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Preface

Cluster analysis is an important technique in the rapidly growing field known
as exploratory data analysis and is being applied in a variety of engineering and
scientific disciplines such as biology, psychology, medicine, marketing, computer
vision, and remote sensing. Cluster analysis organizes data by abstracting underly-
ing structure either as a grouping of individuals or as a hierarchy of groups. The
representation can then be investigated to see if the data group according to precon-
ceived ideas or to suggest new experiments. Cluster analysis is a tool for exploring
the structure of the data that does not require the assumptions common to most
statistical methods. It is called ‘‘unsupervised learning’’ in the literature of pattern
recognition and artificial intelligence.

This book will be useful for those in the scientific community who gather
data and seek tools for analyzing and interpreting data. It will be a valuable
reference for scientists in a variety of disciplines and can serve as a textbook for
a graduate course in exploratory data analysis as well as a supplemental text in
courses on research methodology, pattern recognition, image processing, and re-
mote sensing. The book emphasizes informal algorithms for clustering data, and
interpreting results. Graphical procedures and other tools for visually representing
data are introduced both to evaluate the results of clustering and to explore data.
Mathematical and statistical theory are introduced only when necessary.

Most existing books on cluster analysis are written by mathematicians, numer-
ical taxonomists, social scientists, and psychologists who emphasize either the
methods that lend themselves to mathematical treatment or the applications in
their particular area. Our book strives for a sense of completeness and for a balanced
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presentation. We bring together many results that are scattered through the literature
of several fields. The most unique feature of this book is its thorough, understand-
able treatment of cluster validity, or the objective validation of the results of
cluster analysis, from the application viewpoint.

This book resulted from class notes that the authors have used in a graduate
course on clustering and scaling algorithms in the Department of Computer Science
at Michigan State University. We owe a debt of gratitude to the many graduate
students who have helped develop this book. Special thanks are due to Karl Pettis,
Tom Bailey, Neal Wyse, Steve Smith, Gautam Biswas, George Cross, James
Coggins, Phil Nagan, Rick Hoffman, Xiaobo Li, Pat Flynn, and C. C. Chen.
The prerequisite for this course is probability theory, matrix algebra, computer
programming, and data structures. In addition to homework problems and an exam,
the students in this course work on a project which can range from the analysis
of a real data set to comparative analysis of various algorithms. This course is
particularly useful for students who wish to pursue research in pattern recognition,
image processing, and artificial intelligence. Interested readers may contact the
authors for homework problems for this course.

We have a long-standing interest in cluster analysis, especially in the problems
of cluster validity and cluster tendency. Our research in this area has been funded
by the National Science Foundation. We are grateful to NSF for this support.
We also wish to acknowledge the support and the facilities provided by the Depart-
ment of Computer Science, Michigan State University, which were essential for
the completion of this book.

A. K. Jain
R. C. DuBEs



Infroduction

The practice of classifying objects according to perceived similarities is the basis
for much of science. Organizing data into sensible groupings is one of the most
fundamental modes of understanding and learning. Cluster analysis is the formal
study of algorithms and methods for grouping, or classifying, objects. An object
is described either by a set of measurements or by relationsh ips between the object
and other objects. Cluster analysis does not use category labels that tag objects
with prior identifiers. The absence of category labels distinguishes cluster analysis
from discriminant analysis (and pattern recognition and decision analysis). The
objective of cluster analysis is simply to find a convenient and valid organization
of the data, not to establish rules for separating future data into categories. Clusteri ng
algorithms are geared toward finding structure in the data.

A cluster is comprised of a number of similar objects collected or grouped
J?_g_f:}_l_]_el’ Everitt (1974) documents some of the following definitions of a cluster:

. ““A cluster is a set of entities which are alike, and entities from different
clusters are not alike.”

2. **A cluster is an aggregation of points in the test space such that the distance
between any two points in the cluster is less than the distance between any
point in the cluster and any point not in it.”’

3. “*Clusters may be described as connected regions of a multi-dimensional
space containing a relatively high density of points, separated from other
such regions by a region containing a relatively low density of points.”’
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The last two definitions assume that the objects to be clustered are represented
as points in the measurement space. We recognize a cluster when we see it in
the plane, although it is not clear how we do it. While it is easy to give a functional
definition of a cluster, it is very difficult to give an operational definition of a
cluster. This is due to the fact that objects can be grouped into clusters with
different purposes in mind. Data can reveal clusters of differing ‘‘shapes’ and
““sizes.”” To compound the problem further, cluster membership can change over
time, as is the case with star clusters (Dewdney, 1986), and the number of clusters
often depends on the resolution (fine versus coarse) with which we view the data.
Figure 1.1 illustrates some of these concepts for two-dimensional point clusters.
How many clusters are there in Figure 1.17 At the global or higher level of
similarity, we perceive four clusters in these data, but at the local level or a
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Figure 1.1 Clusters of point patterns in two dimensions.
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lower similarity threshold, we perceive mn€ clusters. Which answer is correct?

Looking at the data at multiple scales may actually help in analyzing its structure.

Thus the crucial problem in identifying clusters in data is to specify what proximity

is and how to measure it. As is to be expected, the notion of proximity is problem

dependent.

Clustering techniques offer several advantages over a manual grouping pro-
cess. First, a clustering program can apply a specified objective criterion consistently
to form the groups. Human beings are excellent cluster seekers in two and often
in three dimensions, but different individuals do not always identify the same
clusters in data. The proximity measure defining similarity among objects depends
on an individual’s educational and cultural background. Thus it is quite common
for different human subjects to form different groups in the same data, especially
when the groups are not well separated. Second, a clustering algorithm can form
the groups in a fraction of time required by a manual grouping, particularly if a
long list of descriptors or features is associated with each object. The speed,
reliability, and consistency of a clustering algorithm in organizing data together
constitute an overwhelming reason to use it. A clustering algorithm relieves a
scientist or data analyst of the treacherous job of ‘‘looking’” at a pattern matrix
or a similarity matrix to detect clusters. A data analyst’s time is better spent in
analyzing or interpreting the results provided by a clustering algorithm.

Clustering is also useful in implementing the **divide and conquer’’ strategy
to reduce the computational complexity of various decision-making algorithms in
pattern recognition. For example, the nearest-neighbor decision rule is a popular
technique in pattern recognition (Duda and Hart, 1973). However, finding the
nearest neighbor of a test pattern can be very time consuming if the number of
training patterns or prototypes is large. Fukunaga and Narendra (1975) used the
well-known partitional clustering algorithm, ISODATA (Chapter 3), to decompose
the patterns, and then in conjunction with the branch-and-bound method obtained
an efficient algorithm to compute nearest neighbors. Similarly, Fukunaga and Short
(1978) used clustering for problem localization, whereby a simple decision rule
can be implemented in local regions or clusters of the pattern space. The applications
of clustering continue to grow.

Consider the problem of grouping various colleges and universities in the
United States to illustrate the factors in clustering problems. Schools can be clustered
based on their geographical location, size of the student body, size of the campus,
tuition fee, or offerings of various professional graduate programs. The factors
depend on the goal of the analysis. The shapes and sizes of the clusters formed
will depend on which particular attribute is used in defining the similarity between
colleges. Interesting and challenging clustering problems arise when several attri-
butes are taken together to construct clusters. One cluster could represent private,
midwestern, and primarily liberal arts colleges with fewer than 1000 students
and another can represent large state universities. The features or attributes that
we have mentioned so far can easily be measured. What about such attributes as
quality of education, quality of faculty, and the quality of campus life, which
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cannot be measured easily? One can poll alumni or a panel of experts to get
either a numerical score (on a scale of, say, 1 to 10) for these factors or similarity
measures for all pairs of universities. These scores or similarities must be averaged
over all respondents because individual opinions differ. One can also measure
subjective attributes indirectly. For example, faculty excellence in a graduate pro-
gram can be estimated from the number of professional papers written and number
of Ph.D. degrees awarded.

The example above illustrates the difference between decision making and
clustering. Suppose that we want to partition computer science graduate programs
in the United States into two categories based on such attributes as size of faculty,
computing resources, external research support, and faculty publications. In the
decision-making paradigm, an ‘‘expert’’ must first define these two categories by
identifying some computer science programs from each of the two categories (these
are the training samples in pattern recognition terminology). The attributes of
these training samples will be used to construct decision boundaries (or simply
thresholds on attribute values) that will separate the two types of programs. Once
the decision boundary is available, the remaining computer science programs (those
that were not labeled by the expert) will be assigned to one of the two categories.
In the clustering paradigm, no expert is available to define the categories. The
objective is to determine whether a two-category partition of the data, based on
the given attributes, is reasonable, and if so, to determine the memberships of
the two clusters. This can be achieved by forming similarities between all pairs
of computer science graduate programs based on the given attributes and then
constructing groups such that the within-group similarities are larger than the be-
tween-group similarities.

Cluster analysis is one component of exploratory data analysis, which means
sifting through data to make sense out of measurements by whatever means are
available. The information gained about a set of data from a cluster analysis
should prod one’s creativity, suggest new experiments, and provide fresh insight
into the subject matter. The modern digital computer makes all this possible.

Cluster analysis is a child of the computer revolution and frees the analyst
from time-honored statistical models and procedures conceived when the human
brain was aided only by pencil and paper. The development of clustering methodol-
ogy has been truly interdisciplinary. Researchers in almost every area of science
that collects data have contributed, such as taxonomists, psychologists, biologists,
statisticians, social scientists, and engineers. 1. J. Good (1977) has suggested the
new name botryology for the discipline of cluster analysis, from the Greek word
for a cluster of grapes.

One objective of this book is to encourage communication among disciplines.
All too often, the same procedures are developed in different disciplines but are
so clothed in the language of the individual disciplines that cross fertilization is
severely hindered. A casual scan of the bibliography for this book reveals citations
from almost 100 different journals. Only the Journal of Classification, a publication
of the Classification Society of North America which first appeared in 1984, is
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devoted to theoretical and practical issues in exploratory data analysis itself. We
have tried to provide an understandable but complete exposition of cluster analysis
that uses only enough mathematical detail to make the material precise. The space
limitation makes it difficult for us to cover every aspect of cluster analysis in
great detail. We emphasize informal algorithms for clustering methods, and analysis
of results. However, a reader may have difficulty in implementing the algorithms
from the description given in Chapter 3. Most of the well-known clustering algo-
rithms have been implemented and are available as part of clustering and statistical
software packages (see Section 3.4). We see cluster analysis as a tool to be used,
not as a theory to be developed.

In Chapter 2 we present our idea of data with emphasis on ways of viewing
data, such as projections based on eigenvectors and multidimensional scaling.
Four ways in which data are analyzed that are related to cluster analysis are
reviewed so as to clarify the role of cluster analysis. Clustering methods and
algorithms themselves are described in Chapter 3. The primary division among
clustering methods is between hierarchical and partitional methods. Both approaches
are carefully developed and several examples are provided. The availability of
clustering software, methodology by which cluster analysis can be applied, and
comparative studies of various clustering techniques are also summarized in Chapter
3. A comparative analysis of clustering methods is useful since empirical evidence
seems to be the only practical guide to the selection of clustering methods.

The crucial step in applications of cluster analysis is the interpretation of
the results. In Chapter 4 we present a comprehensive summary of procedures for
quantitatively verifying the results of cluster analysis. Monte Carlo techniques
along with the method of bootstrapping are also introduced in Chapter 4, because
they are useful for estimating the distributions of various cluster statistics. Applica-
tions of clustering to an engineering domain (image processing and computer
vision) are discussed in Chapter 5. The book also contains eight appendices to
review briefly related topics of pattern recognition, commonly used Gaussian and
hypergeometric distributions, linear algebra, scatter matrices, factor analysis, multi-
variate analysis of variance, and graph theory. An algorithm to generate clustered
data is also given in one of the appendices. We hasten to add that these appendices
contain only elementary material provided for the convenience of the reader. The
reader should consult standard textbooks for detailed coverage of these topics.

This is not the first book on cluster analysis. Anderberg (1973) has written
the most comprehensive book for those who want to use cluster analysis. We
refer frequently to Anderberg’s excellent exposition. Everitt (1974) explains cluster
analysis in a very readable way but contains fewer details than we feel are necessary.
Tryon and Bailey (1970) wrote one of the first books on cluster analysis, but it
is restricted to a single approach. Jardine and Sibson (1971) concentrate on mathe-
matical foundations. Other early books are those of Duran and Odell (1974) and
Clifford and Stephenson (1975). Sneath and Sokal (1973) include an excellent
chapter on hierarchical clustering. Hartigan (1975) provides a number of interesting
projects, and Lorr (1983) presents cluster analysis especially for social scientists.
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Van Ryzin (1977) provides a good collection of interesting papers. The book by
Gordon (1981) is another excellent reference. As cluster analysis has become an
accepted methodology, chapters in books and long summary papers have appeared.
Enslein et al. (1977) emphasize computational matters in their chapter on clustering.
Cormack (1971) wrote one of the first summaries of cluster analysis. Three papers
appear in Volume 2 of Handbook of Statistics (Krishnaiah and Kanal, 1982).
Lee (1981) provides a long chapter in Volume 8 of Advances in Information
System Science, and Dubes and Jain (1980) contributed a chapter to Volume 19
of Advances in Computers. The chapter by Hawkins et al. (1982) in Topics in
Applied Multivariate Analysis emphasizes model fitting and tests for number of
clusters. Diday and Simon (1976) and Jain (1986) cover clustering algorithms in
the context of pattern recognition and image processing. We owe an intellectual
debt to all of the precursors of this book.

The treatment in this book is not mathematical but uses mathematical notation
and concepts. Chapter 4 requires more mathematical sophistication than do the
other chapters. For the clearest understanding of the material, it is best to read
the book in the order presented. However, each chapter contains many details
that can be omitted on first reading. We have tried to list all applicable current
literature and apologize for inadvertently omitting any important papers. We hope
that some parts of this book will appeal to all who use cluster analysis and that
the book will help those first encountering cluster analysis to get to the important
issues in a timely manner.



Data Representation

The first prerequisite for a rational application of cluster analysis is an appreciation
for the basic factors required to represent the data. Clustering algorithms are matched
to data type, and unless factors such as scale, normalization, and types of proximity
measures are understood, one can be misled when interpreting the results of a
clustering algorithm. The first three sections discuss these issues and define many
of the terms used throughout the book.

