-[27]). Here, we propose a different and 
complementary approach consisting of a detailed analysis of 
generalization in simple feedforward linear networks. Even 
in this simple framework, the questions are far from trivial. 
Thus we have restricted the problem even further: learning 

where 7 is the constant learning rate. Simple induction shows 
that 

A ( k )  = ( I  - ( I  - qC)‘) + A(O)(I - QE)‘. 

Hence if U ;  and A, (A1 2 . . . 2 A, > 0) denote the 
eigenvectors and eigenvalues of C, then 

A(k + l )u ,  = (1 - (1 - qX,)’)uz + (1 - ~A,)‘~4(0)u,. 

(12) 

The behavior of (12) is clear: provided the learning rate is 
less than the inverse of the largest eigenvalue (Q < l/Al), 
A ( k )  approaches the identity exponentially fast. This holds 
for any starting matrix A(0) .  The eigenvectors of C tend to 
become eigenvectors of A( I C ) ,  and the corresponding eigen- 
values approach one at different rates depending on A; (larger 
eigenvalues are learned much faster). As a result, it is not 
very restrictive to assume, for ease of exposition, that the 
starting matrix A(0) is diagonal in the U; basis, that is, 
A(0) = Udiag(ai(O))U’, where as usual, U = [ul,...,~,] . 

‘Krogh and Hertz [28] have independently analyzed the evolution of 
generalization in the case of one single linear unit. It can be shown that 
the evolution curve can assume one of several possible shapes, depending on 
a number of parameters. Although in the absence of any hidden layer there is 
no coupling between the output units of an R - n network, it is still necessary 
to study the n - n case since the corresponding evolution function results from 
the summation of the evolution curves of each output unit, each such curve 
being capable of assuming a different shape with different characteristics. 
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(In fact, learning is often started with the zero matrix.) In this 
case, (12) becomes we have 

To compute the image of any eigenvector ui during training, 

A(/c)u~ = [I - (1 - V X ~ ) ' ( I  - N ~ ( o ) ) ] u ~  = ai(k)ui. A(k + 1 ) ~ i  = v X ~ U ;  + (I - v X ~  - ~ / v i ) A ( k ) ~ i .  

A simple calculation shows that the corresponding error can 
be written as 

Thus by induction 

A(k)  = A(0)Mk - C ( C  + C,,)-l(M' - I )  
n 

E ( A ( k ) )  = X i ( a i ( k )  - 1)2 
i=l 

where M = I - q(C + E,,), and 

[l - (1 - V X i  - ?7vi)k]Ui X i  

X i  + vi We now modify the setting so as to introduce noise. To A ( ~ ) u ;  ~ 

fix the ideas, the reader may think, for instance, that we are 
dealing with handwritten realizations of single-digit numbers. + ( I  - 7Xi - 7/v;)'AA(O)u;. 
In this case, there are 10 possible patterns but numerous 
possible noisy realizations. In general, we assume that there is 
a population of patterns of the form z + n, where z denotes the 
signal and n denotes the noise, characterized by the covariance 
matrices E = E,,, E,,, and EZn. Here, as everywhere 
else, we assume that the signal and the noise are centered. 

If again we assume, as in the rest of the section, that the learn- 
ing rate satisfies 7 < min(l/(A; + vi)), the eigenvectors of C 
tend to become eigenvectors of A(k)  and A(k)  approaches 
the diagonal matrix diag(Xi/(Xi + vi)) exponentially fast. 
Assuming that A(0) is diag(ai(0)) in the ui basis, we get 

A sample xt + nt (1 5 t 5 T )  from this population is used 
as a training set. The training sample is characterized by the 
covariance matrices C = E,,, E,,, and E,, calculated over 
the sample. Similarly, a different sample z, + n, from the 
population is used as a validation set. The va_lidati_on sample 
is chTacterized by the covariance matrices C = E,,, E,,, 
and E,,. To make the calculations tractable, we shall make, 
when necessary, several assumptions. First, = C = E; 
thus there is a common basis of unit length eigenvectors 
ui and corresponding eigenvalues X i  for the signal in the 
population and in the training and validation samples. Then, 
with respect to this basis of eigenvectors, the noise covariance 
matrices are diagonal, that is, E,, = Udiag(vi)U' and 
E,, = Udiag(6i)U'. Finally, the signal and the noise are 
always uncorrelated, that is, E,, = E,, = 0. (Obviously, 
it also makes sense to assume that E,, = Udiag(vi)U' and 
E,, = 0, although these assumptions are not needed in the 
main calculation.) Thus we make the simplifying assumptions 
that both on the training and validation patterns the covariance 
matrix of the signal is identical to the covariance of the 
signal over the entire population, that the signal and the noise 
are uncorrelated, and that the components of the noise are 
uncorrelated in the eigenbase of the signal. Yet we allow the 
estimates vi and Vi  of the variance of the components of the 
noise to be different in the training and validation sets. 

For a given A, the LMS error function over the training 
patterns is now 

- 

where b, = 1 - a,(O)(X, + .,)/A, and a, = 1 - vX, - ~ v , .  
Notice that 0 < a, < 1. Using the fact that E,, is diag(v,) and 
A(k)  is diag(a,(k)) in the U ,  basis, we obtain 

n 

E(A(k) )  = X,(1 - + v,az(k)2.  (13) 
a = 1  

It is easy to see that E ( A ( k ) )  is a monotonically decreasing 
function of k which approaches an asymptotic residual error 
value given by 

For any matrix A, we can define the validation error to be 

U 

Using the fact that c,, = 0 and P,, = Udiag(G)U', 
a derivation similar to (13) shows that the validation error 
E ~ ( A ( ~ ) )  is 

n 

E v ( A ( k ) )  = CXi(1 - ~ r i ( k ) ) ~  + 6 i ~ ~ ( k ) ~ .  (14) 
1 i=l 

E ( A )  = T Ibt - 4% + nt)l12. 
t Clearly, as k 4 03, E"(A(k))  approaches its horizontal 

asymptote, given by 
As 

E,, = E,, = 0, 

E ( A )  = trace((A - I )C(A - I)'  + AC,,A'). 

Hence, the gradient of E is 

V E  = ( A  - 1 ) X  + AX,,. 

n =E 
i=l 

It is the behavior of E" before it reaches its asymptotic value, 
however, which is of most interest to us. This behavior, as we 
shall see, can be fairly complicated. 
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B. Validation Analysis 

tion (14) and collecting terms yield 
Obviously, d a i ( k ) / d k  = -(Xibiaf logai) / (Xi  +vi). Equa- 

or, in more compact form 

with 
2X,2bi 

Pi = (vi - Vi) log ai 
( X i  + U i ) 2  

The behavior of EV depends on the relative size of vi and 
Vi  and the initial conditions ai(O), which together determine 
the signs of bi, Pi,  and yi. The main result we can prove is 
as follows. 

Assume that learning is started with the zero matrix or with 
a matrix with sufficiently small weights satisfying, for every i 

X i  X i  
ai(0) 5 min (-, X i  +vi -) X i  + vz . (15) 

If for every i ,  Ci 5 vi, then the validation function 
EV decreases monotonically to its asymptotic value and 
training should be continued as long as possible. 
If for every i ,  Vi  > vi, then the validation function 
EV decreases monotonically to a unique minimum and 
then increases monotonically to its asymptotic value. 
The derivatives of all orders of EV also have a unique 
zero crossing and a unique extremum. For optimal 
generalization, EV should be monitored and training 
stopped as soon as EV begins to increase. A simple 
bound on the optimal training time /copt is 

1 -Pa 1 -Pa min ~ log - 5 koPt 5 max- log -. 
z log U2 yi 2 log ai yi 

In the most general case of arbitrary initial conditions 
and noise, the validation function EV can have several 
local minima of variable depth before converging to its 
asymptotic value. The number of local minima is always 
at most n. 

Case 2: For every i ,  Vi  5 vi, that is, the validation noise 

a) If forevery i ,  cyi(0) 2 X,/(Xi+Vi) and vi # Ci ,  then E" 
decreases monotonically to a unique global minimum 
and then increases monotonically to its asymptotic value. 
The derivatives of all orders of EV have a unique zero 
crossing and a unique extremum. 

b) If for every i ,  &/(&+vi) 5 ai(0) 5 X i / ( X i + V i ) ,  then 
E'/ increases monotonically to its asymptotic value. 

c) If for every i ,  ai(0) 5 & / ( X i  +vi), then EV decreases 
monotonically to its asymptotic value. 

