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Abstract 

Numerous clustering algorithms, their taxonomies and 
evaluation studies are available in the literature. Despite 
the diversity of different clustering algorithms, solutions 
delivered by these algorithms exhibit many commonalities. 
An analysis of the similarity and properties of clustering 
objective functions is necessary from the operational/user 
perspective. We revisit conventional categorization of 
clustering algorithms and attempt to relate them according 
to the partitions they produce. We empirically study the 
similarity of clustering solutions obtained by many tradi-
tional as well as relatively recent clustering algorithms on 
a number of real-world data sets. Sammon’s mapping and a 
complete-link clustering of the inter-clustering dissimilarity 
values are performed to detect a meaningful grouping of 
the objective functions. We find that only a small number of 
clustering algorithms are sufficient to represent a large 
spectrum of clustering criteria. For example, interesting 
groups of clustering algorithms are centered around the 
graph partitioning, linkage-based and Gaussian mixture 
model based  algorithms. 

1. Introduction 

The number of different data clustering algorithms re-
ported or used in exploratory data analysis is overwhelming. 
Even a short list of well-known clustering algorithms can fit 
into several sensible taxonomies. Such taxonomies are 
usually built by considering: (i) the input data representa-
tion, e.g. pattern-matrix or similarity-matrix, or data type, 
e.g. numerical, categorical, or special data structures, such 
as rank data, strings, graphs, etc.,  (ii) the output representa-
tion, e.g. a partition or a hierarchy of partitions, (iii) prob-
ability model used (if any), (iv) core search (optimization) 
process, and (v) clustering direction, e.g. agglomerative or 
divisive.  While many other dichotomies are also possible, 
we are more concerned with effective guidelines for a 
choice of clustering algorithms based on their objective 
functions [1]. It is the objective function that determines the 
output of the clustering procedure for a given data set.  

 Intuitively, most of the clustering algorithms have an 
underlying objective function that they try to optimize. The 

objective function is also referred to as a clustering criterion 
or cost function. The goal of this paper is a characterization 
of the landscape of the clustering algorithms in the space of 
their objective functions. However, different objective 
functions can take drastically different forms and it is very 
hard to compare them analytically. Also, some clustering 
algorithms do not have explicit objective functions. Exam-
ples include mean-shift clustering [13] and CURE [11]. 
However, there is still the notion of optimality in these 
algorithms and they possess their objective functions, albeit 
defined implicitly. We need a procedure to compare and 
categorize a variety of clustering algorithms from the view-
point of their objective functions.  

One possible approach for designing this landscape is to 
derive the underlying objective function of the known 
clustering algorithms and the corresponding general de-
scription of clustering solutions. For example, it was re-
cently established [2,3] that classical agglomerative 
algorithms, including single-link (SL), average-link (AL) 
and complete-link (CL), have quite complex underlying 
probability models. The SL algorithm is represented by a 
mixture of branching random walks, while the AL algorithm 
is equivalent to finding the maximum likelihood estimate of 
the parameters of a stochastic process with Laplacian condi-
tional probability densities. In most instances, the transfor-
mation of a heuristic-based algorithm to an optimization 
problem with a well-defined objective function (e.g. likeli-
hood function) deserves a separate study. Unfortunately, 
given the variety of ad hoc rules and tricks used by many 
clustering algorithms, this approach is not feasible.  

We propose an alternative characterization of the land-
scape of the clustering algorithms by a direct comparative 
analysis of the clusters they detect. The similarity between 
the objective functions can be estimated by the similarities 
of the clustering solutions they obtain. Of course, such an 
empirical view of the clustering landscape depends on the 
data sets used to compute the similarity of the solutions. We 
study two important scenarios: (i) average-case landscape of 
the variety of clustering algorithms over a number of real-
world data sets, and (ii) a landscape over artificial data sets 
generated by mixtures of Gaussian components. In both 
cases multidimensional scaling [14] is employed to visual-
ize the landscape. In the case of controlled artificial data 
sets, we also obtain a dynamic trace of the changes in the 
landscape caused by varying the density and isolation of This research was supported by ONR contract # N00014-01-1-0266 

and a Humboldt Research Award.
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clusters. Unlike the previous study on this topic [1], we 
analyze a larger selection of clustering algorithms on many 
real data sets. 