Cluster analysis is a tool for exploring data and must be supplemented by
techniques for visualizing data. The most direct visualization is a two-dimensional
plot showing the objects to be clustered as points. Multivariate data cannot always
be faithfully reproduced in two dimensions but when valid, such a representation
is helpful in verifying the results of a clustering algorithm. Sections 2.4 and 2.5
cover some common linear and nonlinear techniques for projecting and representing
multivariate data. Some mathematical and statistical concepts needed to understand
linear projections are summarized in Appendices B, C, and D. The equations
derived to explain linear projections in Section 2.4 bear some resemblance to
equations from multivariate statistics. Thus Appendices E and F review two telated
topics from statistical data analysis: factor analysis, and multivariate analysis of
variance.

The intrinsic, or topological, dimensionality of a data set dictates the smallest
number of factors needed to represent the data. Ways of estimating intrinsic dimen-
sionality are reviewed in Section 2.6. Multidimensional scaling, the topic of Section
2.7, is a procedure for representing qualitative data in a space of few dimensions
and supplements cluster analysis.
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2.1 DATA TYPES AND DATA SCALES

Clustering algorithms group objects, or data items, based on indices of proximity
between pairs of objects. The objects themselves have been called individuals,
cases, subjects, and OTUs (operational taxonomic units) in various applications.
This book uses pattern recognition terminology (Appendix A). A set of objects
comprises the raw data for a cluster analysis and can be described by two standard
formats: a pattern matrix and a proximity matrix.

2.1.1 Pattern Matrix

If each object in a set of n objects is represented by a set of d measurements
(or attributes or scores), each object is represented by a pattern, or d-place vector.
The set itself is viewed as a n X d pattern matrix. Each row of this matrix
defines a pattern and each column denotes a feature, or measurement. For example,
when clustering time functions such as biological signals or radar echoes, a feature
could be a sample value taken at a particular time; the average value of the signal
could also be a feature. The set of feature values for a signal is a pattern. We
require that the same features be measured for all patterns. If patients in a hospital
are to be clustered, each row in the pattern matrix would represent one individual.
The features, or columns in the pattern matrix, could represent responses to questions
on an admission form or the results of diagnostic tests. The same questions must
be asked of every patient and the same diagnostic tests must be performed on all
patients in a particular experiment. Categorical, or extrinsic, information, such
as age, sex, religion, or hair color, is normally used to interpret the results of a
cluster analysis but is not part of the pattern matrix.
~ The d features are usually pictured as a set of orthogonal axes. The n patterns
are then points embedded in a d-dimensional space called a pattern space. We
use the word *‘pattern’” in the technical sense as a point in a pattern space, not
to describe the topological arrangement of objects. A cluster can be visualized as
a collection of patterns which are close to one another or which satisfy some
spatial relationships. The task of a clustering algorithm is to identify such natural
groupings in spaces of many dimensions. Although visual perception is limited
to three dimensions, one must be careful not to think automatically of clustering
problems as two- or three-dimensional. The real benefit of cluster analysis is to
organize multidimensional data where visual perception fails.

Example 2.1

This example shows the pattern matrix representation of a data set, called the 80X data,
that will be used to demonstrate several projection and clustering methods. This data set
was derived from the Munson handprinted FORTRAN character set, which has been used
extensively in pattern recognition studies and consists of handwritten characters from several
authors, each of whom wrote three alphabets of 46 characters. The handwritten characters
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were digitized on a 24 X 24 grid and the gray values were quantized to two levels, resulting
in a binary image. The data for this example use the characters 8, O (letter “*oh™"), and X
from each of the three alphabets written by the first five authors for a total of 45 patterns.
Each pattern is represented by eight features, which count the number of squares from the
perimeter to the character, as shown in Figure 2.1. The actual feature values in integer
format for this 45 X 8 pattern matrix are shown in Table 2.1. The first 15 patterns (rows)
belong to category 8, the next 15 patterns belong to category O, and the last 15 patterns
belong to category X.

The discussion above does not eliminate the possibility of clustering the
features, or columns of the pattern matrix. We simply transpose the pattern matrix,
being sure to choose a proper measure of similarity for the features (Section 2.2).
The names ‘‘Q-mode clustering’’ and ‘‘R-mode clustering’ have been applied to
the clustering of patterns and features, respectively (Sneath and Sokal, 1973).

-
. 3
5 6
4
o 2
Pattern: (11, 11, 5, 6, 10, 10, 5, 5)

Figure 2.1 Binary representation of a handwritten character.



Chap. 2

Data Representation

TABLE 2.1 Pattern Matrix for 80X Data
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2.1.2 Proximity Matrix

Clustering methods require that an index of proximity, or alikeness, or affinity,
or association be established between pairs of patterns. This index can be computed
from a pattern matrix, as discussed in Section 2.2, or can be formed from raw
data. The data in some psychometric applications are collected as proximities.
For example, several individuals can be asked to rank their preference for brands
of soap and the proximity between two brands can be computed by averaging
over individuals. An individual can also be asked to provide proximities directly
by judging similarity between brands on a scale from 1 to 10. A proximity matrix
[d(i, j)] accumulates the pairwise indices of proximity in a matrix in which each
row and column represents a pattern. We ignore the diagonal entries of a proximity
matrix since all patterns are assumed to have the same degree of proximity with
themselves. We also assume that all proximity matrices are symmetric, so all
pairs of objects have the same proximity index, independent of the order in which
they are written. Hubert (1973) and Gower (1977) consider nonsymmetric proximity
matrices.

A proximity index is either a similarity or a dissimilarity. The more the ith
and jth objects resemble one another, the larger a similarity index and the smaller
a dissimilarity index. For example, Euclidean distance between two patterns in a
pattern space is a dissimilarity index, whereas the correlation coefficient is a similar-
ity index. Several proximity indices are described in Section 2.2. Note that a
pattern matrix can easily be converted to a proximity matrix with proximity indices,
but projection algorithms (Sections 2.4 and 2.5) or multidimensional scaling tech-
niques (Section 2.7) are needed to convert a proximity matrix into a pattern matrix.

Example 2.2

We present an example of a proximity matrix that was used by Levine (1977a) to study
the perceived similarity of numerical digits by subjects. The subjects were eight graduate
students who observed a single numerical digit (0-9) as a 7 X 9 dot matrix character for

TABLE 2.2 Confusion Matrix for Stimulus-Response Combination

Response
0 1 2 3 E - 6 7 8 9
0 45 10 68 68 19 39 42 27 59 32
1 16 269 26 9 40 7 10 12 5 6
2 7 5 330 13 5 10 4 9 6 7
3 16 8 40 232 11 33 17 13 13 6
Stimulus 4 7 19 39 13 290 7 3 11 4 6
5 18 6 14 17 12 280 20 13 10 6
6 19 7 42 47 13 46 152 21 42 13
7 11 5 73 14 9 6 1 270 3 6
8 27 2 43 71 10 46 37 11 120 30
9 21 2 24 42 6 56 18 8 34 196
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variable time on a CRT display system. A noise field was immediately displayed on the
CRT so that the digit was not clearly visible. The subjects had to respond what digit was
present in the noisy image. Each student looked at only 50 stimuli, so Table 2.2 shows
the aggregate response of all eight students. The table shows the confusion for each possible
stimulus-response combination. The entry in the second row of the matrix in Table 2.2
indicates that of the 400 stimuli presented for digit 1, 269 correct responses were made
by the subjects. Levine (1977a) defined the frequency of confusion between stimuli to be
the measure of similarity. Thus digit pair 9 and 3 are considered more similar than digit
pair 9 and 1. Notice that this similarity matrix is nonsymmetric. Multidimensional scaling
and hierarchical clustering algorithms were applied to this matrix by Levine to study the
evidence of hierarchical structure in the organization of visual stimuli.

2.1.3 Data Types and Scales

Now that the two primary formats for representing data—the pattern matrix
and the proximity matrix—have been established, we turn to the characteristics
of the data themselves. Anderberg (1973) outlines a categorization of data types
and data scales appropriate for cluster analysis that is summarized below. Recogniz-
ing the type and scale of data will help in selecting a clustering algorithm.

Data rype refers to the degree of quantization in the data. A single feature
can be typed as binary, discrete, or continuous. Binary features have exactly two
values and occur, for example, in ‘‘yes—no’’ responses on a questionnaire. A
discrete feature has a finite, usually small, number of possible values. For example,
samples of a speech signal can be quantized to 16, or 2%, levels, so a feature
representing the sample can be coded into 4 bits. All measurements and all numbers
stored in computers have a finite number of significant digits, so, strictly speaking,
all features are discrete. However, it is often convenient to think of a feature
value as a point on the real line that can take on any real value in a fixed range
of values. Such a feature is called continuous.

Proximity indices can also be binary, discrete, or continuous. For example,
suppose that a set of objects is partitioned into mutually exclusive, all-inclusive
subsets. One binary index of similarity assigns zero to a pair of objects that fall
in different subsets and one to a pair in the same subset. A rank order proximity
index is an integer from 1 to n(n — 1)/2, where n is the number of objects. The
integers represent the relative order of the proximities. Such an index is discrete.
The Euclidean distance proximity index, defined for patterns in a pattern space,
is typed continuous.

The second trait of a feature and of a proximity index is the data scale,
which indicates the relative significance of numbers. Data scales can be dichotomized
into qualitative (nominal and ordinal) scales and quantitative (interval and ratio)
scales. A nominal scale is not really a scale at all because numbers are simply
used as names. For example, a (yes, no) response could be coded as (0, 1) or
(1, 0) or (50, 100); the numbers themselves are meaningless in any quantitative
sense. The other qualitative scale, and the weakest numerical scale, is the ordinal
scale; the numbers have meaning only in relation to one another. For example,
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the scales (1, 2, 3), (10, 20, 30), and (1, 20, 300) are all equivalent from an ordinal
viewpoint. Binary and discrete features and proximity indices can be coded on
these qualitative scales.

The separation between numbers has meaning on an interval scale. A unit
of measurement exists, and the interpretation of the numbers depends on this
unit. For example, a person can be asked to judge satisfaction with politicians on
a scale from 0 to 100. The pair of scores (45, 55) and the pair (10, 90) on two
politicians would indicate very different perceptions. Before the number 10 could
be interpreted, one would need to know that the scale was 0 to 100 or 1 to 10 or
10 to 100. Temperature provides another example of an interval scale. A reading
of 90° Fahrenheit has a very different implication for comfort than does a temperature
of 90° Celsius.

The strongest scale is the ratio scale, on which numbers have an absolute
meaning. This implies that an absolute zero exists along with a unit of measurement,
so the ratio between two numbers has meaning. For example, the distance between
two cities can be measured in meters, miles, or inches, but doubling the distance
always has the same significance when driving from one to the other. Similarly,
doubling one’s income should double purchasing power, no matter what unit of
currency is used. Degrees Kelvin establishes a ratio temperature scale because it
has a natural zero. All three data types can be coded on the two quantitative
scales.

DATA

PRESENTATION

PATTERN PROXIMITY
MATRIX MATRIX

Similarity
Binary

Discrete

Continuous Dissimilarity

Quantitative Iﬂuuﬁtutivel Euoniitutw?
5 ] / \

Nominal Ordinal Interval  Ratio Ordinal Interval  Ratio

Figure 2.2 Formats, types, and scales for data.
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Data type and scale are not always of one’s choosing. Recognizing type
and scale is important in both forming proximity indices and interpreting the results
of a cluster analysis. For example, one should realize that human subjects are
good at generating binary, qualitative dafa but that instruments are required to
“produce continuous, quantitative data. A human subject required to generate discrete,
interval data will be under greater stress than one asked to provide binary, ordinal
data, so the reliability of data can depend on type and scale. Anderberg (1973)
explains conversions from one scale to another. Clustering methods (Chapter 3)
use quantitative indices of proximity to assign a cluster label, or name, to each
object, so a nominal scale can be generated from a quantitative scale. Multidimen-
sional scaling (Section 2.7) changes ordinal scales into ratio scales. The various
formats, types, and scales for data are summarized in Figure 2.2.

2.2 PROXIMITY INDICES

This section explains some of the more common proximity indices. Anderberg
(1973) provides a thorough review of measures of association and their interrelation-
ships. A proximity index between the ith and kth patterns is denoted d(i, k) and
must satisfy the following three properties:

1. (a) For a dissimilarity: d(i, i) = 0, all i

(b) For a similarity: d(i, i) = max d(i, k), all i
2. d(i, k) = d(k, i), all (i, k)
3. di,k) =0, all (i, k)

Ratio and nominal proximity indices are discussed in separate sections.
2.2.1 Ratio Types

A proximity index can be determined in several ways. Suppose that we
begin with a pattern matrix [x;], where x; is the jth feature for the ith pattern.
All features are continuous and measured on a ratio scale. The most common
proximity index for such patterns is the Minkowski metric, which measures dissimi-
larity. The ith pattern, which is the ith row of the pattern matrix, is denoted by
the column vector x;.

- 2 K
Xi—(.l'nx,-z. v ..TM} b 1.,2,. ..o, N

Here d is the number of features, n the number of patterns, and T denotes vector
transpose. The Minkowski metric is defined by

d Iir
di, k) = (Z |x;; — xkjl") where r = 1
j=1

All Minkowski metrics satisfy the additional metric properties stated below.
Property 5 is called the triangle inequality.



Sec. 2.2 Proximity Indices 15

4. d(i, k) = O only if x; = x;
5. d(i, k) = d(i, m) + d(m, k), all (i, k, m)

Gower and Legendre (1986) show that for a metric dissimilarity matrix [d(i, j)],
only properties 1 and 4 are required; other properties can be derived from these
two.

The three most common Minkowski metrics are defined below and are illus-
trated in Figure 2.3.

2
Euclidean Distance: [ 42 +2 1”2 = 4.472

Manhattan Distance: 4 + 2 =6

Sup Distance: Max {4,2} = 4

22 —*2

Figure 2.3 Minkowski metrics.

1. r = 2 (Euclidean distance)
d 12
d(i, k) = [2 Gy — x,g.)z} = [(x; — x0T (x; — x)]"2
j=1
2. r = 1 (Manhattan, or taxicab, or city block distance)

d
dii, k) = 2, |x; — xi
j=1

3. r— o (“‘sup” distance)

d(i, k) = max bx; — x]

Euclidean distance is the most common of the Minkowski metrics. The
familiar geometric notions of invariance to translations and rotations of the pattern
space are valid only for Euclidean distance. Accepted practice in the application
area strongly affects the choice of proximity index. Euclidean distance seems to
be preferred in engineering work. When all features are binary, the Manhattan
metric is called the Hamming distance, or the number of features in which two
patterns differ. Not all proximities encountered in applications are metrics. Tversky
(1977) gives several examples to illustrate why a similarity is not always symmetric
or transitive.
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The squared Mahalanobis distance has also been used as a distance measure
in cluster analysis (Everitt, 1974). The expression for the squared Mahalanobis
distance between patterns x; and x; is

d(i, k) = (x; — x)TF 71 (x; — xp)

where the matrix & is the pooled sample covariance matrix, defined in Appendix
D. The Mahalanobis distance incorporates the correlation between features and
standardizes each feature to zero mean and unit variance. If & is the identity
matrix, the squared Mahalanobis distance is the same as the squared Euclidean
distance.