Several remarks can be made on the previous statements. 
First, notice that in both b) cases, EV increases because 
the initial A ( 0 )  is already too good for the given noise 
levels. The monotonicity properties of the validation function 
are not always strict in the sense that, for instance, at the 
common boundary of some of the cases EV can be flat. These 
degenerate cases can be easily checked directly. The statement 
of the main result assumes that the initial matrix be the zero 
matrix or a matrix with a diagonal form in the basis of the 
eigenvectors ui. A random initial nonzero matrix, however, 
will not satisfy these conditions. EV is continuous and even 
infinitely differentiable in all of its parameters. Therefore, the 
results are also true for sufficiently small random matrices. If 
we use, for instance, an induced Z 2  norm for the matrices, then 
the norm of a starting matrix is the same in the original, or in 
the orthonormal, ui basis. Equation (15) yields a trivial upper 
bound of n1l2 for the initial norm which roughly corresponds 
to having random initial weights of order at most n-1/2 in 
the original basis. Thus, heuristically, the variance of the 
initial random weights should be a function of the size of 
the network. This condition is not satisfied in many of the 
usual simulations found in the literature where inital weights 
are generated randomly and independently using, for instance, 
a centered Gaussian distribution with fixed standard deviation. 

When more arbitrary conditions are considered, in the initial 
weights or in the noise, multiple local minima can appear in 
the validation function. As can be seen in one of the curves 
of the example given in Fig. 2, there exist even cases where 
the first minimum is not the deepest one, although these may 
be rare. Also in this figure, better validation results seem to 
be obtained with smaller initial conditions. This can easily be 
understood, in this small-dimensional example, from some of 
the arguments given in the Amendix. 

is smaller than the training noise. 

- - . I  
The main result is a consequence of the following state- 

Case 1: For every i ,  Vi 2 vi, that is, the validation noise 

Another potentially interesting and relevant phenomenon is 
illustrated in Fig. 3. It is possible to have a situation where, 
after a certain number of training cycles, both the LMS and the 
validation functions appear to be flat and to have converged 

ments, which are proved in the Appendix. 

is bigger than the training noise. 

If for every i, cyi(0) 2 X i / ( &  +vi), then EV decreases 
monotonically to its asymptotic value. 
If for every i ,  X i / ( X i + V i )  5 ai(0) 5 Xi / (X i+v i ) ,  then 
EV increases monotonically to its asymptotic value. 
If for every i ,  ai(0) 5 X i / ( X i + V i )  and vi # V i ,  then EV 
decreases monotonically to a unique global minimum 
and then increases monotonically to its asymptotic value. 
The derivatives of all orders of EV have a unique zero 
crossing and a unique extremum. 

to their asymptotic values. If training is continued, however, 
one observes that these plateaus can come to an end. 

Finally, we have made an implicit distinction between 
validation and generalization throughout most of the previous 
sections. If generalization performance is measured by the 
LMS error calculated over the entire population, it is clear 
that our main result can be applied to the generalization error 
by assuming that E,, = Udiag(fii)U', and Vi  = Vi for 
every i .  In particular, in the second statement of the main 
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0 50 100 150 200 250 
Number of Cycles 

Fig. 2. LMS error functions (lower curves) and corresponding validation 
error functions (upper curves). The parameters are n =3, A1 = 22, .7, 2.5, 
v, = 4, 1 ,  3, D, = 20, 20, 20, c y l ( O ) c y z ( O )  = 0. From top to bottom, the 
third initial weight corresponding to as (0) takes the values 0.3, 0.5, 0.7, 0.9, 
1.1, 1.3, 1.5. Notice in particular the fourth validation curve (cys(0)  = 0.9), 
which has two local minima, the second being deeper than the first. At the 
first minimum, the LMS function is still far from its horizontal asymptote. 
Also in this case, the validation improves as the initial conditions become 
closer to zero. 

Training and Validation Errors 
5 10 15 20 25 30 

2:: : !  I 

Training and Validation Errors 
5 10 15 20 25 30 

(b) 

Fig. 3. LMS error function (lower curves) and corresponding validation error 
functions (upper curves). The parameters are +n =3, A, = 22, .7, 2.5, v; = 
4,1,4,V, =20 ,20 ,20 ,cu~(O)=~~~(O)=Oandas (0 )= .7 .No t i ce ,on the  
first two curves, that after 40 cycles both the LMS and the validation function 
appear to be flat and would suggest to stop the training. The second set of 
curves corresponds to 500 training cycles. Notice the existence of a second 
(although shallow) minimum, undetectable after 40 cycles. 

result, if for every i, Vi > vi, then the generalization curve 
has a unique minimum. Now, if a validation sample is used 
as a predictor of generalization performance and the vi’s are 
close to the Ui’s ,  then by continuity the validation and the 
generalization curves are close to each other. Thus, in this case, 
the strategy of stopping in a neighborhood of the minimum 

of the validation function should also lead to near-optimal 
generalization performance (see also [291). 

C. Conclusion 

In the framework constructed above, based on linear single- 
layer feedforward networks, it has been possible to analytically 
derive interesting results on generalization. In particular, under 
simple noise assumption, we have given a complete description 
of the validation error EV as a function of training time. It is 
rather remarkable that all the complex phenomena related to 
generalization which are observed in simulations of nonlinear 
networks are already present in the linear case. Although 
our framework is simplistic, it is already quite rich and 
leads to many nontrivial and perhaps mathematically tractable 
questions. This analysis is only a first step in this direction, 
and many questions remain unanswered. For instance, it seems 
to us that in the case of general noise and arbitrary initial 
conditions, the upper bound on the number of local minima is 
rather weak in the sense that, at least on the average, there are 
far fewer. It seems also that in general the first local minima 
of EV is also the deepest. In the analysis conducted here, 
we have used uniform assumptions on the noise. In general, 
we can expect this not to be the case, and properties of the 
noise cannot be fixed a priori. Therefore one needs to develop 
a theory of EV over different possible noise and/or sample 
realizations, that is, to find the average curve EV. It would 
also be of interest to study whether some of the assumptions 
made on the noise in the training and validation sample can 
be relaxed. Finally, other possible directions of investigation 
include the extension to multilayer networks and to general 
inputloutput associations. 

v. OTHER ALGORITHMS: UNSUPERVISED LEARNING 

The distinction between supervised and unsupervised is 
sometimes blurry. This is particularly obvious in the autoasso- 
ciative case. With this in mind, we shall review in this section 
the main results of unsupervised learning in linear networks 
and contrast them with the results described in Section 111. 
Since here the learning is unsupervised, the most relevant 
comparisons will be with the autoassociative mode. We begin 
with a brief discussion of anti-Hebbian learning for a single 
linear unit. Next, we look at variance maximization, Hebbian 
learning, and some of its variations. We start with the single- 
unit case and then examine the general case with multiple 
units, show that several “symmetric” algorithms which have 
been proposed are identical, discuss networks with lateral 
plastic interactions, and present a unified framework for ana- 
lyzing these algorithms. Finally, we discuss gradient descent 
algorithms based on error functions other than (1). As we shall 
see, many results in the supervised and unsupervised mode are 
very similar for linear networks, especially the shape of the 
landscapes and the relation to PCA. 

A. Anti-Hebbian Learning 

Consider a linear network described by the input-output 
relation y = Ax + z .  Suppose it is desired to minimize the 



848 IEEE TRANSACTIONS ON N E W  NETWORKS, VOL. 6, NO. 4, JULY 1995 

average output power E(A) = (lly112) = trace(AE,,A’ + 
2AE,, + &). Clearly 

= 2vec(AE,, + Ez,) = 2vec((yz’)). 
d E  

d vec(A)’ 

Hence, the optimal A equals -Ez,E;2 (as was already known 
from the results in Section 11-D), and the gradient descent 
algorithm for minimizing E ( A )  is given by 

A(k + I) = A(k) - ~(Yx’ )  

with corresponding on-line version 

AA = -vyx’. 

This rule is anti-Hebbian because each weight aij is modified 
proportionally to the negative of the product of pre- and post- 
synaptic activations. Clearly, this rule is equivalent to the 
“multiple adaptive linear elements” (MADALINE) algorithm 
of Widrow and Hoff [30] for minimizing the mean-square error 
of the linear prediction of --z from x by gradient descent. 

Palmieri et al. [3 I] have recently reviewed anti-Hebbian 
learning in linear networks. We refer the reader to their paper 
for more details. 