2. Landscape definition and computation 

The number of potential clustering objective functions is 
arbitrarily large. Even if such functions come from a param-
eterized family of probability models, the exact nature of 
this family or the dimensionality of the parameter space is 
not known for many clustering algorithms. For example, the 
taxonomy shown in Fig. 1 cannot answer if the clustering 
criteria of any two selected clustering algorithms are simi-
lar. We adopt a practical viewpoint on the relationship 
between the clustering algorithms: distance D(⋅,⋅) between 
the objective functions F1 and F2 on a data set X is esti-
mated by the distance d(⋅,⋅) between the respective data 
partitions P1(X) and P2(X)  they produce: 
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Note that for some algorithms (like k-means), the partition that 
optimizes the objective function only locally is returned. 
Distance over multiple data sets {X j} is computed as:  
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By performing multidimensional scaling on the MxM dis-
tance matrix ( , )X i kD F F  or ( , )i kD F F , i, k = 1…M, these 

clustering algorithms are represented as M points in a low-
dimensional space, and thus can be easily visualized. We 
view this low-dimensional representation as the landscape 
of the clustering objective functions. Analysis of this land-
scape provides us with important clues about the clustering 
algorithms, since it indicates natural groupings of the algo-
rithms by their outputs, as well as some unoccupied regions 
of the landscape. However, first we have to specify how the 
distance d(⋅,⋅) between arbitrary partitions is computed.  

While numerous definitions of distance d(⋅,⋅) exist [4], 
we utilize the classical Rand’s index [5] of partition similar-
ity and Variation of Information (VI) distance which are 
both invariant w.r.t. permutations of the cluster indices. The 
Rand’s index value is proportional to the number of pairs of 

objects that are assigned either to the same (
CCn ) or differ-

ent clusters (
CC

n ~ ) in both the partitions: 
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where np is the total number of pairs of objects. The Rand’s 
index is adjusted so that two random partitions have ex-
pected similarity of zero. It is converted to dissimilarity by 
subtracting from one. Performing classical scaling of the 
distances among all the partitions produces a visualization 
of the landscape. Alternatively, we compute the VI distance 
that measures the sum of “lost” and “gained” information 
between two clusterings. As rigorously proved in [4], the VI
distance is a metric and it is scale-invariant (in contrast to 
Rand’s index). Since the results using VI is similar to 
Rand’s index, we omit the graphs for VI in this paper. 

3. Selected clustering algorithms 

We have analyzed 35 different clustering criteria. Only the 
key attributes of these criteria are listed below. The readers 
can refer to the original publications for more details on the 
individual algorithms (or objective functions). The algo-
rithms are labeled by integer numbers in (1…35) to simplify 
the landscape in Fig. 2 and 3.  
•  Finite mixture model with Gaussian components, includ-
ing four types of covariance matrix [6]: (i) Unconstrained 
arbitrary covariance. Different matrix for each mixture 
component (1), and same matrix for all the components (2). 
(ii) Diagonal covariance. Different matrix for each mixture 
component (3), same for all the components (4). 
•  The k-means algorithm (29), e.g. see [7]. 
•  Two versions of spectral clustering algorithm [8,12] with 
two different parameters to select the re-scaling coefficients, 
resulting in four clustering criteria (31-34). 
•  Four linkage-based algorithms: SL (30), AL (5), CL (13) 
and Ward (35) distances [7]. 
•  Seven objective functions using partitional algorithms, as 
implemented in CLUTO clustering program [9]: 
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Figure 1.  A possible taxonomy of clustering algorithms. Some representative algorithms in each category are named. 
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where ni is the number of objects in cluster Ci and 

•  A family of clustering algorithms that combine the idea of 
Chameleon algorithm [10], with these seven objective 
functions. Chameleon algorithm uses two phases of cluster-
ing: divisive and agglomerative. Each phase can operate 
with an independent objective function. Here we use the k-
means algorithm to generate a large number of small clus-
ters and subsequently merge them to optimize one of the 
functions above. This corresponds to seven hybrid cluster-
ing criteria (6-12), where we keep the same order of objec-
tive functions (from Ch+I1 to Ch+H2).
•  Four graph-based clustering criteria that rely upon min-
cut partitioning procedure on the nearest-neighbor graphs 
[9]. Graph-based algorithms use four distance definitions 
that induce neighborhood graph structure: correlation coef-
ficient (21), cosine function (22), Euclidean distance (23), 
and Jaccard coefficient (24). 
•  Four graph partitioning criteria similar to the CURE 
algorithm as described in [11], but with the above men-
tioned distance definitions (14-17). 

4. Empirical study and discussion 

The first part of our experiment uses real-world data sets 
from the UCI machine learning repository (table 1). We 
only consider data sets with a large number of continuous 
attributes. Attributes with missing values are discarded. 
Selected data sets include a wide range of class sizes and 
number of features. All the 35 clustering criteria were used 
to produce the corresponding partitions of the data sets. The 
number of clusters is set to be equal to the true number of 
classes in the data set. The known class labels were not in 
any way used during the clustering. We have considered 
several similarity measures to compare the partitions, 
though we only report the results based on the adjusted 
Rand’s index. Sammon’s mapping is applied to the average 
dissimilarity matrix to visualize different clustering algo-
rithms in two-dimensional space. We have also applied 
classical scaling and INDSCAL scaling methods to the 
dissimilarity data with qualitatively similar results. Due to 
space limitation they are not shown. 