The sample correlation coefficient defined below is an index of similarity
for continuous, ratio data that can be used with patterns but is more frequently
used to measure the degree of linear dependency between two features.

(Un) 3 (x = my)(xi, — m,)
dij,r) = =1

SjS,.

where m; and s_f' are the sample mean and sample variance, respectively, for feature
j and are defined in Section 2.3. The absolute value is required because a negative
and a positive correlation that differ in sign but not in absolute value have the
same significance when measuring similarity. If d(j, r) = 0, then features j and r
are linearly independent. One of the features is usually discarded if d(j, r) is
close to 1. When data are on an ordinal scale, measures of rank correlation (Conover,
1971; Anderberg, 1973; Goodman and Kruskal, 1954) can be applied.

2.2.2 Nominal Types

If continuous, ratio-scaled data are considered to be the ‘‘strongest’ type
of data, then binary, nominal-scaled data are the ‘‘weakest’’ type. Many actual
measurements, especially data collected from human subjects, are binary and nomi-
nal. Matching coefficients are proximity indices for such data. For convenience,
all feature values are taken to be either 0 or 1. These symbols should be assigned
consistently; if “‘1’* means ‘‘large’” for the first feature and **0’’ means *‘small,”
““1”” must also denote ‘‘large’” for all other features measuring size. Proximity
indices between the ith and kth patterns are derived from the following contingency
table. For example, a;, is the number of features that are | for both patterns, and
ayq is the number of features that are 1 for pattern x; and zero for pattern x;. The
four entries sum to d, the number of features.

X
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Several measures of proximity can be defined from the four numbers {ag,
agy, ayg, @y} in the contingency table for two binary vectors. Anderberg (1973)
reviews most of them and puts them into context. Gower (1971) discusses the
properties of general coefficients based on weighted combinations of these four
numbers and shows the conditions under which proximity matrices formed from
them are positive-definite matrices. Gower’s index can also be used with a mixture
of binary, qualitative, and quantitative features. Measures of proximity for discrete
data have been proposed by Hall (1967), who described a heterogeneity function,
and Bartels et al. (1970), who introducfed the Calhoun distance as the percentages
of patterns “*between’” two given patterns. Many other proximity measures have
been defined for particular problems. Hubalek (1982) summarizes and evaluates
proximity measures for binary vectors.

Two common matching coefficients between x; and x; are defined below:

1. Simple matching coefficient

g + a agy + a
di, = 00 11 _ o0 11
am+a“ +am +a|0 d
2. Jaccard coefficient
ap ap

di, k) = =
L ap +tap +aypy d-—apy

The simple matching coefficient weights matches of 0’s the same as matches
of 1's, whereas the Jaccard coefficient ignores matches of 0’s. The value 1 means
“‘presence of effect’” in some applications, so 1-1 matches are much more important
than 0 — O matches. One example is that of questionnaire data. These two matching
coefficients take different values for the same data and their meanings and interpreta-
tions are not obvious. Accepted practice in the area of application seems to be
the best guide to a choice of proximity index.

Example 2.3

Suppose that two individuals are given psychological tests consisting of lists of 20 questions
to which *‘yes’’ (1) and *‘no’’ (0) responses are required. Assuming that the questions are
phrased so that *‘yes’” and ‘‘no’" have consistent interpretations, meaningful matching
coefficients can be computed from the two patterns.

Feature Number

12345 10 15 20

Pattern 1 (x;)

0110010010011 1001010
Pattern 2 (x) orri1oo000t1tr1rrr1o11o01o0
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The matching coefficients are derived from the following table:

X

Simple matching coefficients: 15/20 = 0.75
Jaccard coefficient: 8/13 = 0.615

A value of 1 for either coefficient would mean identical patterns. However, other
values are not as easily interpreted.

Example 2.4
Suppose that two partitions of nine numerals are given and a measure of their proximity
is desired.

€, =1{(1,3,4,5),(2,6),(7), (8,9}

6, =1{(1,2,3,4),(5,6),(7.8,9)}

The characteristic function for a partition assigns the number 1 or 0 to a pair of
numerals as follows.

TG, j) = 1 if numerals i and j are in the same subset in the partition
70 ifnot

The characteristic functions T, and T,, for partitions ‘6, and €., respectively, are
listed below in matrix form; T, is shown above the diagonal and T, is shown below the
diagonal.

1 2 3 4 5 6 7 8 9
1 — 0 1 1 1 0 0 0 0
2 1 — 0 0 0 1 0 0 O
3 1 1. — 1 1 0 0 0 0
4 1 1 1 — 1 0 0 0 O
] O 0 0 0 — 0 0 0 O
6 o 0o 0o 0o 1 — 0 0 0
7 o 0o o 0 0 0 — 0 0
8 o 0 0 o 0o O 1 — 1
9 o 0o 0 0 O O I 1 —

The two characteristic functions are matched term by term to obtain the
following table and coefficients. The relative significance of these values is discussed
in the next section.
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T,
1 0

114 6
04 22

Simple matching coefficient: 26/36 = 0.722
Jaccard coefficient: 4/14 = 0.286

2.2.3 Missing Data

The problem of missing observations occurs often in practical applications.
Suppose that some of the pattern vectors have missing feature values, as in

X; = (X X2 ? Xig 7 Xi6) "

where the third and fifth features have not been recorded for the ith pattern.
Missing values occur because of recording error, equipment failure, the reluctance
of subjects to provide information, carelessness, and unavailability of information.
Should incomplete pattern vectors be discarded? Should missing values be replaced
by averages or nominal values? Answers to these questions depend on the size of
the data set and the type of analysis. Sneath and Sokal (1973), Kittler (1978),
Dixon (1979), and Zagoruiko and Yolkina (1982) all treat the problem of missing
data.

Dixon (1979) describes several simple, inexpensive, easy to implement, and
general techniques for handling missing values. These techniques either eliminate
part of the data, estimate the missing values, or compute an estimated distance
between two vectors with missing values. We summarize some of these techniques
here.

1. Simply delete the pattern vectors or features that contain missing values.
This technique does not lead to the most efficient utilization of the data and
should be used only in situations where the number of missing values is
very small.

2. Suppose that the jth feature value in the ith pattern vector is missing. Find
the K nearest neighbors of x; and replace the missing value x;; by the average
of the jth feature of the K nearest neighbors. The value of K should be a
function of the size of the pattern matrix.

3. The distance between two vectors x; and X, containing missing values is
computed as follows. First define the distance d; between the two patterns
along the jth feature.

d.:

[0 if x;; or x;; is missing
g

Xij— X otherwise
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Then the distance between x; and x, is written as

d
d?
d = d{)z +
where d;, is the number of features missing in x; or x; or both. Note that if
there are no missing values, then d(i, k) defined above is the squared Euclidean
distance.
4. Let d; denote the average distance between all pairs of patterns along the
Jjth feature defined as follows:
- 2

TR

n(n — 1) i= ¢=)

di, k) =

i—1
foj = -‘fg‘l

where n is the number of patterns. Now define the distance between two
patterns along the jth feature as

d;= d; if x;; or x;; is missing

Finally, the distance between patterns x; and x; is written as

dii, k) = 2, d?

Based on experimental results, Dixon (1979) recommends method 3 as the
best overall method.

2.2.4 Probabilistic Indices

Goodall (1966) proposed an index of similarity that has a uniform distribution
when the data are “‘random.’” The idea of using a probability scale to assess the
significance of a proximity measure appears in Hamdan and Tsokos (1971), who
define an information measure for a contingency table, and Brockett et al. (1981),
who used the asymptotic distribution of an information-theoretic measure on ques-
tionnaire data. Li (1984) provided the most recent example of this type of measure.
Before explaining the proximity measure, we reexamine the simple matching and
Jaccard coefficients in light of their distributions under *‘random’’ data.

Matching coefficients measure the degree of similarity between objects. We
know that their value is between 0 and 1 but do not know how large a value is
required before two objects can be called *‘close.”” We now examine baseline
distributions for the simple matching coefficient and the Jaccard coefficient. A
baseline distribution describes a state of ‘‘randomness,’’ or the absence of structure,
for gauging the magnitude of a matching coefficient. Baseline distributions are
used extensively in Chapter 4. Two vectors will be called “‘close’” if a similarity
as large as the one observed is unlikely under a baseline distribution.

The simple matching coefficient between two d-position binary vectors a
and b can be expressed as
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SMC(a, b) = (1/d)(number of positions in which a and b match)

A value z of SMC can be considered to be ‘‘unusually’’ large if the probability
of achieving a value of z or more is sufficiently low under some baseline distribution,
such as the distribution of SMC for two randomly selected d-vectors. The choice
of a baseline distribution is a matter of taste and depends on the application. The
population g, is defined as the set of all 44 possible pairs of d-vectors. The
probability function Py, assigns probability 4~4 to each pair in )y, and provides
an obvious baseline distribution. This is equivalent to filling in the d-vectors by
choosing the 1’s and 0’s independently with probability 1/2, as in d flips of a
true coin. It is easy to show that the distribution of SMC follows the binomial
distribution (Appendix B). Thus the probability that SMC is k/d or more can be
written as

d
Poi[SMC(a, b) = kid] = >, (j) (172)*
j=k

The notation

denotes the binomial coefficient or
(d) _ d!
m m! (d — m)!

For example, the probability that two six-position, randomly chosen binary vectors
match in four or more positions (i.e., SMC = 2/3) is 0.3438, while the chance
that SMC is 5/6 or more is 0.1094. Thus a value as large as 2/3 for SMC when
d = 6 is not too unlikely even when there is no inherent correspondence between
the vectors. A value of 5/6 might be required before calling the vectors unusually
close under this baseline distribution. Even a perfect match has probability 0.0156,
so one can never be absolutely sure that a large similarity is not a purely random
event.

The Jaccard coefficient for two d-position vectors is given below, where 0
is the vector containing all zeros.

number of 1-1 matches
d — Number of 0—0 matches
J(0,0)=1

Ja,b) = if (a, b) # (0, 0)

The baseline distribution for J cannot be stated as compactly as that for SMC.

PoU =2) =3 X7 Poylk, m)

x=z

where
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Py (k, m) = (d) (d;m) (1yamtk if0=m=d and 0=k=d-m
mn
The starred sum is over the set
(k,m):——=xand0=m=dand0=k=d—m
{ dk d dand0=k=d }
—-m

When d = 6, the chance that J is 5/6 or more is 0.0186, while the chance
that SMC is 5/6 or more is 0.1094. Thus a Jaccard value of 5/6 or more is more
unusual than an SMC value of 5/6 or more. Figure 2.4 shows the probabilities
that the two coefficients are x or more when d = 6. The Jaccard coefficient can
take on more values than the simple matching coefficient.

One can argue that choosing two binary vectors purely at random does not
provide a sharp test of SMC or J because the population of all pairs of vectors is
too large. For example, if the number of 1’s is fixed in each vector, the vectors
[10111011] and [01001111] have three 1-1 matches no matter how the entries of
the two vectors are rearranged. The permutation statistic proposed by Li (1984)
overcomes this limitation. It measures the correspondence between two binary
vectors, just as SMC and J. However, it can be interpreted directly because it
has a uniform distribution over the interval [0, 1] under a baseline distribution,
shown as S in Figure 2.4. Note that the distributions of SMC and J in Figure 2.4
are under Py, while the distribution of § is under a baseline distribution based
on random permutations and described below.

Suppose that a measure of correspondence between binary d-vectors a and
b is to be defined and the vectors are treated as dichotomous, so 0—0 matches

Prob. of X or more (d=6)

1N SMC

1.0

0.51

0.5 1.0

Figure 2.4 Baseline distributions of matching coefficients.
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are not as important as 1-1 matches. Consider the population €, of all d! pairs
of vectors that can be obtained by permuting the entries of one of the vectors.
Not all pairs of vectors are distinct. Probability function Py, assigns each pair of
vectors probability mass 1/d!, thus establishing a new baseline distribution.

Let A;; be the number of 1-1 matches in a randomly selected pair of vectors
from population (}y,. Let N, be the number of 1's in a and let N, be the number
of I's in b. All pairs of vectors in £}y, have N, and N, 1's. For example, there
are six 1’s in [10111011]. The probability that A;; = k can be obtained from the
hypergeometric distribution (Appendix B) under P,. In the notation of Appendix
B, we have a population of size d with N, defectives and we take a sample of
size N,. Of course, the roles of N, and N, can be reversed. The probability of
exactly k£ matches between pairs of 1’s is

() (=)
(v

This probability expression requires that

max {0, N, + N, — d)} = k = min {N,, N,,}

Poy(Ay = k) = =H (k,N,, Ny, d)

The S-statistic defined below is essentially the inverse of the hypergeometric
cumulative density function. Such statistics have been used elsewhere (Kempthorne,
1952). The additive factor ensures that § has a (continuous) uniform distribution
over the unit interval since U is a continuous uniform random variable over the
unit interval. If r is the number of 1-1 matches observed between d-vectors a
and b, the S-measure of proximity is

S(a, b) = >, H(d, N, Ny, k) + H(d, N, N,,, DU
k<t

Since the distribution of S is uniform under Py,, the value of § is implicitly
meaningful. For example, the probability that S is z or more is 1 — z for z
between O and I, as shown in Figure 2.4. This proximity has been used in the
analysis of questionnaire data (Li and Dubes, 1984) and in a template-matching
problem (Li and Dubes, 1985). The additive factor does not contribute much to
the value of § except when d is small.

2.3 NORMALIZATION

Suppose that the raw data consist of an n X d pattern matrix in which all features
are continuous and on a ratio scale. Raw data, or the actual measurements, are
seldom used just as they are recorded unless a probabilistic model for pattern
generation is available. Some normalization is usually employed based on the
requirements of the analysis. Preparing the data for a cluster analysis requires
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some sort of normalization that takes into account the measure of proximity. For
example, Euclidean distance is a popular and familiar index of dissimilarity, but
it implicitly assigns more weighting to features with large ranges than to those
with small ranges. Scaling one feature in miles and a second feature in inches
makes the second feature numerically overpower the first. We present a normaliza-
tion scheme that remedies some of these problems.