B. Hebbian Leaning: Single Unit Algorithms 

Assume, for now, that there is only one linear unit described 
by the input-output relation y = d x ,  where a is the vector of 
weights to be trained, as usual, from a set of centered inputs x. 

Suppose, as is often the case, that a desirable goal for the 
unit is to find a set of weights which differentiates the inputs 
as much as possible. This can be formalized by requiring that 
the output variance (power) of the unit be as large as possible. 
In other words, we want to minimize the cost function 

E(a)  = -((a’rc)2) = -a’E,,a. 

Obviously 

- _  aE - -2(x;y). 
d U 2  

In the corresponding on-line learning rule, upon presentation 
of a pattern x, a is modified by an amount 4 u  given by 

4a i  = vz;y (16) 

which is exactly Hebb’s rule in its simplest form. It is 
clear, however, that without any other restrictions, E has no 
minimum and by taking coefficients ai of arbitrarily large 
magnitude we can easily have E --f -m. If we modify the 
problem so that the variance is to be maximized under the 
restriction that llall 5 1, then we already know the optimal 
solution by applying the general result of Section 11-A on 
quadratic forms. The optimal a is equal to h 1 ,  where u1 

is the normalized eigenvector of E,, corresponding to the 
largest eigenvalue. At the optimum, the network computes the 
principal component of the input. In addition, the problem 
has no local minima. It is instructive to remark that if we try 
to maximize the variance under the constraint that, for every 
i, la;l 5 1 (i.e., if we constrain the weights to belong to the 
inside of an n-dimensional cube rather than a sphere), then 

by a convexity argument it is easy to see that the optimum 
must be reached at one of the comers of the hypercube where 
[ai(  = 1 for every i (and strictly so if E,, is positive definite). 
The determination of which comer of the hypercube realizes 
the maximum, however, is an NP-complete problem (see, for 
instance, the matrix cover problem in [32, p. 2821) and thus 
probably computationally intractable. 

This discussion shows that it is useful to try to modify the 
simple Hebbian rule of (16) so as to attempt to maximize the 
output variance while keeping the norm of the weight vector 
bounded. 

Oja [33] suggested keeping the weights normalized by 
having, upon presentation of pattern rc 

ai + r l v i  a; +- , 

For 77 small 

4a ;  = vy(z2 - yaz) + 0(rl2) 

AU = ~ ( X Y  - ay2) 

which yields, in more compact notation, the learning rule 

(17) 

comprising the usual Hebbian term and a very simple normal- 
izing term. By summing the right-hand side of (17) over all 
patterns, the corresponding off-line version can be expressed 
in the form 

a(k  + 1) = a ( k )  + ~ ( 1  - a(k)a(k)’)C, ,a(k) .  (18) 

Oja’s rule cannot be interpreted in terms of a gradient of 
some error function E because d(x;y - aiy2) /da,  = zixj - 
2aiyxj - Si,jy2, and this expression is not symmetric in i and 
j (in other words, the integrability conditions d 2  E/daidaj  = 
d 2 E / d a j d a ;  are violated). 

What can we say about the convergence of Oja’s algorithm? 
If the on-line or off-line version of the algorithm converges, 
then by (18) (or equivalently by (17) applied to each pattern) 

C x x a  = aa‘C,,a 

must be satisfied at any equilibrium point a. Reasonably a # 0, 
and therefore a is an eigenvector of E,, with eigenvalue 
a’E,,a and, by multiplying the above equation by a’ on the 
left we find that a’a = 1. So all the possible limits of the off- 
line version of the algorithm are the normalized eigenvectors 
of E,,. According to Oja [33] and Oja and Karhunen [34], 
if the distribution of the patterns z satisfies some reasonable 
assumptions and if rl --f 0 at a suitable rate, then (17) and (1 8) 
can be approximated by the differential equation 

da 
d t  

a = - = Ezxa - aa‘E,,a 

and the solution of (19) will approach with probability one a 
uniformly asymptotically stable equilibrium of the differential 
equation. In addition, if C,, is positive definite with the 
largest eigenvalue XI with multiplicity one (and normalized 
eigenvector u1) and a(0 )  is not perpendicular to u1, then 
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a ( t )  + as t -+ 00 and f u l  is uniformly asymptotically 
stable. 

The case of Oja’s algorithm is typical of what is usually 
found concerning the relations between the three versions of 
a given learning algorithm. If the weight changes induced 
by each pattern presentation are very small, then the on-line 
version can be approximated by the off-line version (or vice 
versa). By setting the weight changes to zero in the off- 
line version, all the possible limit points of the algorithm 
are derived. The actual limits are in general a strict subset 
of these possible solutions. In the stochastic approximation 
framework, where the learning rate tends to zero at a suitable 
rate and the input environment satisfies certain assumptions, 
such as stationarity, then the paths of the on- or off-line 
version asymptotically approach the solution paths of the 
ordinary differential equation corresponding to the continuous 
version. In particular, the actual limits must be asymptotically 
stable equilibria of the differential equation. In general, this 
requirement is sufficient to find that the learning process 
converges to the desired value. For more details on the relation 
between the on-line version and the continuous version, the so- 
called “associated ODE,” see, in particular, Homik and Kuan 
[35] and Kuan and Hornik [36]. 

In Linsker [9], layered networks of units with linear biased 
output of the form 

(20) y = a’x + b 

are considered together with the class of learning rules 

Aaz = 7 7 1 G Y  + 77234 + 773Y + 774 (21) 

that is, Hebbian rules with additional linear or constant terms. 
The a, are constrained to be in an interval [-c,c] and the 
patterns are not necessarily centered. By averaging (21) over 
all patterns and taking its continuous approximation with the 
proper units, one can easily derive the system of differential 
equations 

a z  = raja3 + kl + k2 a3 
3 3 

where raj is the ( i , j ) th  element of the covariance matrix E,, 
of the input patterns, and kl and IC2 are two constants which 
can easily be calculated from (20) and (21). In vector notation 

(22) 

where Jp,q denotes the p x q matrix with all entries equal to 
one. If we let 

U = C,,a + klJ,,l + k2J,,,a 

then d E / d a  = -U. Therefore, the learning rule in (22) tends 
to minimize E. Depending on the values of the constants IC1 

and IC2 and the covariance matrix E,,, different mature states 
can be reached. Linsker shows how in layered systems of units 
satisfying (20), with the proper range of parameters and where 
successive layers evolve in time according to (22), particular 
feature detector cells such as center-surround or orientation 
selective can emerge in different layers, even with completely 
random external inputs to the first layer. For a theoretical 

analysis of his simulations, see Miller and MacKay [37]. 
Linsker also observes that, empirically, the learning process 
“does not get stuck in high lying local minima.” This can 
be understood in several particular but important situations. 
Consider, for instance, a unit submitted to random inputs such 
that E,, = I and IC1 and IC2 are positive (this is automatically 
satisfied if all the learning rates in (21) and the averages (xi) 
are positive). Then the matrix M = I + kzJ,,, is positive 
definite. By convexity, the minimum of E must therefore occur 
at the boundary of the cube [-c, cIn. Recall that, in general, 
this point on the boundary may be very difficult to determine. 
Here by inspection, however, the optimum is reached at the 
vertex a’ = ( c ,  . . . , c). If we consider the system 

(23) 

with a(0)  = ao, it is clear that if the initial a0 has all its 
components identical, this property will be preserved under 
the evolution described by (23). As a result, the system will 
converge to its constrained minimum. In particular, if the 
initial weights are zero (or random but small), the mature a 
will essentially be the global minimum. We can also calculate 
how long it takes for the learning process to converge. If we 
assume for simplicity that a0 = 0, then the solution of (23) is 

a = M a  + kl.Jn,l 

r t  

A simple induction on n shows that the eigenvalues of M are 
of two types: 

i) A1  = 1 + n k 2 ,  with multiplicity 1 and normalized 
eigenvector v1 = nP1l2 Jn,l 

ii) A2 = . . . = A, = 1 with multiplicity n - 1 and nor- 
malized eigenvectors v2, . . . , w, orthogonal to w1 (their 
explicit form is not required to finish the calculation). 

Let V be the matrix [vl, . . . , w,] and A the diagonal matrix 
diag(A1,. . . , A,) so that VV’ = I and M V  = VA. Then the 
matrix exponentials can be computed by using the relation 

esM = Vdiag(exl“, . . . , exns)V’. 