Fig. 2(a) shows the results of Sammon’s mapping per-
formed on the 35x35 partition distance matrix averaged over 
the 12 real-world data sets. The stress value is 0.0587, 
suggesting a fairly good embedding of the algorithms into 
the 2D space. There are several interesting observations 
about Fig. 2(a). SL is significantly different from the other 
algorithms and is very sensitive to noise. A somewhat 
surprising observation is that AL is more similar to SL than 
one would expect, since it is also not robust enough against 
outliers. Chameleon type algorithm with G1 objective func-

tion is also similar to single-link. The k-means algorithm is 
placed in the center of the landscape. This demonstrates that 
k-means can give reasonable clustering results that are not 
far away from other algorithms, and consistent with the 
general perception of the k-means approach. We can also 
detect some natural groupings in the landscape. Chameleon 
motivated algorithms with the objective functions (6, 8, 9, 
10) are placed into the same group. This suggests that the 
objective function used to merge clusters during the ag-
glomeration phase are not that important. Another tight 
group is formed by E1 G’

1, H1 and H2, showing that these 
four criteria, are, in fact, very similar. They also are close to 
the compact cluster of I1, I2, and Ch+I1 outputs in the land-
scape. Ward’s linkage clustering is similar to the k-means 
results. This is expected, as both of them are based on 
square error. The results of all the spectral clustering algo-
rithms (31-34) are relatively close, hinting that different 
flavors of spectral clustering with reasonable parameters 
give similar partitions. All the mixture model based cluster-
ings (1-4) are approximately placed within the same cen-
trally located group of algorithms including the k-means and 
spectral clustering. Besides the single-link, the divisive-
agglomerative hybrid algorithm Ch+I2 as well as CL and AL 
algorithms produced the most “distinct” clusterings. We 
also produce a dendrogram of the clustering algorithms by 
performing complete-link on the dissimilarity matrix (Fig. 
2(b)) and identify the major clusters in the plot of Fig. 2(a). 
Five algorithms are adequate to represent the spectrum of 
the 35 clustering algorithms considered here. 

In another set of experiments, we generated 12 datasets 
with three 2-dimensional Gaussian clusters. The datasets 
differed in the degree of separation between clusters. Ini-
tially, the clusters were well separated and then gradually 
brought together until they substantially overlapped. Fig. 
3(a) traces the changes in the clustering landscape as we 
move the clusters closer together (only a subset of the 
algorithms is shown in this landscape to avoid the clutter). 
Starting from the same point, some algorithms have dis-
persed on the landscape. Again, the k-means and certain 
spectral algorithms generated the most “typical” partitions 
in the center, while the SL and CL had the most unusual 
traces on the landscape. EM algorithms with diagonal and 
unconstrained covariance matrices, being close most of the 
time, diverge when cluster overlap became significant. 

Analogous experiments were performed with 3 Gaussian 
clusters with variable density. We generated 12 data sets by 
gradually making two of the clusters sparse. Qualitatively, 
the algorithms behaved as before, except with a difference 
in starting points.  
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Dermatology Galaxy Glass

Heart Ionosphere Iris

Letter recognition (A, B, C) Segmentation Texture

Letter recognition (X, Y, Z) Wdbc Wine

Table 1. The UCI ML data sets used in the experiments
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To summarize, we have empirically studied the land-
scape of some clustering algorithms by comparing the 
partitions generated for several data scenarios. While some 
algorithms like SL are clear “outliers”, the majority of the 
clustering solutions have intrinsic aggregations. For exam-
ple, Chameleon, Cure/graph partitioning, k-means/spectral/ 
EM are representatives of the different groups. The parame-
ters of the algorithms (other than the number of clusters) are 
of less importance. Hence, a practitioner willing to apply 
cluster analysis to new data sets, can begin by adopting only 
a few representative algorithms and examine their results. In 
particular, landscape visualization suggests a simple recipe 
that includes the k-means algorithm, graph-partitioning and 
linkage-based algorithms.  
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Figure 2.  Landscape of clustering algorithms over real-world datasets: (a) classical scaling, (b) Complete link dendrogram.  

Figure 3.  Landscape of clustering algorithms where paths correspond to the changes caused by: (a) gradually decreas-
ing the separation distance between the three Gaussian clusters, (b) decreasing the density of clusters. 
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