As explained earlier in this section, the basic unit of data is called a pattern,
denoted by a d-vector, whose components are scalars called features. The ith
pattern is denoted by the (column) vector X; in this section and the jth feature
value for the ith pattern is denoted by x;;. The asterisk denotes *‘raw’’ or unnormalized
data. If n is the number of patterns in the analysis, the pattern matrix is the n X
d matrix o":

* * *

X1 X127 Xid

*'_ * * -*T_ * * *
A =[x; Xp v X" =X Xpp v Xy
LR S .

Xnl Xn2 Xnd

Each row of " is a pattern. Each point in the pattern space is a potential
pattern. We treat the case when n > d, so the patterns are visualized as a number
of points scattered around the pattern space.

The jth feature average, m;, and jth feature variance, s_,?, are defined as the
sample mean and the sample variance for the jth feature.

n
m; = (1/n) 2, x;-

i=1

n
si=(ln) 2 (x; — m)?

i=1

The simplest type of normalization subtracts the feature means:

X = X; — m 2.1
This normalization makes feature values invariant to rigid displacements of the
coordinates. The second type of normalization translates and scales the axes so

that all the features have zero mean and unit variance:

Xy = L ——1 (2.2)

Removing the asterisk indicates that the pattern has been normalized, but
the type of normalization must be clear from the context. Other types of normalization
include scaling by the range (Carmichael et al., 1968) and a heterogeneity measure
(Hall, 1969). Lumelsky (1982) incorporates the normalization into the clustering
procedure. Normalization or scaling is not always desirable. For example, if the
spread among the patterns is due to the presence of clusters, the normalization in
Eq. (2.2) can change the interpoint distances and can alter the separation between
natural clusters as demonstrated in Figure 2.5.
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Figure 2.5 Effect of normalization.

The d X d matrix R = [ry] is defined below in terms of normalized data.
R = (1/n) AT

where

n
ri = (1/n) ;2 XX (2.3)

=1
Under Eq. (2.1), R is a (sample) covariance matrix. Under Eq. (2.2), Tij is the
sample correlation coefficient between features i and j and ry = 1 for all j; R is
then called a correlation matrix. The entries of R can be interpreted as relative
spreads in the following sense. Each pattern is pictured as a unit of mass placed
in the pattern space. The matrix & is pictured as a swarm of points in the pattern
space (Figure 2.5), each point having the same mass and representing a row of
d. The normalizations of Egs. (2.1) and (2.2) make the diagonal elements of %
the moments of inertia of the swarm about the coordinate axes and force the
origin of the coordinate system to coincide with the sample mean. Equation (2.2)
makes all the moments of inertia unity. Another type of normalization that rotates
the coordinate axes is discussed in Appendix C and is used in linear projection
of the data (Section 2.4).

2.4 LINEAR PROJECTIONS

Projection algorithms map a set of n d-dimensional patterns onto an m-dimensional
space, where m < d. The main motivation for studying projection algorithms in
the context of cluster analysis is to permit visual examination of multivariate
data, so m = 2 in our discussion. When a reasonably accurate two-dimensional
representation of a set of patterns can be obtained, one can cluster by eye and
qualitatively validate conclusions drawn from clustering algorithms. This search
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for a two-dimensional projection is closely related to problems in multivariate
analysis of variance and factor analysis (see Appendices E and F).

A linear projection expresses the m new features as linear combinations of
the original d features.

y; = #x; fori=1,....,n

Here, y; is an m-place column vector, X; is a d-place column vector, and # is an
m X d matrix. Linear projection algorithms are relatively simple to use, tend to
preserve the character of the data, and have well-understood mathematical properties.
The type of linear projection used in practice is influenced by the availability of
category information about the patterns in the form of labels on the patterns. If
no category information is available, the eigenvector projection (also called the
Karhunen—Loeve method, or principal component method) is commonly used.
Discriminant analysis is a popular linear mapping technique when category labels
are available. We now describe these two popular linear projection algorithms.
Readers will find some useful background information on linear algebra and scatter
matrices in Appendices C and D.

2.4.1 Eigenvector Projection

The eigenvectors of the covariance matrix % in Eq. (2.3) define a linear
projection that replaces the features in the raw data with uncorrelated features.
These eigenvectors also provide a link between cluster analysis and factor analysis
(Appendix E). Since R is a d X d positive definite matrix, its eigenvalues are
real and can be labeled so that

MNE=h==0=0

A set of corresponding eigenvectors, ¢;, €, . . . , €4, is labeled accordingly.
The m X d matrix of transformation 3, is defined from the eigenvectors of the
covariance matrix (or correlation matrix) % as follows. The eigenvectors are also
called principal components.

m

The rows of 3, are eigenvectors, as are the rows of € defined in Appendix
C. This matrix projects the pattern space into an m-dimensional subspace (hence
the subscript m on (,,) whose axes are in the directions of the largest eigenvalues
of R as follows. The derivation is given in Section 2.4.2.

yi = #,x; fori=1,. .. .,n (2.4)

The projected patterns can be written as follows:
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T T
!
—|¥2 | = | X2 | 9T = T
%m - . - . gfm ﬂgfm
T T
Ya Xn

Note that x; is the original pattern and y; is the corresponding projected pattern.
Equation (2.4) will be called the eigenvector transformation.

The covariance matrix in the new space can be defined with Eq. (C.1) as
follows:

(UmBLB,, = (Un) 3 yy] = W RH, = ¥, CRAR(H, CR)"
i=1
The matrix %, 6% can be partitioned as follows, where . is an m X m identity
matrix and @ is an m X (d — m) zero matrix.

%m(gf? - [_@l@]

Thus the covariance matrix in the new space, A,,, becomes a diagonal matrix as
shown below.

(1Un)BEB,, = A, = diag A\, Agy . - . 2 A (2.5)

This implies that the m new features obtained by applying the linear transformation
defined by ¥, are uncorrelated.

Techniques for choosing an appropriate value for m in Eq. (2.4) are based
on the eigenvalues of R. Comparing Eqs. (C.2) and (2.5) shows that the sum of
the first m eigenvalues is the “‘variance’’ retained in the new space. That is, the
eigenvalues of 9% are the sample variances in the new space, while the sum of
the d eigenvalues is the total variance in the original pattern space. Since the
eigenvalues are ordered largest first, one could choose m so that

m

d
T Z N/ DN =095

i=1

which would assure that 95% of the variance is retained in the new space. Thus

a ‘‘good’’ eigenvector projection is that which retains a large proportion of the
variance present in the original feature space with only a few features in the
“transformed space Krzanowski (1979) provides a table for the distribution of
this ratio for m = 1, d = 3 and 4, and several values of n under the assumption
that all components of all patterns are samples from independent standard normal
distributions. These tables should help determine whether it is reasonable to say
that the size of the largest eigenvalue could have been achieved by chance. Another
fechnique for choosing 7 1s t0 plot r,, as a function of m and look for a “‘knee”’
in the plot.
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Example 2.5

This example shows the eigenvector projection on the 80X data set described in Example
2.1. The pattern matrix is normalized by subtracting the sample means [Eq. (2.1)]. The
normalized data are projected to two dimensions (m = 2) with Eq. (2.4) as shown in
Figure 2.6, where category labels are given for the projected patterns. The percentage
variance retained in two dimensions is 43.1%. A factor analysis (Appendix E) shows that
features 5 to 8 most strongly affect the first coordinate (abscissa in Figure 2.6). Since
these features are horizontal and vertical measurements (Figure 2.1), we could name the
abscissa in Figure 2.6 as ‘‘horizontal-vertical.”” Features 2, 3, 6, 7, and 8 most strongly
affect the second projected feature (ordinate in Figure 2.6), so we could name the axis
“rightside.””

Subsequent clusterings of the 80X data will show that the patterns are separated
quite well according to category. Some of this separation is evident in Figure
2.6. To demonstrate how the first two principal components of the 80X data
exhibit more structure than other principal components, we show the projection
defined by the third and fourth principal components, or the eigenvectors correspond-
ing to the third and fourth largest eigenvalues of %, in Figure 2.7. Little separation
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Figure 2.6 Two-dimensional representation of 80X data on the first two principal
components.
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Figure 2.7 Two-dimensional projection of 80X data on the third and fourth principal
components.

among categories is evident. However, there is no guarantee that the features
with the largest eigenvalues will be the best for preserving the separation among
categories. Figure 2.8 shows two ‘‘cigar-shaped’” clusters. The eigenvector of %
corresponding to the smallest eigenvalue instead of the largest eigenvalue is the
best for projecting the data to one dimension. Chang (1983) also demonstrates
that the practice of reducing dimensionality by choosing new features with the
largest eigenvalues is not always justified.

Example 2.6

This example demonstrates the value of two-dimensional projections when observing data
in four and six dimensions. Artificial data were generated for this study by computer with
a random number generator. These data sets will be used throughout the book to illustrate
clustering methods. The first data set, called DATAI, contains 100 patterns inside a four-
dimensional hypercube arranged into four clusters. The Neoclus program described in Appen-
dix H was used to generate this data set. Each cluster consists of at least 20 patterns
spread around a cluster center according to a normal distribution whose mean is the cluster
center and whose components are samples of independent Gaussian random variables with
standard deviation 0.12. The cluster centers are chosen at random in the hypercube, but
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Figure 2.8  First principal component not best for separating categories.

the clusters are not allowed to overlap significantly. In this data set, the numbers of patterns
in the four clusters are 24, 35, 21, and 20, respectively.

Figure 2.9 provides a projection of DATAI onto the eigenvectors corresponding to
the two largest eigenvalues of %. The percent variance retained is 78.6%. Since the patterns
were generated in a hypercube, normalizations by Egs. (2.1) and (2.2) should have little
effect on the spread of the data. The locations of dots, or projected patterns, in Figure 2.9
suggest three clusters with the large cluster at the top divided into two overlapping clusters.
One task of cluster analysis is to establish, in the original four-dimensional space, whether
a three-cluster model or a four-cluster model is more appropriate for this data set. Beware
of the limitations of two-dimensional projections. The large cluster in Figure 2.9 might be
well separated into two individual clusters in four dimensions; we simply might not be
able to see the separation in two dimensions. Figure 2.10 is identical to Figure 2.9 except
that the circles of Figure 2.9 have been replaced by category labels. We see the four
clusters generated by the program clearly from the labels. Clustering methods do not use
category labels to organize the data. However, the interpretation of that organization often
depends on the category labels.

A second data set, DATA2, provides a contrast to the structured data in DATAI
and consists of 100 patterns generated uniformly and independently over a hypercube in
six dimensions. Figure 2.11 shows the projection to the two eigenvectors with largest
ecigenvalues. The percent variance retained is 41.9%. The human brain tries to make sense
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Figure 2.9 Two-dimensional projection of DATALI onto first two principal components.

out of dot patterns, so one might be convinced that the projection contains clusters or
other structure. The fact of the matter is that the data were generated purely at random,
so any accumulations of points or large empty spaces in Figure 2.11 are artifacts. Unfortu-
nately, a clustering method, when applied to random data, will impose some type of clustered
structure. The task of cluster validity is to recognize bogus structures.

The projection in Eq. (2.4) is the most common means of representing patterns
in two dimensions and of reducing the dimensionality of the set of patterns. Two
reasons for the central role played by Eq. (2.4) are that it provides the best approxima-
tion to the data (in a mean-square-error sense) and that it maximizes scatter, as
shown in Section 2.4.2.

2.4.2 Derivation
This section approaches linear projection from a minimum mean-square-error

point of view, which means approximating the d-feature patterns in m dimensions
e . . x .
by minimizing a square-error criterion function. Assume that an m X d matrix,
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Figure 2.10 Two-dimensional projection of DATA1 showing category labels.

9, is to be found which projects each d-dimensional pattern x; into a point y; =
#x; in such a way that the square error, explained below, is minimized.
A projection is defined in terms of a set of basis vectors. A set of orthonormal

basis vectors in d dimensions {e,, €,, . . . , e,} is defined by the property
1 ifi = '
) J
24 [0 if i % j

Pattern x; is expressed in terms of the basis vectors as follows:
d
X; = 2, Upe
k=1

where §; = x]e;.
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Figure 2.11 Two-dimensional projection of six-dimensional random data (DATAZ2).

If {e}, e5, . . . , e} is a subset of {e;, e,, . . . , e}, then the d-vector
y; defined below approximates x;.

m
¥i= ?‘_, ke
=1

where {5;; = x?e}. The goodness of the approximation can be judged by the average
square-error measure SE(m), which depends on m and on the set of basis vectors
chosen.

n
SE(m) = (1/n) ,S_jl (x; — yDT(x; — y})
i=
Since the m scalars ({51, . . . , Us,) define the projection, y; is really a
point in the m-dimensional space obtained by projecting each pattern to the space
spanned by (e; . . . , e,,); that is, y; can also be expressed as in Eq. (2.4).
Writing y; as a sum of d-vectors permits a meaningful expression of the square-
error criterion.
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A set of basis vectors that minimizes SE(m) has been shown to be a set of
eigenvectors (¢;, . . . , ¢,) for the covariance matrix 9% (Tou and Heydorn,
1967; Sebestyen, 1962; Wilks, 1963; Fukunaga, 1972). In addition, the basis
vectors that minimize SE(m) correspond to the m largest eigenvalues of R. Projecting
x; into this optimal subspace is precisely the operation in Eq. (2.4). The degree
of approximation can be determined by expressing the minimum square error in
terms of eigenvalues of R.

m d
SE(M) in = zh SN= 2N
j=1 j=m+l

This result justifies the rule suggested earlier for choosing m. Retaining
only those new features that provide the largest spreads minimizes the square
error. In other words, the importance, in a square-error sense, of each prospective
new feature is measured by an eigenvalue of . The normalization of Eq. (2.2)
scales the pattern space so that 3¢ \; = d, but the development given above is
wholly applicable.

The second reason for the importance of Eq. (2.4) is that the eigenvector
projection maximizes scatter. This interpretation of Eq. (2.4) has its roots in theoreti-
cal statistics (Wilks, 1963). Assuming normalization by Eq. (2.1) or (2.2), the
scatter of the set of patterns is given by

|| = n||

where || is the determinant of the covariance matrix, R.
Wilks (1963) has provided a geometrical interpretation of scatter. Another
interpretation follows from the relation between & and %. From Eq. (C.2),

d d
|9 =n?TT N =11 (N
=1 i=1

This shows that the scatter is invariant through a rotation of the pattern space,
such as Eq. (2.4) when m = d. A set of eigenvalues for % is also a set for &,
More important, it shows that the scatter is proportional to the product of the
sample variances (\;, . . . , \,) along the rotated axes.

If the patterns are projected into an m-dimensional space by Eq. (2.4), their
scatter is maximized in the m-dimensional space with respect to all other orthogonal
m-dimensional projections because Eq. (2.4) uses eigenvectors corresponding to
the m largest eigenvalues of % (or of ¥). From an intuitive point of view, maximizing
scatter might not appear to be as worthy a goal as minimizing square error, although
both are achieved with the same transformation.