Some additional manipulations finally yield the solution 

and the cell reaches its mature state at time t = t ,  where 

t - - L o g  (1 + 2). 
c -  A1 

C. Hebbian Learning: Multi-Unit Algorithms 

Let us now consider several linear units simultaneously as 
described by the input-output relation y = Ax. (Notice the 
discrepancy in notation with respect to the single unit case, 
where we wrote y = a’x.) 

Baldi [ 131 remarks that in the autoassociative case, if we let 
C = I in (7) and (8), then at the optimum the matrices A and 
B are transposes of each other. This in turn suggests a possibly 
faster algorithm, where at each step a gradient correction is 
applied only to one of the connection matrices, while the 
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b i j q  

0 0 0  zi 
e; = z, - Cj bijy, 

Fig. 4. The SEC (symmetric error correction) network. 

other is modified in a symmetric fashion, thus avoiding the 
backpropagation of errors in one of the layers. One possible 
version of this idea can be expressed as 

d E  
avec( A)‘ ’ A(k + 1) =A(k) - 7- 

B(k + 1)  = A(k + I)’ 

where the first term is the usual Hebbian term to maximize 
the sum of the output variances, and R is a correction term 
to keep the connection matrix A (sub)orthogonal (AA‘ = I). 
That is, we should have (A + AA) (A + AA)’ z I .  Now for 
q small and AA’ = I we have 

(A + AA)(A + AA)’ = I + q(2yy’ + AR’ + A’R) + O(q2) .  

Thus, R should satj- ry the first-order condition AR’ + RA’ = 
-2yy‘. If we choose R of the form R = SA, we obtain 
S+ S’ = -2yy’. Hence, we can either take S (or S’) as -yy’ 
or as -diag(yy’) - 2 subdiag(yy’). (The “subdiag” operator 
sets all entries on and above the main diagonal to zero.) 

The former choice, S = -yy’, gives 

AA = q ( y d  - yy’A) (26) 

which is called the “subspace” algorithm in Oja [38]. In its 
averaged form 

with A(0) random and, for instance, B(0) = A(0)’. In the 
averaged form, this gives A(k + 1) = A(k) + q(C,,A(k) - A(k)A(k)’EzzA(k)) 

A(k + 1) = A(k) + qA(k)C,,(I - A(k)’A(k) ) .  (24) 

It can be seen that there exist exceptional starting points 
which can in theory prevent the algorithm from converging 
to the optimal solution by incorporating a projection onto 
a nonprincipal eigenvector. Moreover, it can be seen that 
a necessary condition for convergence to the optimum is 
q < 1/2X1 (at least in the final stages of the learning process). 
If we specialize the evolution of the matrix A to the case of 
a single unit, we find for a ( k )  = A(k)’ that 

a ( k  + 1) = a ( k )  + q(E,,a(k) - a(k)a(k)’E,,a(k)) 

which is identical to (18). In other words, Oja’s algorithm is 
the one-dimensional version of (24). 

In Williams [20], the following SEC (symmetric error 
correction) learning algorithm is described. Consider a linear 
network, comprising only two layers, n input units connected 
to p hidden units with a connection matrix A, and feedback 
connections from the p hidden units back to the input units 
through a connection matrix B (see Fig. 4). A pattern s is 
presented and propagated forward to give y = A s  and then 
backwards to allow the computation of an error e = x - By. 
The weight matrix A is then corrected according to 

= ~ ~ z e ,  (25) 

and B is updated symmetrically, in the sense that Ab,, = Aa,, 
or A B  = (AA)’.  In matrix notation, (25) is easily rewritten as 

AA = qAs(s  - BAx)’ 

or, in averaged form 

A(k + 1) = A(k) + q(A(k)CZ,(I - A(k)’B(k)’)) 

which is (24), provided the algorithm is started with symmetric 
initial conditions, i.e., B(0) = A(0)’. 

We could also start from Oja’s one-unit algorithm and try to 
generalize it to the case of many units. Hence, we are looking 
for learning rules 

AA = q ( y d  + R)  

which is identical to (24). In conclusion, we see that, quite 
remarkably, several algorithms proposed in the literature in 
Oja [33] and its generalizations in Baldi [13], Oja [38], and 
Williams [20] are in fact completely identical, although they 
were derived using different heuristics. Robustified versions 
of this rule have recently been given in Xu and Yuille [39]. 

The latter choice for S gives the “stochastic gradient ascent” 
(SGA) algorithm 

AA = q ( y d  - diag(yy’)A - 2subdiag(yy’)A) 

of Oja and Karhunen [34]. In fact, this rule can also be 
obtained as a first-order approximation to the Gram-Schmidt 
orthonormalization of the rows of A after a Hebbian step 
2 +- A+qys’.  This is the most “natural” generalization of the 
derivation of Oja’s rule to the multi-unit case. We notice that 
SGA is very similar to the “generalized Hebbian algorithm” 

AA = q ( y d  - lower(yy’)A) 

proposed by Sanger [40]. (The ‘‘lower’’ operator sets all entries 
above the main diagonal to zero.) In fact, since lower(M) = 
diag(M) + subdiag(M), the rules differ by a subdiag(yy’)A 
term; see, e.g., Oja [41]. 

Several of the above algorithms were constructed with the 
objective to maximize the average output power (lly1I2) = xi($) = trace(AC,,A’) over A = {A : AA’ = I } .  
(Observe that by our results in Section 11-A, we already know 
that all such A are of the form CUL with C orthogonal, and 
hence result in PCA analyzers.) As proposed in Brockett [42], 
this goal can also be accomplished by constrained gradient 
ascent on the average output power. More generally, consider 
the weighted average power E(A) = xi Oi(y4). Notice that 
if 81 > . . . > O p  > 0, then E(A) is maximized over A iff 
A = [ f u l , .  . . , *up]’. By this choice for the weights, the 
rows of A are forced to be the first p eigenvectors of E,, 
rather than an orthonormal set of linear combinations of them. 
Writing 0 = diag(O1,. . . , Op), we have 

E(A)  = (trace(@yy’)) = trace(OAC,,A’). 
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Brockett [42] shows that the gradient flow of E on A (with lateral interactions 
connection matrix W respect to the canonical Frobenius-norm based metric on A) 

(27) 

is given by rd connection 
x A  

n input units 
A = OAC,, - AC,,A’OA. 

(In fact, Brockett only considers the special case p = R, 
but the analysis for the case p < R is virtually identical, cf. 
also the remarks in [43].) This can be seen as follows. The 
neighborhood of A in d can be parameterized as A(R) = 
Ae* = A ( I  + R + R2/2 + . . .) with skew-symmetric R (i.e., 
R’ = -0). Hence for R small 

E(A(R)) - E ( A )  
= trace(OA(1 + R)C,,(I - R)A’) + . . . - E ( A )  
= vec(R)’vec(A’OAC,, - C,,A’OA) + . . . 

and thus the gradient flow is A = Afi = A(A’OAC,, - 

We notice that for 0 = I .  Brockett’s algorithm simplifies 
to A = AX,, - AX,,A’A, which is just the continuous 
version of the subspace algorithm. Therefore, this rule per- 
forms constrained gradient descent over A. For unconstrained 
A, however, it does not perform gradient descent (see the 
discussion of the Oja one-unit algorithm further above). Nev- 
ertheless, as recently shown in Xu [43], it still goes “downhill” 
for the error function (11. - A’Azl12). More precisely, if 
A = G(A)  and A = Go(A) are the continuous versions 
of gradient descent on this error function and the subspace 
algorithm, respectively, then 

vec(Go(A))’vec(G(A)) = 2 vec(Go(A))’vec(Go(A)) 

which is strictly positive unless Go(A) = 0, i.e., A is a 
(possible) limit point of the subspace algorithm. 

Finally, if we write z = Oy = OAz (i.e., the activation 
function of output unit i is amplification by O t ) ,  we can rewrite 
the online version of Brockett’s algorithm as 

C,,A’OA) = OAC,, - AC,,A’OA. 

AA = ~ ( z z ’  - O-lzz’A). 

This is formally equivalent to the weighted subspace algorithm 
of Oja [41]. 

D. Hebbian Learning: Lateral Interaction Algorithms 

Up to this point, no lateral connections within the layer 
of hidden units were allowed. Clearly, if we use Hebbian 
learning with row-wise normalization or equivalently, if we 
apply Oja’s one-unit algorithm to each of the rows of A ,  
then all output units end up doing the same, namely extract 
the first principal component. An additional mechanism which 
introduces competition or some hierarchical order between the 

Fig. 5.  Network with lateral interactions. 

inputs z to the outputs y, and W is the zero-diagonal matrix 
of lateral inhibitory connections among the y units. Foldihk 
suggests to first keep applying (28) until the network settles 
to a stable state for which y = Az + Wy or, equivalently, 
y = ( I  - W)-lAz.  The A matrix is then updated using Oja’s 
algorithm for each row, i.e., 

(29) 

The matrix W is initialized as 0 and adapted using the simple 
anti-Hebbian rule 

AA = ~ ( y z ’  - diag(yy’)A). 

AW = -poffdiag(yy’) (30) 

(the “offdiag” operator sets the diagonal entries to zero). 
Unfortunately, there are some serious problems with this 

rule. Let y(k) denote the network output after IC updating 
cycles (28) with fixed input 2 and initial output y(0). Clearly 

y(IC) = Wky(0) + ( I  + . . . + WkP1)Az. 

To ensure convergence of y(k) to (I-W)-lAx as IC + CO, we 
thus need that all eigenvalues of W be less than one in absolute 
value. This is not guaranteed by the algorithm. Even if this 
condition is satisfied, we note that as (30) keeps W symmetric, 
W k  is always nonzero unless W = 0. Thus, it really requires 
infinitely many cycles to converge to the stable state, which 
is computationally infeasible. (Of course, the linear system 
(I - W)y = Ax could be solved explicitly in finite time; 
but then the architecture is no longer self-contained, and the 
particularly attractive feature of performing only simple local 
computations is lost.) Hence, real-time implementations of 
FoldiBk’s algorithm should only use a finite number of cycles 
(28), that is, one first updates y according to 

y t ( I  + . . . + W“’)Az + Wky 

for some IC 2 1, and then updates A and W according to (29) 
and (30). 

If it is really desired to stabilize the network outputs before 
updating the weights, one should have W k  = 0 for some k. 
As already pointed out in an earlier version of this paper and 
in Homik and Kuan [35], this can be accomplished by keeping 
W subdiagonal, rather than symmetric with zero diagonal, that 
is, by replacing (30) with the asymmetric anti-Hebbian rule 

output units, however, might force the network to perform full AW = -,usubdiag(yy’). (31) 
PCA. 

architecture where the outputs are updated according to 
For example, as in Foldihk [ a ] ,  we can consider a linear In this case, W p  = 0,  and y = ( I  - W)-lAz after p cycles. 

Clearly, this rule introduces a strict hierarchy between the out- 
put units, whereas the former forces symmetric competition. 

A similar approach was taken in Rubner and Tavan [45]. 
There, the network is defined by the relation 

y t Az + Wy. (28)  

Here, y is the vector of activities in the p output units (there 
are no hidden units), A is the connection matrix from the y = ( I  + W)Az ,  diag(W) = 0 (32) 
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i.e., the lateral connections W act on Ax directly rather or preferably 
than y, corresponding to a different interpretation of the 
feedback mechanism. (We can also interpret (32) as the 
input-output relation of a linear a-p-p network with input-to- 
hidden weights A for feature extraction and hidden-to-output 
weights Q for decorrelation, with all diagonal entries of 
Q hardwired to one.) In Rubner and Tavan’s algorithm, 
A is updated using Hebbian learning with subsequent row 
normalization and W according to (31); but of course, one 
could also use the more local rule (29) for A and/or the 
symmetric anti-Hebbian rule (30) for W. 

Two different Hebbian algorithms with lateral inhibition are 
proposed in Leen [46]. He starts with the “potential” (energy 
function) 

2 

for the simple architecture y = Ax. The first term is the usual 
average output power, and the second one is an interaction 
potential which penalizes correlations between the output unit 
activations. The trade-off between the two terms is measured 
by the coupling constant S. As U is clearly unbounded, 
gradient descent on U has to be stabilized by an additional 
weight decay term. If the usual local Oja term is used, one 
obtains the continuous version in the form 

A = (yx’) - soffdiag((yy’))(yx’) - diag((yy’))A. (33) 
This is not well suited for direct on-line implementation, 

however, as usually offdiag( (yy’)) (yx’) # (offdiag(yy’)yx’). 
This problem can be overcome by introducing an additional 
weight matrix W which keeps track of the covariances (yjyk) 
between different output units according to 

I@ = -K(W + Soffdiag((yy’))). 

A = ( I  - W)(yz’) - diag((yy’))A. 

(34) 
If K >> 1, W z -6 offdiag((yy’)) which can be substituted 
into (33) to give 

(35) 
The analysis in Leen [46] shows (see also Section V-E) that the 
“desired” limits A = U;, W = 0 are asymptotically stable iff 

Hence, the minimal coupling and relaxation constants S and K 

depend on the size of the eigenvalues of E,, and do not scale 
well with a (the larger n, the more likely small eigenvalues 
become). This problem can be overcome by replacing (34) 
with 

W . ’  ‘23 - - - (Y: + ~ ; ) m i j  - b ( ~ i ~ j ) ,  # j .  (36) 
With this modification, the stability requirement becomes 
S > 1 .  

The second algorithm proposed by Leen uses full lateral 
coupling between the outputs as specified by 

y + Ax + Wy. 
In equilibrium, y = ( I  - W)-’Az, and A and W are updated 
according to (29), respectively 

I@ = aW - Soffdiag((yy’)) 

~ . .  z j  - - ( Y: + ?J,2)Wij - S(yiYj), i # j .  
We observe that as W is kept symmetric by this algorithm, the 
same problems with the stabilization of the outputs into y = 
( I  - W)-’Ax exist as in Foldiik’s algorithm. Again, in a real- 
time implementation, we either have to keep W subdiagonal 
or perform a finite number of output updating cycles only. 
In fact, the first-order approximation ( I  - W)-l by I + W 
which changes the input-output relation to y = ( I  + W)Ax  
as in the architecture of Rubner and Tavan can already deliver 
the desired behavior for suitably chosen S. 

Another lateral inhibition algorithm is the “Adaptive Princi- 
pal Component Extractor” (APEX) of Kung and Diamantaras 
[47]. APEX is based on the network y = ( I  + W ) A x  with W 
subdiagonal and uses the updating equations 

AA = ~ ( y z ’  - diag(yy’)A), 
AW = - q(subdiag(yy’) + diag(yy’)W). 

We notice that this algorithm is similar to that of Rubner and 
Tavan [45J (it uses an additional decay term for W )  and in fact 
identical to the variant of Leen’s algorithm with full coupling 
obtained by keeping W subdiagonal and approximating ( I  - 
W)-’ by I + W. 

E. Hebbian Learning: A Unifying Framework 
In the preceding two subsections we have presented a 

variety of constrained Hebbian learning algorithms in linear 
networks. We have seen many similarities between these 
algorithms, which is not too surprising as they were all 
constructed with the same goal in mind, namely maximizing 
average output variance under suitable constraints. The most 
important properties of these algorithms can satisfactorily 
be analyzed and understood within the following general 
framework. 

Consider an adaptive linear system with updating rule 

where 

P ( W )  = a W + . . . ,  Q(W) = ( I + T W + . . . ) O  

with the dots indicating terms containing higher powers of W. 
As already discussed, in on-line implementations P and Q are 
finite-order polynomials in W ,  but the above also contains the 
case of full output stabilization where Q(W) = ( I  - W)-’ = 
I + W + W 2  +. . . . The parameters of the system are adapted 
according to 

(38) 

(39) 

AA = ~ ( y d  - @(yy’)A) 
AW = v(aW + ,Bdiag(yy’)W 

+ 7 Wdiadyly’) + 6 WIY’)). 

Here, and R are suitable operators linear in the entries of yy’, 
typically selection operators. This class of adaptive systems 
generalizes the framework of Hornik and Kuan [35] to contain 
all previously considered cases. (The class considered in their 
paper has 0 = I and cy = ,B = y = 0.) We notice that in 
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the networks without lateral interactions considered in Section 
V-C, W = 0, and the above simplifies to 

AA = ~(TJS’ - @(yy’)A), y = @AX. 

Brockett’s algorithm is obtained with @ ( M )  = W I M ,  and 
the subspace algorithm with the additional choice 0 = I .  
Sanger’s GHA corresponds to @ = lower and 0 = I ,  and the 
Oja and Karhunen SGA to @ ( M )  = diag(M) + 2 offdiag(M) 
and 0 = I .  

For the local algorithms in networks with lateral interactions 
discussed in Section V-D, CP = diag. Initializing W with 
0 and using R = offdiag keeps W symmetric with zero 
diagonal; choosing R = subdiag keeps W subdiagonal. 
Independently of the other choices, both selections for R are 
always possible; i.e., the algorithm can be run in symmetric 
or asymmetric mode. We have already discussed that these 
selections implement a competitive and a strictly hierarchical 
decorrelation mechanism, respectively. 