2.4.3 Discriminant Analysis
Classical discriminant analysis (Wilks, 1963; Friedman and Rubin, 1967;

Fortier and Solomon, 1966 Lachenbruch and Goldstein, 1979) attempts to project
patterns into a space having fewer dimensions than the original pattern space.
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The discriminant analysis projection maximizes the between-group scatter while
holding the within-group scatter constant. The scatter matrices have been defined
in Appendix D. This projection requires that all patterns have pattern class, or
category, labels. The dependence of discriminant analysis on the number of catego-
ries, K, makes this approach fundamentally different from the eigenvector projection
in Section 2.4.1.

An important result of discriminant analysis demonstrates the existence of
a (K — 1) X d matrix, %, with a very interesting property. Letting x{” denote
the jth pattern in class i, %, projects each pattern into a (K — 1)-dimensional
subspace by

v = Hox(?, [ = T . T (= PR (2.6)

and the ratio of scatters |¥y}/|¥| remains constant. This ratio is called Wilks's
lambda statistic. The rows of ¥, are the eigenvectors corresponding to the
(K — 1) nonzero eigenvalues of 8“@'5}3. This assumes that n — K = d, d = K,
and that &y is nonsingular. A tremendous reduction in the number of features
can be realized with no increase in the scatter ratio |$y}/|¥|. For example, three
groups of patterns in a 20-dimensional pattern space can be projected into the
plane while maintaining the scatter ratio. In addition, the value of the scatter
ratio can be expressed in terms of the eigenvalues

(O A L
of 'Sy as follows, where the ordering {; = {; = *** = {g—; = 0 is assumed.
LW = 11+ LA + L) = (1 + LI ™ @7

If the patterns are to be projected into a r-dimensional space, t < (K — 1),
and this scatter ratio is to be minimized in ¢ dimensions, only the eigenvectors
corresponding to the ¢ largest eigenvalues ({;, . . . , {) should be employed.
Dividing the scatter ratio |wl/|¥| in the original pattern space by its counter-
part in the ¢-dimensional space results in [(1 + L4q) === (1 + L]~ L. If the
(K — t — 1) smallest eigenvalues of ¥y'Fp are sufficiently close to zero, the
scatter ratio is increased very little by projecting into t dimensions.

The rows of ¥, in Eq. (2.6) are eigenvectors of ¥y'Fp, while the rows of
%, in Eq. (2.4) are eigenvectors of %R. Thus discriminant analysis requires more
than a correlation matrix, but not much more. When the number of groups or
pattern classes is two (K = 2), the data can be transformed to a line without any
increase in the scatter ratio. This one-dimensional projection is also called the
Fisher linear discriminant.

Recall that the eigenvector projection [Eq. (2.4)] does not require category
information, whereas the projection based on discriminant analysis in Eq. (2.6)
demands category labels. Even when no extrinsic category labels are available,
the patterns can be clustered (Chapter 3) and cluster labels used as category informa-
tion Tor projection purposes. The adequacy of clusters in representing the structure
~of the data must be determined to interpret the results of such projections. Our
emphasis is on projections involving no category labels.
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Two items should be noted concerning the computation of ¥, in Eq. (2.6).
First, although both ¥y, and ¥ are symmetric, the product ¥3! ¥ is not generally
symmetric. Most simple computer programs for finding eigenvectors and eigenvalues
require symmetry. Second, ¥ involves only K vectors and a mean is subtracted
so that the rank of ¥ cannot be greater than (K — 1). The rank of a product of
two matrices cannot exceed the ranks of the components, which explains why
Fw'Fp has, at most, (K — 1) nonzero eigenvalues.

The number of new coordinates in discriminant analysis depends on the
number of categories. Some attempts have been made to alter this requirement.
Okada and Tomita (1985) derive a set of coordinate axes by selecting axes one
at a time under a constraint of orthonormality. Numerical examples show that
the new discriminant axes are superior to those in Eq. (2.6) in some respects.

Example 2.7

A discriminant analysis was performed for the 80X character data discussed in Example
2.1. Here we have three groups of 15 patterns each, each group corresponding to a different
character. Thus the two-dimensional projection defined by Eq. (2.6) and shown in Figure
2.12 retains the scatter ratio from the original eight-dimensional pattern space. Separation
among pattern classes is much more evident than in the eigenvector transformation of
Figure 2.6. Both are linear transformations, but Figure 2.12 uses the intrinsic pattern class
information to separate the patterns according to category.
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Figure 2.12 Two-dimensional projection of 80X data using discriminant analysis.
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2.5 NONLINEAR PROJECTIONS

The inability of linear projections to preserve ‘“‘complex’” data structures has made
nonlinear projections more popular in recent years. By “‘complex data structures’’
we mean situations where patterns lie on a curved surface. For example, the
principal component method will not be able to obtain a good two-dimensional
representation of a data set in which patterns lie along a helix in three dimensions.
The notion of intrinsic dimensionality, discussed in Section 2.6, addresses this
issue in detail. Most nonlinear projection algorithms are based on maximizing or
minimizing a function of a large number of variables. This optimization problem
is data dependent and does not involve an explicit mapping function. Therefore,
a change in the number of patterns requires recomputing the entire projection.
Nonlinear projection algorithms are expensive to use, so several heuristics are
employed to reduce the search time for the optimal solution. For example, the
best principal component projection could be used as the starting configuration
for a nonlinear mapping algorithm.

Nonlinear projection algorithms can be derived from two viewpoints, depend-
ing on the prior information available about the patterns. If category information,
or extrinsic pattern class labels, are known, the aim is to find a nonlinear projection
that reduces dimensionality yet maximizes separability between categories. In the
absence of category information, the goal is to project the patterns onto a low-
dimensional space so as to retain as much structure as possible. For example, the
goal could be to maintain all the interpattern distances. In statistical pattern recogni-
tion (Appendix A) the training samples are labeled according to pattern class and
nonlinear projection algorithms are used to find an “‘effective’” subset of m features.
For example, between-class separability can be maximized and within-class variabil-
ity minimized (Calvert, 1970; Koontz and Fukunaga, 1972; Fukunaga and Ando,
1977; Mantock and Fukunaga, 1980). In exploratory data analysis, we seek two-
dimensional projections to visually perceive the structure present in the data. The
selection of a nonlinear projection algorithm for exploratory data analysis is affected
by the form of the available data. Here we assume that the data are presented as
in a pattern matrix. If the analysis starts with a proximity matrix, multidimensional
scaling (Section 2.7) is applicable.

2.5.1 Graphical Methods

We distinguish nonlinear projection to two dimensions from graphical repre-
sentation of multidimensional patterns. While a projection algorithm seeks two
coordinates that preserve structural information contained in the original d features,
a graphical representation tries to preserve this information exactly by utilizing
all the features as attributes of graphical representation for the patterns. For example,
Chernoff (1973) represents each pattern as a cartoon face whose facial characteristics,
such as nose length, mouth curvature, and eye size, are made to correspond to
individual features. Chernoff’s (1973) program can vary 18 different parameters
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in generating the cartoon faces, and hence n d-dimensional patterns can be repre-
sented by n cartoon faces, for d = 18.

Andrews (1972) represents each d-dimensional pattern vector by a Fourier
series representation, where the coefficients in the series are the feature values,
so that each pattern becomes a periodic time function. Studying the set of functions
permits a grouping of the patterns in some situations. This approach is especially
useful in identifying outliers, or patterns far removed from the main mass of
patterns. Other graphical techniques include representing multidimensional points
as stars, trees, and castles (Kleiner and Hartigan, 1981). Chernoff (1978), Chien
(1978), and Everitt (1978) evaluate several techniques for graphically representing
multivariate data. The development of computer graphics has influenced the popular-
ity of graphical techniques in multivariate statistics. However, these techniques
are valuable only when the number of patterns and the number of features are
small (n < 50, d < 10).

2.5.2 lterative Procedures

Sammon (1969) proposed a nonlinear technique that tries to create a two-
dimensional configuration of points in which interpattern distances are preserved.
Let {x;} denote a set of n d-dimensional patterns and let d(i, j) denote the distance
between patterns x; and X; in the d-dimensional pattern space. Suppose that a
configuration of n points, one per pattern, is available in m < d dimensions and
let D(i, j) be the distance between the points corresponding to X; and X; in this m-
dimensional space. Each pattern is represented by one point in the configuration
space. Sammon (1969) defined the mean-square-error between the two sets of
distances as follows. This square-error formula is similar to the *‘stress’’ criterion
from multidimensional scaling (Section 2.7), so E is sometimes called “‘stress.”
Both double sums are over the set {(i,/): 1 =i < j = n}.

Fes 1 [d(i, j) — DG, )P
> d, ) G5 d(i, j)

i<j

The objective of Sammon’s (1969) algorithm is to find, for a given m, a
configuration of patterns that minimizes E. Note that the error, E, is invariant to
scale changes and sample size. However, the error is a function of nm variables,
namely the coordinates of the points in the m-dimensional projected space, so
the minimization problem is not trivial. Sammon’s algorithm starts with a random
configuration of n patterns in m dimensions and uses the method of steepest descent
to reconfigure the patterns so as to minimize E in an iterative fashion. Some
details of this algorithm are discussed in Section 2.7.1. The algorithm terminates
when the error, E, falls below an acceptable level or if the change in the v_al}le
of E between two successive iterations of the steepest descent algorithm is negligible.
The algorithm should be applied with several initial configurations to ensure a
global minimum for E. Other procedures for minimizing functions of several vari-
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ables, such as simulated annealing (Kirkpatrick, 1984), can also be brought to
bear on this problem.

Kruskal (1971) shows that a configuration very similar to Sammon’s can
be generated by the MDSCAL algorithm (Section 2.7). Cormack (1971) provides
several other expressions for square error and measures of distortion that can be
used in place of E. A two-dimensional configuration for the 80X data set (Example
2.1) using Sammon’s method is shown in Figure 2.13. The 45 patterns in Figure
2.13 have been labeled by category to highlight the separation of the three categories.
Other projections of the 80X data are in Figures 2.6 and 2.12. Figure 2.14 shows
the projection of 100 random patterns in six dimensions (DATA2) by Sammon’s
method. Comparing Figure 2.14 to the eigenvalue projection in Figure 2.11 suggests
that Sammon’s method attempts to spread the data as much as possible. The
projection in Figure 2.14 appears more ‘‘regular’” than that in Figure 2.11. For
most data sets this algorithm converges in fewer than 20 steps. However, the
mapping error may be too large for complex high-dimensional data with m = 2.

Several modifications to Sammon'’s algorithm have been proposed. Niemann
and Weiss (1979) generalized the square error, E, in such a way that smaller
interpattern distances influence E more or less than large interpattern distances,
depending on a parameter. A procedure for computing an optimal step size at
every iteration in the steepest descent algorithm, which guarantees the convergence
of the algorithm, was also proposed. Unfortunately, this procedure imposes an
extra computational burden. Pykett (1978) suggests projecting only **‘archetypes,”
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Figure 2.13 Projection of 80X data by Sammon’s method.
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Figure 2.14 Projection of DATA2 by Sammon’s method.

or centers of clusters of patterns, to two dimensions and drawing circles around
each projected archetype to indicate the spread of the cluster. Such a representation
requires an initial clustering of the patterns and projects cluster centers, not patterns,
but does save a significant amount of computation. Schachter (1978) proposed a
similar modification and used it to project multiband imagery data.

The gradient descent procedure in Sammon’s algorithm moves all patterns
in the configuration space simultaneously to minimize the square error. Chang
and Lee (1973) suggested minimizing the square error by moving the patterns
two at a time. We have found that the amount of computation of this procedure
becomes prohibitive, even when only a moderate number of patterns are involved,
and the final projection depends on the order in which the patterns are paired
(Biswas et al., 1981). The frame method, also proposed by Chang and Lee, over-
comes the computational problem. This heuristic method defines a frame from a
representative number, n’, of patterns and creates a two-dimensional configuration
of the frame. The remaining (n — n’) patterns are then projected one by one,
adjusting their distances only with respect to this fixed frame. The frame method
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achieves considerable savings in computation time and memory requirements be-
cause the interpattern distances among the (n — n') patterns are not maintained.
While Sammon’s algorithm tries to preserve all n(n — 1)/2 interpattern distances,
the frame method attempts to preserve only [n'(n" — 1)/2 + n'(n — n')] interpattern
distances. Data can be first clustered and a few patterns from each of the clusters
can be selected to form a frame (Biswas et al., 1981).

2.5.3 Triangulation

The algorithms discussed above are iterative and seek to preserve the global
structure of the d-dimensional patterns. The triangulation method (Lee et al.,
1977) exactly preserves only local structure in the data. The patterns are represented
in the plane sequentially in such a way that exactly (2n — 3) of the n(n — 1)/2
possible interpattern distances are preserved. Whenever a point representing a
pattern is placed in the plane, its distance to two patterns represented previously
can be exactly preserved: hence the name ‘‘triangulation method.”” This approach
can easily be extended to projection onto an m-dimensional space with the corre-
sponding increase in the number of interpattern distances which can be preserved
exactly.

The triangulation method preserves the (n — 1) distances in the minimum
spanning tree (MST, Appendix G) of the n d-dimensional patterns. That is, the
MST of the patterns in the d-dimensional space is the same as the MST of the
projected patterns in two dimensions. This is a desirable property because the
perceptual grouping in a set of patterns is based in part on the structure inferred
from its MST (Zahn, 1971). The remaining (n — 2) distances can be preserved
by either one of the following two approaches. In the reference point approach,
a reference pattern is chosen and the distances from (n — 2) patterns to this
reference are preserved. In the second-nearest-neighbor approach, the distances
from each pattern to its first two nearest neighbors among the patterns already
projected are preserved.

The triangulation algorithm is much faster than Sammon’s algorithm and
the frame method since it exactly preserves only two interpattern distances in
projecting each pattern (Biswas et al., 1981). On the other hand, the triangulation
method may have the undesirable effect of ignoring global structure in the data,
which is well preserved by algorithms that minimize square-error. The configuration
generated by the triangulation method is sensitive to the choice of the reference
pattern and the order in which the patterns are projected. Biswas et al. (1981)
propose a new mapping algorithm which combines the desirable characteristics
of the triangulation method and Sammon’s method. They also compare several
of these projection algorithms and point out their relative merits and drawbacks.
Wismath et al. (1981) have used the triangulation method to select subsets of the
features. Each of the d features is assumed to be represented as a point in an n-
dimensional space, where n is the number of patterns. The pairwise similarity
between the d points is 1 minus the square of the correlation coefficient. The
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features are projected to a two-dimensional space and visual clustering of the
features determines redundant features.