The above general class of constrained Hebbian algorithms 
can most conveniently be analyzed in terms of the correspond- 
ing continuous versions. As explained in Homik and Kuan 
[35], the “correct” averages are 

(YX’) = Q(W)AE,, 
00 

(yy/) = P(W)~Q(W)A~, ,A’Q(W’)P(W’)~ 
i = O  

:= R(A, W )  

by the eigenvectors of E,,. More precisely, we can find 
matrices U0 and U, having mutually perpendicular unit length 
eigenvectors of E,, as their columns, such that A = CUL and 
AUl = 0. Of course, the conditions aW + ,B diag(R) W + 
y Wdiag(R) + S R(R) = 0 and R = R(A, W) place further 
restrictions on A. For a complete description of the equilibria 
of the Brockett-type algorithms, see, e.g., Xu [43], for those 
of Sanger’s GHA, see, e.g., Homik and Kuan [35]. For the 
local algorithms with = diag and 0 = I ,  equilibria with 
W = 0 satisfy 

AX,, = diag(R)A, R = AE,,A’ 

and either subdiag(R) = 0 or offdiag(R) = 0 which in 
either case forces R to be diagonal. Hence, the nonzero rows 
of A are unit length eigenvectors of Ezz. Unfortunately, a 
complete description of the equilibria of the local algorithms 
with arbitrary a ,  p, and y has not been given yet and appears 
to be particularly challenging in the symmetric case. For the 
asymmetric mode with a = ,B = y = 0, Homik and Kuan [35] 
have shown that if T # 0, the only equilibria with subdiagonal 
W and full rank R are those for which the rows of A are 
mutually perpendicular unit length eigenvectors of E,, and 
W = 0. Equilibria with rank deficient R are unstable. 

Let us briefly indicate how the stability properties of the 
equilibria can be analyzed. For simplicity, assume W = 0 
and 0 = I .  Let E and H denote small perturbations of A and 
W, respectively. After linearization we obtain 

hence, the associated ODE’S (ordinary differential equations) E = ( E  + TH)AX,, 

fi = aH + ,Bdiag(R)H + y Hdiag(R) 

are - @(R)E - @(dR(E, H ;  A, O))A, 

A = Q(W)AE,, - @(R)A 
W = aW + pdiag(R)W + y Wdiag(R) + S R(R) 

(40) 
(41) + S R(dR(E, H ;  A, 0) )  

with R = R(A, W ) ,  A(0) “random” (but clearly nonzero), and 
W(0)  = 0. If the mature network is to act as a fast principal 
component analyzer, the desired equilibria are those for which 
A = CUL, for suitable invertible C, and W = 0 (such that the 
network output can be computed from a new input in a single 
cycle). Hence ideally, all (asymptotically) stable equilibria of 
the system given by (40) and (41) should be of the desired 
form, and all other equilibria should be unstable. We notice, 
however, that if the A equilibria are not isolated (as, e.g., in the 
case of the subspace algorithm), they cannot be asymptotically 
stable. In these cases, the requirements should really be that 
the space spanned by the rows of A, i.e., the projection onto 
this space, be asymptotically stable in the induced dynamics. 

In an equilibrium of (40) 

where dR denotes the FrCchet differential of R at ( A ,  0). 
Let U0 and U 1  be as constructed further above, let A0 and 
AI be the diagonal matrices of the associated eigenvalues 
of E,,, and let Eo = EUo and E l  = E U l .  Then it 
is readily verified that with C = AUo, d R ( E , H ; A , O )  = 
( r ) ( H R +  RH’)  + EoAoC’ + CAoEI,, i.e., dR is of the form 
T(E0, H ) .  The above sensitivity system thus gives 

E l  = E l h i -  @ ( R ) E i  (42) 
Eo = (Eo + 7HC)Ao 

- @ ( W O  - @(T(Eo, H ) ) C ,  (43) 

+ 6 R(T(Eo, H ) ) .  (44) 

fi = a H  +,Bdiag(R)H+yHdiag(R) 

Q(W)AE,, = @(R)A.  The key insight is that (42), which describes the evolution 
of perturbations of A perpendicular to the rows of A ,  is 
completely decoupled from (43) and (44) which describe the 
evolution of the perturbations of W and the component of 
the perturbations of A along the row space of A. Thus, (42) 
can be analyzed separately and typically be used to show that 
equilibria A are unstable, unless their rows span the same 
space as the first p eigenvectors of Exz. 

In particular, for the lateral inhibition algorithms, this im- 
plies that A is unstable unless A = U; (up to signs); hence 

If Q(W) is invertible, we can rewrite this as 

AX,, = MA, M = Q(W)-’@(R). 

Hence, if U is an eigenvector with associated eigenvalue A 

XAu = AE,,u = MAu 

i.e., Au is either zero or an eigenvector of M with associated 
eigenvalue A. In this sense, the row space of A is spanned 



854 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995 

we can take C = I and the remaining system described by 
(43) and (44) decomposes into one-dimensional systems for 
the diagonal components of EO and three-dimensional systems 
for the off-diagonal entries of EUo and the corresponding 
entries of W, e.g., for [Eolij, [Eolji, and [H]i j  (observe that 
H is either subdiagonal or symmetric with zero diagonal). 
Proceeding along these lines, the stability results of Leen 
described above and those in Homik and Kuan [35] can be 
obtained. As of yet, however, no complete stability results for 
the class of lateral inhibition algorithms have been given; this 
issue is currently under investigation. In any case, the results 
of Leen show that the conclusion of Hornik and Kuan that 
“hierarchical decorrelation should always be preferred over 
more competitive, symmetric decorrelation mechanisms, for 
reasons of superior performance of the algorithms” [35, p. 
2351, cannot be maintained within the more general framework 
considered here. 

Which of the algorithms presented above should we really 
employ for PCA learning? This question cannot be answered 
completely, as in addition to the stability properties of the as- 
sociated ODE, issues of computational complexity and storage 
requirements need to be considered. This is beyond the scope 
of this paper. Nevertheless, we still maintain as a minimal 
requirement that the asymptotically stable equilibria be desired 
limit points and, conversely, that the desired limit points 
“allowed” by the algorithm (i.e., the equilibria of the associated 
ODE) be asymptotically stable. This rules out the subspace 
algorithm in favor of general Brockett-type rules where 0 has 
distinct positive entries. For the lateral inhibition algorithms, 
this implies that in symmetric mode, the simple anti-Hebbian 
decorrelation mechanism as, e.g., proposed by Barlow and 
Foldia [48] and used in Foldi& [44] has to be combined 
with an additional weight decay W term as proposed in Leen 
[46]. Finally, we notice that if these algorithms are used 
in asymmetric mode, additional units can be added without 
retraining the already mature part of the network, i.e., one can 
incrementally build the principal component extractor. This 
property could be extremely attractive in some engineering 
applications. 

F. Gradient-Based Leaming 

Chauvin [49] proposed an approach based on the construc- 
tion of a cost function comprising two terms: a variance term 
to be maximized and a term penalizing large weight vectors. 
More explicitly, one wants to minimize 

E(a)  = -aa’E,,a + ~ ( u ’ u  - 1)2 (45) 

where a and /3 are two positive real coefficients that can be 
varied to adjust the relative importance of the two factors. 
The derivatives of this cost function corresponding to the 
presentation of one pattern 2 are 

dE - = -2axiy + 4P(a’a - 1 ) U i  
dui 

with the corresponding learning rule 

and its averaged vector version 

Notice that, in addition to the usual Hebbian part, (46) contains 
a normalizing term which is not very local in the sense that it 
depends on all the weights ai. Because of the competition 
between the two terms, it is clear that E has a minimum 
which is attained for some optimal aopt. If we consider E 
restricted to the surface I(a(1 = IlaoptII = p, the second term 
on the right-hand side of (45) remains constant. Hence, by 
applying again the result on the optimization of quadratic 
forms over spheres, we have that aopt is collinear to 211, 

that is Czzaopt = Alaopt. Since we know the direction of 
aopt, it is now sufficient to determine its length p. Clearly, 
E(aopt) = - a A l p 2  + P(p2 - 1)2 and this is a quartic 
polynomial which is minimized when d E / d p  = 0, i.e., for 
p = &(I + a ~ ~ / 2 ~ ) l / ~ .  SO finally 

Notice that this analysis is to a certain extent independent of 
the detailed form of the term used to constrain the length of 
a in E(a)  (the term needs only to be some function of Ilall). 
What can be said about the rest of the landscape of E? Clearly, 
at any equilibrium point of the algorithm, the relation 

2aC,,a = 4P(a’a - 1). 

must be satisfied and therefore either a = 0 or n is an 
eigenvector of Cz,. It can be shown (see [49] for details) 
that for a = 0, E(0)  = p, and this corresponds to a local 
maximum of E.  If E,, is positive definite with all eigenvalues 
of multiplicity one, then all the critical points of E are of the 
form a = f ( l  + aAi/2,Ll)1/2ui with associated cost E ( a )  = 
-aAi(l + aAi/4/3) (i = 1;. . ,n) .  All these critical points 
are saddle points with the exception of aopt (corresponding to 
i = I) which, as we have already seen, realizes the global 
minimum of E.  In particular, this landscape has no local 
minima. In the off-line version, if the starting weight vector 
is not orthogonal to u1 (and this can always be assumed 
for practical purposes) then, provided that the learning rate 
satisfies 

(47) always leads to a decrease of the cost function E and 
therefore the algorithm must converge. 

We already pointed out in Section V-C that in the auto- 
associative case, if we let C = I in (7) and @), then at the 
optimum the matrices A and B are transposes of each other. 
This might suggest training A by gradient descent on the error 
function 

E ( A )  = (11. - A’Ax1I2). (48) 

This possibility and its close relation to the subspace algorithm 
was first mentioned in a previous version of this paper and 
recently analyzed in great detail in Xu [43]. In particular, Xu 
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shows that the full rank critical points of E are A = CU; 
with CC’ = I and are saddle points unless Z = { 1, . . . , p } ,  
as to be expected from (7) and (8). 

Fact 1: For any fixed B ,  the function &(A, B )  is convex 
in the coefficients of A and attains its minimum for any A 
satisfying 

After some computation 
B’BAC,, = B‘C,,. 

= vec(2 (AC,,A’A + AA’AC,,) - 4C,,A) If E,, is invertible and B is full rank p ,  then E is strictly 
convex and has a unique minimum reached when 

3E 
d vec( A)’ 

and thus the on-line version of gradient descent on E is A = A(B) = (B’B)-’B’C,,C~~. 

This follows immediately since, for fixed B,  the additional 
term trace(BC,,B’) +trace( Gee) is just an additive constant. 

Fact 2: For any fixed A, the function &(A, B )  is convex 
in the coefficients of B and attains its minimum for any B 
satisfying 

AA = q(2yz’ - yy’A - AA’yz’). (49) 

We note that this rule is not particularly simple or local and that 
if AA’ = I ,  the right-hand side is the same as in the subspace 
algorithm. If we follow Xu, however, and introduce additional 
units with activations P = A‘y and y = A3 = AA‘y, we can 
rewrite (49) as 

B(AC,,A’ + Cnn) = C,,A’. 

In particular, if E,, is invertible, then E is strictly convex 
and has a unique minimum reached when AA = v(y(z - i ) ’ + ( y  - 6 ) ~ ’ ) .  

This can also be interpreted as a “doubly symmetric” mod- 
B = B(A) = C,,A’(AC,,A’ + E,,)-’ 

ification of Williams’ -SEC algorithm, where the additional 
symmetry incurs from equal treatment of the reconstruction 
errors z - P at the input and y - y at the output layer. In terms 
of the full set of activations 2, y, 3 ,  and 6, the algorithm is 
trivially local, illustrating how locality can be achieved at the 

For the proof, it can be checked that the gradient of fi with 
respect to B is 

3E(A7 B )  =2[((AC,.A’ + Erin) @ I)vec(B)-vec(E,,A’)] 
vec(B)’ 

expense of additional storage and internal computations. and the corresponding Hessian is 
Similar to the subspace algorithm, the optimal A are not 

isolated and hence are not asymptotically stable equilibria of 
the continuous version of the algorithm. As a remedy, Xu 
introduces an additional amplification z = Oy at the outputs; 
the algorithm is then modified as 

a 2 E ( A ,  B )  
d vec( B ) 3  vw(B)’ = 2((AC,,A’ + E,,,) 8 I )  

from which the fact follows in the usual way. 
Now, if E,, = aR, then for fixed A 

AA = q ( z ( z  - i ) ’ + ( z  - 2 ) ~ ’ )  (50) B,(A) = C,,A’(AC,,A’ + OR)-’ 

where 3 = A’z and 2 = A2 = AA‘z. (The relation between 
the original and the modified version is the same as the one 
between the subspace algorithm and Brockett’s algorithm.) If 
the 01 > . . . > O p  > 0, the asymptotically stable equilibria of 
the continuous version of (50) are exactly A = U; (up to 
sign), as desired. 

Of course, other error functions are possible, too. Without 
giving details, we mention the higher-order algorithm of Lenz 

ratio of the information transmitted by the network y = A r  
and the concentration ~ , ( y ~ ) ( l  - (y:)) of the outputs, and 
constrained Lagrangian approach of Cichocki and Unbehauen 

[511. M = CzyCyz, @(A) = trace(MA’R-lA). 

and by direct calculation 

minE,(A, B) = ,!?,(A, B,(A)) 
B 

= trace(E,, + Gee) 
- trace(C,,il’(AC,,A’ + aR)-’AC,,). 

Thus, if a >> 1, we find that 

min ,!?,(A, B) = trare(C,, + Epe) 

- a-’trace( E,, A’R-l AX,, ) + O( a-2) 

and Osterberg [50] which performs gradient descent on the B 

uniformly Over A. Let 

APPENDIX 
SOME MATHEMATICAL PROOFS 

A. Noise Analysis: Some Remarks and the 
Case of High Levels of Noise 

[6], one has the following two facts for E .  
Consider the setting of Section III-C. As in Baldi and Homik 

If a is very large, we might expect from the above that the 
solutions to the constrained noisy problem are “very close” to 
the set of elements of A which maximize @ ( A )  over A. More 
precisely, one has the following proposition. 

Proposition I: Suppose we choose, for all a > 0, matrices 
A, E A,. Then 

lim @(A,) = 4 = max@(A). 
U t M  A 
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Proofi Obviously, limsup,,, @(A,) < 4 .  Suppose 
this inequality were strict. Then there exist y > 0 and a sub- 
sequence Crk + CO as IC + CO such that, for all Ic,@(A,,)  < 
- y. Pick A E A such that @ ( A )  = 4.  Then 

E,, > BU, - E U k  (A ,  B U ,  ( A ) )  
= g i 1 ( @ ( A )  - @(A,,)) + O ( o i 2 )  

2 0;ly + 0(a i2)  

which would imply that lim inf n k  (E,, (A,, , B,, (A,,  )) 
E,, (A@,, ( A ) ) )  > 0,  which is impossible. 

Hence, if we write A+ = { A  E dA : @ ( A )  = 4 } ,  then in 
the foregoing sense, lim,-, A, = A@. 

Proposition 2: Suppose that A = { A  : trace(ASA’) < p }  
where S is symmetric and positive definite. Then 

A@ = { A  : A = &uw‘S-’/~} 

where U is a normalized principal eigenvector of R-’ and w 
is a normalized principal eigenvector of S-1/2 MS-1 /2 .  In 
particular, all such A are rank 1 matrices. 

Proofi Let C = AS1/2p-1/2 such that A = JiTCS-1/2 
and let c = vec(C). Then, by a simple calculation 

@ ( A )  = ~ c ’ ( S - ~ / ~ M S - ’ / ~  @ R-l)c 

and 

c’c = trace(CC’) = p-’trace(ASA’) = 1. 

As a result 

A* = { A  : A = &CS-1/2) 

where c = vec(C) maximizes c ’ ( S - ~ / ~ M S - ~ / ~  @ R-’)c over 
c’c = 1. But again, by the result on quadratic forms reviewed 
in Section 11-A, we know that c is a normalized principal 
eigenvector of S-1/2MS-1/2 @ R-l. It can be seen that all 
such c’s are given by c = vec(ww’), where w is a normalized 
principal eigenvector of S-1/2MS-1/2  and U is a normalized 
principal eigenvector of R- ’ , whence the proposition. 