2.5.4 Other Methods

Square error, or stress between the original and the projected configuration,
is not the only mapping criterion that has been examined. For example, Shepard
and Carroll (1966) define a measure of continuity between two spaces as a means
of projection that is used by Calvert (1970). Many ideas of this sort are closely
related to notions of intrinsic dimensionality (Section 2.6). Wang et al. (1983)
require that the MST of the projected patterns be topologically similar to the
original MST. A measure of the overall similarity between the two MSTs is the
ratio of the number of common edges in the MSTs to the total number of MST
edges.

Another projection algorithm that deserves attention is the projection pursuit
algorithm (Friedman and Tukey, 1974). The principal component method is a
special case of projection pursuit. This linear algorithm overcomes the tendency
of the principal component method to be sensitive only to the global property of
the data. The projection pursuit algorithm defines a projection index for each
direction in the multidimensional space which is a product of the *‘trimmed”
standard deviation and the local density of the projected patterns along that direction.
This interactive algorithm then finds the direction (or pair of directions for two-
dimensional projection) that maximizes this index. The user can decide whether
the projection axis or the plane picked out by the algorithm is *‘interesting.”’ For
example, if the objective is to look for some structure or clusters in the data, the
user can look at several projections and pick out the best one. The starting direction
for the hill-climbing algorithm can include the principal coordinates, the original
features, and randomly chosen directions. This algorithm has been found to be
useful in detecting certain kinds of clusters present in multidimensional data. Re-
cently, the projection pursuit technique has been extended to other problems (regres-
sion, classification, and density estimation) in multivariate data analysis (Huber,
1985).

2.6 INTRINSIC DIMENSIONALITY

The intrinsic, or topological, dimensionality of n patterns in a d-dimensional space
refers to the minimum number of *‘free’’ parameters needed to generate the patterns.
Intrinsic dimensionality essentially determines whether the d-dimensional patterns
can be described adequately in a subspace of dimensionality less than d. The
adjective “‘intrinsic’’ emphasizes that we seek a property only of the data that
does not depend on the dimensionality of the pattern space. For example, d-dimen-
sional patterns along a reasonably smooth curve have intrinsic dimensionality 1,
irrespective of the value of d. Similarly, d-dimensional patterns that define a plane
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or a smooth surface are defined to have intrinsic dimensionality 2. The notion of
intrinsic dimensionality differs substantially from that of linear dimensionality of
a subspace containing all the n patterns. The linear dimensionality is a global
property of the data and usually refers to the number of significant eigenvalues
of the covariance matrix of the data. Another notion of dimensionality is described
by fractal dimensions, which have become very popular in computer graphics
(Mandelbrot, 1977).

Figure 2.15(a) shows 22 points represented in the x-y plane of three-dimen-
sional Euclidean space. The intrinsic dimensionality is | and the linear dimensional-
ity is 2. The intrinsic dimensionality of 20 points that lie on a helix, shown in
Figure 2.15(b), is 1, whereas the linear dimensionality is 3. Noise in the data
can mask the true shape of the underlying surface. In the presence of measurement
noise, a curve may be replaced with a “*fat’ tube and the estimated intrinsic
dimensionality may change from 1 to 2.

Intrinsic dimensionality is an important characteristic of a data set since it
can determine an appropriate number of features for representing the data. A
knowledge of intrinsic dimensionality can provide a goal for dimensionality reduc-
tion as well as determine an appropriate number of dimensions for the mapping
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Figure 2.15 Intrinsic dimensionalities of 1: (a) twenty two points on a plane having
intrinsic dimensionality one; (b) twenty points on a curve having intrinsic dimensionality
one.
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methods discussed in Sections 2.4 and 2.5. The notion of intrinsic dimensionality
has also been used to determine the number of parameters needed to characterize
a complex system when the response of the system is available for a limited
number of inputs (Schwartzmann and Vidal, 1975).

There are two primary approaches to estimating the intrinsic dimensionality
of a given pattern matrix. The first approach is dynamic in nature and attempts
to “‘unfold’” the data, or flatten the swarm of patterns in the d-dimensional space.
An estimate of intrinsic dimensionality can then be obtained by finding the linear
dimensionality from the number of significant eigenvalues of the covariance matrix
of the flattened data (Section 2.4). This method for estimating intrinsic dimensional-
ity is global in nature and does not always work well, especially when the output
of the data-flattening step is highly warped (Pettis et al., 1979). The second approach
does not move the patterns but estimates the intrinsic dimensionality directly from
information in a local neighborhood of patterns. This is also referred to as a
static approach. Some details are given below. Wyse et al. (1980) summarize
and compare algorithms for intrinsic dimensionality.

2.6.1 Global Approach

Bennett (1969) estimated the intrinsic dimensionality globally. His method
is based on the observation that the variance of the distance between points chosen
randomly in a hypersphere is inversely proportional to the dimensionality. Let X,
and X, be independent, vector-valued random variables having uniform distributions
inside a sphere of radius r in a d-dimensional space. The normalized Euclidean
distance between X; and X, is given by

d e
[2 Xy — Xzs)z]
i=1

2r

D=

The probability density function for D (Alagar, 1976; Hammersley, 1950) is given
by
d+1 1
2) = 24d“9~ V1 _(——)
fo(2) z -2\"5 '3
where 1,(p, q) is the incomplete beta function. If var (D) denotes the variance of
D, Bennett shows that

d X var (D) = constant

This relationship has been established only for points uniformly distributed inside
a hypersphere and may not be true for other distributions.

Bennett’s algorithm utilizes the foregoing property to ‘‘flatten’’ the swarm
of patterns. First the patterns (in the original pattern space) are perturbed to increase
the variance of the interpoint distances, thereby reducing d. Then the positions
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of the patterns are adjusted to preserve the rank orders of interpoint distances in
local regions. These two processes are repeated, with suitable normalizations,
until there is no significant increase in the variance of the interpoint distances.
The intrinsic dimensionality is determined by the number of significant eigenvalues
of the covariance matrix of the flattened data (Section 2.4.1). The success of
Bennett’s algorithm depends on three parameters that must be set heuristically.

The main drawback of Bennett’s algorithm is that local structure is not
preserved very well during the unfolding process. Local structure is preserved by
penalizing misrankings of local interpoint distances more heavily than for distances
between distant points. Chen and Andrews (1974) introduced a cost function to
make Bennett’s rank-order criterion more sensitive to local regions. The cost function
controls the extent to which the rank ordering of the interpoint distances is violated.
A zero cost function imposes a very rigid requirement on the movement of points
and the data are flattened very little. Chen and Andrews’s algorithm also requires
the heuristic determination of several parameters.

The process of unfolding the data needs to be constrained by the neighborhood
over which local structure can be preserved. Schwartzmann and Vidal (1975)
require that the minimum spanning tree (MST) of the patterns be preserved during
the linearization of the data. A “*barycentric’’ transformation replaces each pattern
by a weighted average (called a barycenter) of the pattern and all the patterns
connected to it in the MST. The barycentric transformation smoothes the original
MST and shortens the total length of the MST, so a uniform scaling is applied to
restore the original MST length. The barycentric transformation is applied repeatedly
until either the connectivity pattern of the MST is violated or the variance of the
interpoint distances stabilizes. Once again, the actual intrinsic dimensionality is
determined from the number of significant eigenvalues of the covariance matrix.
One problem with this approach is that the MST often breaks during the first
iteration on real data sets, before any significant smoothing takes place. A possible
remedy is to continue the algorithm until a significant number of breaks occur in
the MST. Srivastava (1973) proposed another method based on entropy.

2.6.2 Local Approach

The global nature of the eigenvalue method for estimating intrinsic dimension-
ality have led to three methods for maintaining local properties of the data set.
These methods do not generate a configuration of points or project the patterns
to a space of few dimensions. Instead, they simply estimate an appropriate number
of dimensions for representing the data. Fukunaga and Olsen (1971) partition the
pattern space and estimate eigenvalues in local regions rather than computing
global eigenvalues. The numbers of significant eigenvalues of covariance matrices
computed over each local region are determined and a summary table is formed
which indicates the number of regions corresponding to each dimensionality. The
procedure is interactive, with the final choice of dimensionality left to the judgment
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of the investigator. The size of local neighborhoods can substantially affect the
estimate of intrinsic dimensionality.

Pettis et al. (1979) propose a straightforward estimator for intrinsic dimension-
ality which is based on near-neighbor information. Let r; . be the distance from
pattern x to its kth nearest neighbor. Pettis et al. (1979) model the local properties
of the data by a Poisson, or purely random, spatial point process (Section 4.6) to
obtain the density function for ry .. Define a sample-averaged distance to the kth
nearest neighbor over the set of patterns as

B = (1n) X rex;
i=1

It can be shown that a plot of log (7) as a function of log (k) has a slope of
(1/d), where d is an estimator of the intrinsic dimensionality. Pettis et al. (1979)
solve for d iteratively by fitting a least-squares regression line to a plot of log
(7,) versus log (k) for k = 1, . . . , K. In the special case when only the kth
and (k + 1)st near neighbors are used, the estimate of the intrinsic dimensionality
can be written as

d= _rik_
k(Fy1 — T

This method works well in identifying the true dimensionality for a variety
of data sets and is fairly insensitive to the number of samples and to the algorithmic
parameters. For example, the intrinsic dimensionalities of two “‘surface’ data
sets, uniformly distributed points on the surface of a sphere and uniformly distributed
points on a circle, were correctly identified as 2 and 1, respectively, even for
K = 2 and number of patterns n = 20. The global eigenvalue method will give
estimates of 3 and 2, respectively, for intrinsic dimensionality of these two data
sets.

Trunk’s method (1976) also uses the near-neighbor information to estimate
the intrinsic dimensionality. He computes the average of the angles between the
(k + 1)st nearest neighbor of x; and the subspace that spans the vectors from Xx;
to its k nearest neighbors. This average angle is compared against some thresholds
which are known only for intrinsic dimensionalities of 1, 2, and 3

2.7 MULTIDIMENSIONAL SCALING

Multidimensional scaling is a generic name for a body of procedures and algorithms
that start with an ordinal proximity matrix and generate configurations of points
in one, two or three dimensions. The objectives of multidimensional scaling are
the same as those of the iterative procedures for nonlinear projection in Section
2.5.2. However, those methods begin with a distance matrix that contains ratio-
type data. Multidimensional scaling translates an ordinal scale to a set of ratio
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scales and is an example of ordination. The configuration of points provides a
concrete model of the proximity matrix that can be observed and interpreted.

The literature of multidimensional scaling is large and diverse, with almost
all theoretical developments and applications being in the behavioral and social
sciences. Most engineering applications begin with patterns in a pattern space, so
metric properties can be exploited when projecting the patterns to a low-dimensional
space (Sections 2.4 and 2.5). Several excellent surveys of multidimensional scaling
methodology and practice exist (Green and Carmone, 1970; Kamenskii, 1977:
Kruskal and Carroll, 1969; Romney et al., 1972; Shepard et al., 1972; Shepard,
1974; Young, 1970). In this section we describe a basic multidimensional scaling
algorithm and mention a few applications. Our goal here is to clarify the relation
between multidimensional scaling and cluster analysis (Kruskal, 1977b).

Kruskal (1977a) explains that Torgerson (1958) invented the name multidimen-
sional scaling. Shepard’s (1962) pioneering work on the analysis of (ordinal) proxim-
ities and Kruskal’s (1964a,b) development of MDSCAL, a widely distributed FOR-
TRAN program for multidimensional scaling, popularized this approach to data
analysis and established it as an important tool in behavioral and social science
research. Since the objective of a multidimensional scaling method is to create a
set of scales, or dimensions, that represent the data, natural links exist between
multidimensional scaling, intrinsic dimensionality (Section 2.6), and nonlinear
projections (Section 2.5). These links should become apparent in the following
outline of Kruskal’s (1964a,b) MDSCAL technique.

2.7.1 The Basic MDSCAL Algorithm

We begin with the n X n ordinal proximity matrix of dissimilarities [d(i, j)]
and search for an m-dimensional configuration of points (x,, X5, . . . , X,), where

_ ) T
Xi =[x xp o Xl

for which the rank order of the distances [D(i, j)] in the configuration ‘‘match’
the proximities. The measure of distance in the configuration space is the Minkowski
metric (Section 2.2.1), or

m 1ir
DU;]—) = (2 |Xik T .rjklr) B r=1
k=1

A perfect match occurs when the rank orders of the entries in the matrix
[D(i, j)] match those in the matrix [d(i, j)]. The degree to which the two sets of
rank orders agree is measured by Kruskal's stress, which resembles the square
error E (Section 2.5.2). Before defining stress, we consider briefly the problem
of embedding points in a space.

It is clear that two points can be placed on a line to match the dissimilarity
between two objects. Three points in a metric space define a plane, so a configuration
of three points can always be defined in two dimensions in such a way that interpoint
distances exactly match the dissimilarities among three objects. In fact, n points
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in a metric space can always be embedded in an (n — 1)-dimensional space so
as to exactly recreate the proximities among objects. Shepard (1962) shows that
an (n — 1)-dimensional configuration exists in which the rank order of the distances
matches that of the given ordinal proximities. Lingoes (1971) provides conditions
under which only (n — 2) dimensions are needed for this type of match. Cunningham
and Shepard (1974) study the embedding problem in some detail. It is clear that
if we are to represent even 10 patterns faithfully in two dimensions, the proximities
must be interrelated in a structured fashion. Levine (1978) suggests using stress
to evaluate the randomness in the data.

To define stress, we begin with a fixed configuration of points in m dimensions
with interpoint distance matrix [D(i, j)]. Each point represents an object in the
given ordinal dissimilarity matrix [d(i, )]. Label the rank-ordered distances as

D(iy, j1) = D(ia, o) = *** = D(ipgs jur)
and label the rank-ordered dissimilarities correspondingly as

[d(iy, 1), d(ias o)y - - - & dling, Jap)]

where M = n(n — 1)/2 is the number of interpoint distances and dissimilarities.
Stress can be understood in terms of a Shepard diagram, which is a plot of M
points, each representing the (distance, dissimilarity) values for one pair of patterns.
The abscissa of the Shepard diagram is distance and the ordinate is dissimilarity.
The ordinal dissimilarities are spaced evenly on the y-axis.

The match between dissimilarity matrix and distance matrix is perfect if
the M points can be connected by a sequence of straight lines all having nonnegative
slopes. Consider first any curve consisting of a connected sequence of straight
lines, all segments of which have nonnegative slope. Let D(i, j) be the abscissa
of the intersection of a horizontal line through ordinate d(i,j) with the curve.
Then |D(, j) — 5(E,j)| measures, in distance units, the amount by which D(i, j)
is off the curve. The stress for such a curve is defined below and indicates how
well the rank orders of the dissimilarities among objects match the distances among
points in the configuration. The stress equation involves only the x-axis values
because they are on a ratio scale whereas y-axis values are on an ordinal scale.

> 2IpG, j) = DG, P
Stress(curve) = | — SS D%, )

i<j

Example 2.8

A 4 X 4 rank-order dissimilarity matrix [d(i, j)] is given ketow. Figure 2.16(a) shows a
configuration of four points in one dimension and the corresponding Shepard diagram.
The sequence of straight lines in Figure 2.16(b) was drawn to minimize stress for the
configuration. The points on the Shepard diagram corresponding to interpattern dissimilarities
d(2,3), d(1,2), d2,4), and d(1, 4) lic on the connected sequence of straight lines having
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Figure 2.16 Shepard diagram: (a) configuration of four points; (b) Shepard diagram

and stress computation for one curve.

positive slope. The entries of the matrix [ﬁ(i,j)] are found from intersections between

lines of constant dissimilarity and the straight-line segments.
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The sequence of straight lines in Figure 2.16(b) solves the monotone regression
problem. In other words, the lines define an ascending, monotonic function f that minimizes

3 4

> X dG)) — DG

=1 j=i+1
This minimum value, 0.152, is the stress for the configuration. The MDSCAL procedure
seeks the configuration whose stress is minimum.

The MDSCAL program begins with a randomly chosen configuration of n
points, (X;, X, . . . , X,) in m dimensions, where m is a fixed integer between
| and 6 and moves the points so as to minimize stress. The value of m is usually
2, so that the final configuration can be plotted on paper. Configurations in
m > 2 dimensions are often projected to two dimensions (Section 2.4). Stress is pic-
tured as a function of the nm coordinates of the n points in the configuration. A gra-
dient descent, or steepest descent, procedure is applied. The jth coordinate of the
ith point, x;;, is updated according to

— X + =
Xy =Xy 8l 8ij

where g;; is a numerical approximation to the negative partial derivative of stress
with respect to x;; and
231172
i<j
The step size, «, is changed at each iteration by an empirical formula. The iteration

stops when the magnitude of the gradient, |¢g, is small. An outline of the MDSCAL
algorithm is listed below.

ALGORITHM FOR MULTIDIMENSIONAL SCALING

Step 1. Create a random configuration of n points in 7 dimensions. Normalize
the configuration.

Repeat steps 2 to 5 until [g| is “*small.”

Step 2. Compute the n X n distance matrix [D(i, j)].

Step 3. Compute the stress for the configuration.

Step 4. Compute |g|, the magnitude of the gradient.

Step 5. Compute the step size and update the configuration. Normalize the
configuration.

The MDSCAL program has several options, such as the procedure for minimiz-
ing stress, alternative stress formulas, provisions for missing data, and various
stopping criteria that are not discussed here. The main outputs of the program
are the configuration itself and the final stress. All configurations are normalized
(step 1) by Eq. (2.2). The final Shepard diagram and various statistics are also
generated.
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2.7.2 Interpreting MDSCAL Configurations

How does one determine whether or not the interpoint distances in a configura-
tion are reasonably accurate reflections of the ordinal proximities? Answering this
question will also help establish a minimal dimensionality for the configuration.
Kruskal (1964a,b) suggests a threshold of 0.05 for the stress of a “*good’” configura-
tion. Some confusion results from the existence of two formulas for stress which
treat ties in the proximity matrix differently. Since the stress of a minimum-stress
configuration tends to decrease as the dimensionality of the configuration increases,
one can run the MDSCAL program for increasing dimensionalities, m, and look
for a “‘knee’” in the plot of final stress versus m, which indicates an abrupt decrease
in stress. This prevents choosing an unnecessarily large dimensionality.

Several Monte Carlo studies of the distribution of stress have been conducted.
The three studies reported here generate empirical distributions for stress, given
the dimensionality (m) and the number of points (n), under the null hypothesis
that all (ordinal) proximity matrices are equally likely. The entries in each proximity
matrix are chosen independently and at random from a uniform distribution. Since
only the rank order of the proximities is used in MDSCAL, this is equivalent to
the random graph hypothesis (Section 4.1.1). Stenson and Knoll (1969) computed
the final stress for configurations of 10, 20, 30, 40, 50, and 60 points, each with
configuration dimensionalities of 1, 2, . . . , 10. Only three repetitions were
run and the average stress was plotted against m for each n. Klahr (1969) ran
this experiment for 6, 7, 8, 10, 12, and 16 points with dimensionalities of 1, 2,
3, 4, and 5; 100 Monte Carlo trials were employed for the four smallest numbers
of points and 50 were used for the two largest numbers of points. Klahr (1969)
found several ‘‘good’” solutions (stress < 0.05) for 6, 7, and 8 points in three
dimensions, but none of the configurations yielded ‘‘good’” stress for more than
10 points. Klahr (1969) also showed that the ‘‘elbow rule,”’ discussed above,
yielded spurious results for small numbers of points. Levine (1978) repeated this
experiment. These stress distributions should provide a better indication of accept-
able stress than Kruskal’s **5% rule.”

The relation between n, the number of points, and m, the dimensionality of
the configuration, is an important consideration when interpreting an MDSCAL
configuration. If n is not much larger than m, finding a low-stress configuration
is relatively easy. The configuration is ‘‘loose’” in the sense that moving the
points a bit should not alter the stress greatly and several configurations will
have nearly minimum stress. When n is much larger than m, say by a factor of
at least 5, the fit is “‘tight.”” A low-stress configuration is more trustworthy when
n is large than when # is small.

A second important issue is that the MDSCAL program is designed to capture
global, not local, structure. For example, when the patterns are clustered into a
few tight clusters, the MDSCAL configuration will reproduce the dissimilarities
between the clusters, but the distances among patterns within clusters might not
have much meaning. The reason for this behavior is that stress weights large
distances more heavily than small ones. This fact also permits a few outliers to
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seriously distort the configuration. Thus a preliminary data analysis that removes
outliers and checks for strong clustering effects might be needed (see Kruskal,
1977a).

The *‘local minimum’’ problem can be irritating in practice. The stress function
depends on nm vairables and has several relative minima in the search space.
Steps are taken in MDSCAL to ignore local minima when seeking a global minimum,
but the program can get trapped and stop with an unreasonably poor configuration.
Thus MDSCAL should be run several times with different randomly chosen starting
configurations.

The axes in the final configuration can sometimes be named from pattern
class labels on the points in the configuration. If, for example, the points represent
political figures as seen by a subject and if conservatives tend to fall on the north
side of a two-dimensional configuration and liberals on the south side, the north/
south axis might be named ‘‘ideology.’’ Similarly, urban politicians on the east
side of the configuration and rural politicians on the west side could lead to a
name *‘‘urbanization’’ for the other axis. In this case, one might conclude, assuming
that the two-dimensional configuration had low stress, that the subject views politi-
cians by ideology and constituency. Of course, there is no assurance that one
will be able to interpret the axes. Another way of interpreting the configuration
is to impose a hierarchical clustering (Section 3.2) on the configuration and studying
the clusters.

Multidimensional scaling has been applied in numerous circumstances (Rom-
ney et al., 1972). For example, Levine (1977b) provides a straightforward applica-
tion in a study of the way undergraduates perceive sports. Kruskal and Hart (1966)
reported an application of multidimensional scaling to the analysis of 50,000 possible
computer malfunctions and the results of 1000 pass/fail tests for each malfunction.

Example 2.9

Levine (1977a) used multidimensional scaling to study the stimulus-response data described
in Example 2.2. The original asymmetric confusion matrix was converted to a symmetric
matrix. The two-dimensional solution obtained by MDSCAL algorithm is shown in Figure
2.17. The horizontal axis in Figure 2.17 separates purely straight numbers (1 and 4) from
the curved numbers. The vertical axis in the two-dimensional configuration is named *‘locus
of curvature.”’ Additional results obtained with hierarchical clustering suggest four major
groups in the 10 digits: purely straight numbers (1 and 4), combined straight and curved
numbers (2 and 7), rounded curved numbers (0, 3, 6, 8), and complex curved numbers (5
and 9). The stress values in one, two, three, and four dimensions are 0.334, 0.207, 0.117,
and 0.033, respectively. To avoid local minima problems the MDSCAL algorithm was
run with 10 different starting configurations.

The basic idea of multidimensional scaling has been generalized and extended
in many ways. We mention a few here. Ramsay (1978) studies the process of
defining an ellipse about each point of the configuration which defines the region
that contains the “‘true’’ population point with a confidence of 0.95. Carroll and



Sec. 27  Multidimensional Scaling 53

Figure 2.17 Two-dimensional solution obtained by MDSCAL analysis of the 10 num-
bers. (Source: David M. Levine, **Multivariate Analysis of the visual information process-
ing of numbers," Journal of Multivariate Behavioral Research 12, 1977, 347-355.)

Wish (1971) introduced a program called INDSCAL (Individual Differences Scaling)
which analyzes proximity matrices from several subjects simultaneously by trying
to generate a configuration faithful to the individual subjects as well as to the
group of subjects. Kruskal (1977a) provides computational details. Tzeng and
Landis (1978) suggest some generalizations. Bentler and Weeks (1978) probe
ways of fitting a model to the data by estimating parameters of the model during
multidimensional scaling. Cunningham and Shepard (1974) search for a functional
relationship between dissimilarities and distances. Hubert and Busk (1976) attack
the problem of adding points to an existing configuration. Lindman and Caelli
(1978) use Riemannian spaces rather than Minkowski metrics in multidimensional
scaling. MacCallum (1974) relates multidimensional scaling to factor analysis.
MacCallum and Cornelius (1977) compare MDSCAL and INDSCAL to ALSCAL,
another procedure for modeling proximity data, and provide a Monte Carlo study
of the accuracy with which ALSCAL recovers data structure. Ramsay (1977)
proposes an alternative to multidimensional scaling that fits a log-normal distribution
to the proximities themselves. Kakusho and Mizoguchi (1983) have extended non-
metric multidimensional scaling by defining a new local criterion function which
requires that the first K nearest neighbors of each object in the original proximity
matrix remain nearest neighbors in the configuration.
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2.8 SUMMARY

Several factors that must be appreciated during a cluster analysis have been reviewed
in this chapter. The form, type, and scale of data are often dictated by the problem
domain and measuring instruments, but one should realize the influences of these
factors on clustering options. The properties of the proximity index chosen must
be readily understood and accepted in the area of application. The type of normaliza-
tion applied to the data depends on the manner in which the data are recorded.
Our tutorial exposition of the eigenvector projection reflects the key role of this
linear transformation.

One way of exploring data is to look at it. Thus we have discussed several
linear and nonlinear projections in Sections 2.4 and 2.5, along with ways of
picturing multivariate data. Intrinsic dimensionality algorithms are often ignored
in clustering applications, but establishing an appropriate number of factors for
representing data is a persistent problem. Our treatment in Section 2.6 is more a
guide to the literature than a handbook of practical procedures.

Multidimensional scaling, treated briefly in Section 2.7, may be considered
a nonlinear representation technique and a means for estimating intrinsic dimension-
ality. It is unique in its starting point—an ordinal proximity matrix. A wide variety
of scaling procedures has been developed in the psychometric literature that should
interest researchers in other areas. The information gleaned from representing the
data in various ways and studying its intrinsic dimensionality supplements and
supports a cluster analysis and can even make a cluster analysis unnecessary.
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Clustering Methods
and Algorithms

Cluster analysis is the process of classifying objects into subsets that have meaning
in the context of a particular problem. The objects are thereby organized into an
efficient representation that characterizes the population being sampled. In this
chapter we present the clustering methods themselves and explain algorithms for
performing cluster analysis. Section 3.1 lists the factors involved in classifying
objects, and in Sections 3.2 and 3.3 we explain the two most common types of
classification. Computer software for cluster analysis is described in Section 3.4.
Section 3.5 outlines a methodology for using clustering algorithms to the best
advantage. This chapter focuses on the act of clustering itself by concentrating
on the inputs to and outputs from clustering algorithms. The need for the formal
validation methods in Chapter 4 will become apparent during the discussion.

3.1 GENERAL INTRODUCTION

A clustering is a type of classification imposed on a finite set of objects. As
explained in Section 2.2, the relationship between objects is represented in a
proximity matrix in which rows and columns correspond to objects. If the objects
are characterized as patterns, or points in a d-dimensional metric space, the proximi-
ties can be distance between pairs of points, such as Euclidean distance. Unless
a meaningful measure of distance, or proximity, between pairs of objects has
been established, no meaningful cluster analysis is possible. The proximity matrix
is the one and only input to a clustering algorithm.

55
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Clustering is a special kind of classification. See Kendall (1966) for discussion
on the relationship between classification and clustering. Figure 3.1 shows a tree
of classification problems as suggested by Lance and Williams (1967). Each leaf
in the tree in Figure 3.1 defines a different genus of classification problem. The
nodes in the tree of Figure 3.1 are defined below.

a. Exclusive versus nonexclusive. An exclusive classification is a partition
of the set of objects. Each object belongs to exactly one subset, or cluster. Nonexclu-
sive, or overlapping, classification can assign an object to several classes. For
example, a grouping of people by age or sex is exclusive, whereas a grouping
by disease category is nonexclusive because a person can have several diseases
simultaneously. Shepard and Arabie (1979) provide a review of nonexclusive or
overlapping clustering methods. This chapter treats only exclusive classification.
Fuzzy clustering is a type of nonexclusive classification in which a pattern is
assigned a degree of belongingness to each cluster in a partition and is explained
in Section 3.3.8.

b. Intrinsic versus extrinsic. An intrinsic classification uses only the proximity
matrix to perform the classification. Intrinsic classification is called ‘‘unsupervised
learning™’ in pattern recognition because no category labels denoting an a priori
partition of the objects are used. (See Appendix A for an introduction to pattern
recognition.) Extrinsic classification uses category labels on the objects as well

Classifications

| ' 1
Non-Exclusive
(Overlapping)

Exclusive

Intrinsic

Extrinsic

(Supervised) (Unsupervised)

Hierarchical Partitional

Figure 3.1 Tree of classification types.
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as the proximity matrix. The problem is then to establish a discriminant surface
that separates the objects according to category. In other words, an extrinsic classifier
relies on a “‘teacher,’’ whereas an intrinsic classifier has only the proximity matrix.