Apart from multiplicative constants, all rows of optimal 
A matrices in the above proposition are identical, and the 
network provides maximal redundancy. Several corollaries can 
be derived upon making more specific assumptions about the 
matrices M I  R ,  and S. If R # T,, the structure of the noise at 
the hidden layer is taken into account by suitable scaling of 
the rows of A .  If R = T,, we find that all p-dimensional unit- 
length vectors are normalized principal eigenvectors of R-’ , 
so in particular there is one optimal A with identical rows. 
If S = Tn, the corresponding w is a normalized principal 
eigenvector of M ;  in particular, in the autoassociative case, 
we find that M = E:, and therefore w is a principal 
eigenvector of E,, . Finally, if the maximal eigenvalues of 
both S-1 /2MS-1 /2  and R-’ are simple, then the optimal A 
is uniquely determined. 

A different class of sets A is considered in Linsker [9], 
namely 

A = { A = [ a l 1 . . . , ~ , ] ’ :  ( ( a i ( ( < I } .  

In this case, maximizing @ ( A )  over A can be accomplished 
by solving the first order conditions of the Lagrangian 

P 

@ ( A )  + ~ i ( a : u i  - 1). 

This yields that any constrained optimal A satisfies the equa- 
tion R-lAM = K A ,  where K = diag(Kl,...,~,) is a 
diagonal matrix of Lagrange multipliers. If R = T,, this 
simplifies to A M  = K A  which means that the rows a’, of 
A are left eigenvectors of M with eigenvalue K ; .  Hence, 
the optimal A matrices are the ones which have normalized 
principal eigenvectors of M as their rows. 

Finally, if R = I, and A = { A  : AA’ = TP}, then max- 
imizing @ ( A )  over A amounts to maximizing trace(AMA’) 
over AA’ = TP. By a consequence to the PoincarC separation 
theorem (cf. [4, p. 21 1, Theorem 13]), this is achieved if the 
rows of A are mutually orthogonal and span the space of the 
first p principal eigenvectors of M .  

a = 1  

B. Analysis of the Landscape of the Validation Function 
Let us study EV under uniform conditions. We deal only 

with the case Vi 2 vi for every i (the case lii 5 vi is similar). 
If for every i ,ai(O) _> &/(Xi  + vi) (case a)), then bi < 

0,bi < 0 and yi < 0. Therefore, d E V / d k  < 0 and EV 
decreases to its asymptotic value. 

If for every i , A i / ( X i  + lii) < ai(0) 5 Xi/(X; + vi) (case 
b)), then 0 < bi < ( f i i  - vi)/(& + &),pi 2 0, yi < 0 
and pi + yi 2 0. Since a:k decays to zero faster than U:, 
dEV/dlc 2 0 and EV increases to its asymptotic value. 

The most interesting case is c), where for every i ,  ai(0) < 
Xi / (X i  + GZ), or equivalently, bi 2 (fii - vi)/(& + G i ) .  Then 
pi 2 0, yi 5 0, and pi + yi 5 0, so dEV/dIC is negative 
at the beginning and approaches zero from the positive side 
as IC + CO. Strictly speaking, this is not satisfied if /?i = 0. 
But this can occur only if bi = 0 or X i  = 0 (but then yi = 0 
also) or if vi = Vi .  For simplicity, let us add the assumption 
that vi # lii. A function which first increases (respectively, 
decreases) and then decreases (respectively, increases) with a 
unique maximum (respectively, minimum) is called unimodal. 
We need to show that EV is unimodal. For this, we use 
induction on n combined with an analysis of the unimodality 
properties of the derivatives of any order of EV.  We actually 
prove the stronger result that the derivatives of all orders of 
E” are unimodal and have a unique zero crossing. 

For p = 1 , 2 , .  . . , define 

Then 

2 a 

with = ,&(log ui)”-l and yi,, = y;(2 log ai)”-’. Clearly, 
for any p 2 1, we have sign(&) = (-l)P+’, sign(yi,,) = 
(-l)p, and sign(f,!P))(O) = sign(& + y+) = (-1)P. 

Therefore, sign(F(P)(O)) = ( - l ) P  and, as IC -+ CO, F(P)(IC) + 
0 as xi @i,pak, thus with the sign of which is (-l)P+’. 
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As a result, all the continuous functions F(P) must have at least 
one zero crossing. If F(P) is unimodal, then F(P) has a unique 
zero crossing. If F(P+l) has a unique zero crossing, then F(P) 
is unimodal. Thus if for some p o ,  F(PO) has a unique zero 
crossing, then all the functions F(P) (1 5 p < p o )  are unimodal 
and have a unique zero crossing. Therefore, EV has a unique 
minimum if and only if there exists an index p such that F(P) 
has a unique zero crossing. By using induction on n, we are 
going to see that for p large enough this is always the case. 

Before we start the induction, for any continuously differ- 
entiable function f defined over [0, ca), let 

zero(f) = inf{s : f ( x )  = 0} 

and 

ext(f) = inf z : -(s) = O . {:: } 
Most of the time, zero and ext will be applied to functions 
which have a unique zero or extremum. In particular, for any 
i and p ,  it is trivial to see that the functions fp) are unimodal 
and with a unique zero crossing. A simple calculation gives 

and 

Also notice that for any p 2 1 

min zero(f,(p)) I zero(F(P)) 5 maxaero(f!p)) (53) 

minext(f,(P)) 5 e x t ( P ) )  5 maxext(f,(p)). (54) 

(In fact, (53) and (54) are true for any zero crossing or 
extremum of F ( P ) . )  

We can now begin the induction. For n = 1, EV trivially 
has a unique minimum and all its derivatives are unimodal 
with a unique zero crossing. Let us suppose that this is also 
true of any validation error function of n - 1 variables. Let 
A 1  2 . . . 2 A, > 0 and consider the corresponding ordering 
induced on the variables a, = 1 - vA, - qv,, 1 > a,, 2 . . . 2 
aZn 2 0. Let i, be a fixed index such that a,, 2 a,, 2 a2, 
and write, for any p 2 1, F(”)(k)  = G ( p ) ( k )  + f:,”(k) 
with G(P)(k)  = C,+, f,’“’(k). The function f,(o is unimodal 
with a unique zero crossing and so is G(P) by the induction 
hypothesis. Now it is easy to see that F(P) will have a unique 
zero crossing if 

zero( G ( p ) )  5 zero( f::’) 5 ext (G(P))  

By applying ( 5 3 )  and (54) to G(P), we see that F(P) has a 
unique zero crossing if 

2 

2 

Substituting the values given by (51) and (52), we see that for 
large p ,  the above is equivalent to 

log 2 log 2 log 2 
.#a, 1% a, log atz z#z, log a, 
max - ( p  - 1)- I - ( p -  1)- 5 min-p- 

which is satisfied since a;, 2 . . . > ai, . Therefore, using the 
induction hypothesis, we see that there exists an integer po 
such that, for any p > p o ,  F(P) has a unique zero crossing. 
But, as we have seen, this implies that F(P) has a unique zero 
crossing also for 1 5 p 5 PO.  Therefore EV is unimodal 
with a unique minimum and its derivatives of all orders are 
unimodal with a unique zero crossing. 

Notice that F(k)  cannot be zero if all the functions f i  ( k )  are 
simultaneously negative or positive. Therefore, a simple bound 
on the position of the unique minimum koPt is given by 

min zero( f;) 5 zero( F )  5 max zero( f ; )  
a 2 

or 
1 -pi log -. log 2 5 koPt 5 max - min ~ 

z log ai y; z log ai y; 
-P. 1 

(It is also possible, for instance, to study the effect of the initial 
cy;(O) on the position or the value of the local minima. By 
differentiating the relation F ( l )  ( k )  = 0, one gets immediately 

see Fig. 2.) 
To find an upper bound on the number of local minima of 

EV in the general case of arbitrary noise and initial conditions, 
we first order the 2n numbers ai and up into an increasing 
sequence c;, a = 1, . . . , 2n. This induces a corresponding 
ordering on the 2n numbers pi and yi yielding a second 
sequence Ci, i = 1,. . . ,2n. Now the derivative of E” can 
be written in the form 

- = F(’ ) ( k )  = dEV 
dlc 

C(a)ak  dp(a)  s 
where p is the finite positive measure concentrated at the 
points ai and a;. The kernel uk in the integral is totally 
positive. Thus (see, for instance, [52, Theorem 3.1]), the 
number of sign changes of F ( l ) ( k )  is bounded by the number 
of sign changes in the sequence C. Therefore, the number of 
sign changes in F ( l )  is at most 2n - 1 and the number of 
zeros of F ( l )  is at most 2n - 1 and hence the number of local 
minima of EV is at most n. 
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