One way to evaluate an intrinsic classification is to see how the cluster
labels, assigned to objects during clustering, match the category labels, assigned
a priori. For example, suppose that various indices of personal health were collected
from smokers and nonsmokers. An intrinsic classification would group the individu-
als based on similarities among the health indices and then try to determine whether
smoking was a factor in the propensity of individuals toward various diseases.
An extrinsic classification would study ways of discriminating smokers from non-
smokers based on health indices. We are concerned only with intrinsic classification
in this book; intrinsic classification is the essence of cluster analysis.

¢. Hierarchical versus partitional. Exclusive, intrinsic classifications are sub-
divided into hierarchical and partitional classifications by the type of structure
imposed on the data. A hierarchical classification is a nested sequence of partitions
and is explained in Section 3.2, whereas a partitional classification is a single
partition and is defined in Section 3.3. Thus a hierarchical classification is a special
sequence of partitional classifications. We will use the term clustering for an
exclusive, intrinsic, partitional classification and the term hierarchical clustering
for an exclusive, intrinsic, hierarchical classification. Sneath and Sokal (1973)
apply the acronym SAHN (Sequential, Agglomerative, Hierarchical, Nonoverlap-
ping) to exclusive, intrinsic, hierarchical, agglomerative algorithms. The differences
and similarities between algorithms for generating these two types of classifications
are the topics of this chapter.

Several algorithms can be proposed to express the same exclusive, intrinsic
classification. One frequently uses an algorithm to express a clustering method,
then examines various computer implementations of the method. The primary
algorithmic options in common use are explained below.

1. Agglomerative versus divisive. An agglomerative, hierarchical classification
places each object in its own cluster and gradually merges these atomic
clusters into larger and larger clusters until all objects are in a single cluster.
Divisive, hierarchical classification reverses the process by starting with all
objects in one cluster and subdividing into smaller pieces. Thus this option
corresponds to a choice of procedure rather than to a different kind of classifica-
tion. Partitional classification can be characterized in the same way. A single
partition can be established by gluing together small clusters (agglomerative)
or by fragmenting a single all-inclusive cluster (divisive).

2. Serial versus simultaneous. Serial procedures handle the patterns one by
one, whereas simultaneous classification works with the entire set of patterns
at the same time (see Clifford and Stephenson, 1975).

3. Monothetic versus polythetic. This option is most applicable to problems in
taxonomy, where the objects to be clustered are represented as patterns, or
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points in a space. A monothetic clustering algorithm uses the features one
by one, whereas, a polythetic procedure uses all the features at once. For
example, a different feature can be used to form each partition in a hierarchical
classification under a monothetic algorithm. We will consider only polythetic
algorithms.

4. Graph theory versus matrix algebra. What is the appropriate mathematical
formalism for expressing a clustering algorithm? We will express some algo-
rithms in terms of graph theory, using properties such as connectedness
and completeness to define classifications, and express other algorithms in
terms of algebraic constructs, such as mean-square-error. The choice is one
of clarity, convenience, and personal choice. When implementing an algorithm
on a computer, attention must be paid to questions of computational efficiency.
This issue is not related to human understanding of the classification method.
Some algorithms have convenient expressions under both options.

3.2 HIERARCHICAL CLUSTERING

A hierarchical clustering method is a procedure for transforming a proximity matrix
into a sequence of nested partitions. A hierarchical clustering algorithm is the
specification of steps for performing a hierarchical clustering. It is often convenient
to characterize a hierarchical clustering method by writing down an algorithm,
but the algorithm should be separated from the method itself. In addition to defining
algorithms and methods in this section, we define the type of mathematical structure
a hierarchical clustering imposes on data and describe ways of viewing that structure.

First comes the notion of a sequence of nested partitions. The n objects to
be clustered are denoted by the set &.

B= Dy Kosonoy Kt

where x; is the ith object. A partition, 6, of ¥ breaks % into subsets {C;, C5,
.. C,,} satisfying the following:

CNC=® for i and j from 1 tom, i#j
C|UC2U...UC,"=%

In this notation, ‘‘N"" stands for set intersection, *’U"" stands for set union,
and & is the empty set. A clustering is a partition; the components of the partition
are called clusters. Partition 9 is nested into partition ‘€ if every component of
9B is a geamew subset of a component of 6. That is, € is formed by merging
components of 3. For example, if the clustering ‘6 with three clusters and the
clustering % with five clusters are defined as follows, then % is nested into 6.
Both ¢ and % are clusterings of the set of objects {x|, x, . . ., Xjo}.

(6 = {(":ls X3, Xs, x?)! (—r2! X3, Xg, IS}- (xg, IID)}

% = {(xls -‘rj)! (xﬁs x?}! (12)‘ (14' X6 'rg)! (XI), xlo)}
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Neither € nor % is nested into the following partition, and this partition is
not nested into € or %.

{(xls X2, X3, xd.)v (-x-Sa Xes X7, xs)! (Xg, I]O)}

A hierarchical clustering is a sequence of partitions in which each partition
is nested into the next partition in the sequence. An agglomerative algorithm for
hierarchical clustering starts with the disjoint clustering, which places each of the
n objects in an individual cluster. The clustering algorithm being employed dictates
how the proximity matrix should be interpreted to merge two or more of these
trivial clusters, thus nesting the trivial clustering into a second partition. The
process is repeated to form a sequence of nested clusterings in which the number
of clusters decreases as the sequence progresses until a single cluster containing
all n objects, called the conjoint clustering, remains. A divisive algorithm performs
the task in the reverse order,

A picture of a hierarchical clustering is much easier for a human being to
comprehend than is a list of abstract symbols. A dendrogram is a special type of
tree structure that provides a convenient picture of a hierarchical clustering. A
dendrogram consists of layers of nodes, each representing a cluster. Lines connect
nodes representing clusters which are nested into one another. Cutting a dendrogram
horizontally creates a clustering. Figure 3.2 provides a simple example. Section
3.2.2 explains the role of dendrograms in hierarchical clustering.

Other pictures can also be drawn to visualize a hierarchical clustering (Kleiner
and Hartigan, 1981; Friedman and Rafsky, 1981; Everitt and Nicholls, 1975).
Information other than the sequence in which clusterings appear will be of interest.
The level, or proximity value, at which a clustering is formed can also be recorded.
If objects are represented as patterns, or points in a space, the centroids of the
clusters can be important, as well as the spreads of the clusters.

Two specific hierarchical clustering methods are now defined called the single-
link and the complete-link methods. Section 3.2.1 explains algorithms for these
two commonly used hierarchical clustering methods. The sequences of clusterings
created by these two methods depend on the proximities only through their rank

Clusterings Xy Xy Ry Xy Xy
{(x,),(%,),(%5), (%) (%5)} T__T @  (Disjoint)
{(%4,%,), (%9), (%), (%)}

{(x1,%5), (5,80, (%)}

{(%y, %50 %3, %), (%)}

{(%y, %50 %5, %y %5)) (Conjoint)

Figure 3.2 Example of dendrogram.
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order. Thus we first assume an ordinal scale for the proximities and use graph
theory to express algorithms. Single-link and complete-link hierarchical methods
are not limited to ordinal data. Sections 3.2.4 and 3.2.5 examine algorithms for
these two methods in terms of interval and ratio data. The effects of proximity
ties on hierarchical clustering are discussed in Section 3.2.6, while algorithms
defined for single-link and complete-link clustering are generalized in Sections
3.2.7 and 3.2.9 to establish new clustering methods. The issues in determining
whether or not a hierarchical classification is appropriate for a given proximity
matrix are postponed until Chapter 4.

3.2.1 Single-Link and Complete-Link Algorithms from
Graph Theory

We begin with a symmetric n X n proximity matrix 9 = [d(i, j)], as defined in
Section 2.2. The n(n — 1)/2 entries on one side of the main diagonal are assumed
to contain a permutation of the integers from 1 to n(n — 1)/2 with no ties. That
is, the proximities are on an ordinal scale. We take the proximities to be dissimilari-
ties; d(1, 2) > d(1, 3) means that objects 1 and 3 are more like one another than
are objects 1 and 2.

Example 3.1

An example of an ordinal proximity matrix for n = 5 is given as matrix 9.

X, X3 X3 X5 Xs

% [0 &8 & 2 %

x» |6 0 1 5 3
Dy=x, [8 1 0 10 9
x, |2 5 10 0 4
=17 3 9 4 9

A threshold graph is an undirected, unweighted graph on n nodes without
self-loops or multiple edges. Each node represents an object. See Appendix G
for a brief review of terms in graph theory. A threshold graph G(v) is defined
for each dissimilarity level » by inserting an edge (i, j) between nodes i and j if
objects i and j are less dissimilar than ». That is,

(i, j) € G(v) if and only if d(i, j) =v

As discussed in Section 2.2, we assume that d(i, /) = 0 for all i. Thus
G(v) defines a binary relation for any real number v that is reflexive and symmetric.
A binary relation is a subset of the product set £ X &, where ¥ is the set of
objects. Objects x; and x; are “‘related”” if their dissimilarity is below the threshold
v. Reflexive, symmetric binary relations are pictured in a natural fashion by a
threshold graph. Figure 3.3 shows the binary relation obtained from proximity
matrix %, above for a threshold of 5. The symbol ‘“*'” in position (i, j) of the
matrix means that the pair (x;, x;) belongs to the binary relation.
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"
xl xz Xs 34 Xs 3 K4 Xy

Xy * il

xz L L] L] *

b ¥ ¥ X

3 2 35

x4 - o * L

X, - »* »

Figure 3.3 Binary relation and threshold graph for threshold 5.

Simple algorithms for the single-link and complete-link clustering methods
based on threshold graphs are listed below. These algorithms should help one
conceptualize the way in which the two hierarchies are formed and can easily be
applied to small problems. Other algorithms are given later in this chapter that
are appropriate for computer implementation. Both algorithms assume an ordinal
dissimilarity matrix containing no tied entries and produce a nested sequence of
clusterings that can be pictured on a dendrogram.

AGGLOMERATIVE ALGORITHM FOR SINGLE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering implied by threshold graph G(0),
which contains no edges and which places every object in a unique cluster,
as the current clustering. Set k < 1.
Step 2. Form threshold graph G(k).

If the number of components (maximally connected subgraphs) in G(k)
is less than the number of clusters in the current clustering, redefine the
current clustering by naming each component of G(k) as a cluster.

Step 3. If G(k) consists of a single connected graph, stop. Else, set
k <k + 1 and go to step 2.

AGGLOMERATIVE ALGORITHM FOR COMPLETE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering implied by threshold graph G(0),
which contains no edges and which places every object in a unique cluster,
as the current clustering. Set k < 1.
Step 2. Form threshold graph G(k).

If two of the current clusters form a clique (maximally complete sub-
graph) in G(k), redefine the current clustering by merging these two clusters
into a single cluster.

Step 3. If k = n(n — 1)/2, so that G(k) is the complete graph on the n
nodes, stop. Else, set k < k + 1 and go to step 2.
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These algorithms can be extended to dissimilarity matrices on interval and
ratio scales as long as no entries are tied. Simply view G(k) as the threshold
graph containing edges corresponding to the k smallest dissimilarities. A threshold
dendrogram records the clusterings in the order in which they are formed, irrespec-
tive of the dissimilarity level at which the clusterings first appear. A proximity
dendrogram lists the dissimilarity level at which each clustering forms and, in
effect, is a nonlinear transformation of the scale used with a threshold dendrogram.
Examples of proximity dendrograms are given in Section 3.2.2.

The single-link clustering on G(v) is defined in terms of connected subgraphs
in G(v); the compiete-link clustering uses compiete subgraphs. However, not all
maximally complete subgraphs in a threshold graph need be complete-link clusters.
The order in which the clusiers are formed is crucial. Figure 3.4 exhibits the
single-link and complete-link hierarchical clusterings for the proximity matrix &,
of Example 3.1. The first seven threshold graphs in the sequence of 10 threshold
graphs are shown with nodes labeled so that node j denotes object x;.

Please note the following peculiarities about forming hierarchical clusterings
from threshold graphs. The entire single-link hierarchy is defined by the first

2 3 2 3 2 ¥ 2 3
®s @ 5 5 5
[ ] ® (L ——T e
1 4 1 L] 1 4 1 4
G(1) G(2) G(3) G(d)
2 3 2 3 2 3
1 9 1 4 1 4
G(S) G(6) G(7)
5 2 3 1 4 z 3 1 4 5
Single Link Complete Link

Figure 3.4 Threshold graphs and dendrograms for single-link and complete-link hierar-
chical clusterings.
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four threshold graphs in Figure 3.4. However, the first seven threshold graphs
are needed to determine the complete-link hierarchy. Once the two-cluster complete-
link clustering has been obtained, no more explicit threshold graphs need be drawn
because the two clusters will merge into the conjoint clustering only when all
n(n — 1)/2 edges have been inserted. This example demonstrates the significance
of nesting in the hierarchy. Objects {x,, x5, x4} form a clique, or maximally complete
subgraph, in_threshold graph G(5). but the three objects are not a_complete-link
cluster. Once complete-link clusters {x,, x3} and {x;, x4} have been established,
B-b"_]'éct x5 must merge with one of the two established clusters; once formed, clusters
cannot be dissolved and clusters cannot overlap. The dendrograms themselves
are drawn with each clustering shown on a separate level, even though, for example,
the two-cluster single-link clustering is obtained from G(3) and the two-cluster
complete-link clustering is obtained from G(7).

The interpretation of the dendrograms is not under consideration in this
chapter, but the two dendrograms in Figure 3.4 do raise a question about object
xs. Does it belong to the cluster {x,, x3f or to the cluster {x;, x;,}? A case can
also be made for calling {x,, x4, xs} a cluster. Perhaps a hierarchical structure is
not appropriate for this proximity matrix. These issues are examined in Chapter
4.

Hubert (1974a) provides the following algorithms for generating hierarchical
clusterings by the single-link and complete-link methods. When the proximity

matrix contains no ties, clusterings are numbered 0, 1, ..., (n — 1) and the
mth clustering, 6,,, contains n — m clusters.
cgm = {les szs AL C:rlfn—m)}

HUBERT’S ALGORITHM FOR SINGLE-LINK AND COMPLETE-LINK METHODS

Step 1. Set m < 0. Form the disjoint clustering with clustering number m.
(60 = {{X]], (12)9 LR RE | (Xn)}

Step 2a. To find the next clustering (with clustering number m + 1) by the
single-link method, define the function Q, for all pairs (r, 7) of clusters in
the current clustering as follows.

Qy(r, 1) = min {d(i, j) : the maximal subgraph
of G(d(i, j)) defined by C,,. U C,, is connected}
Clusters C,,, and C,,, are merged to form the next clustering in the single-
link hierarchy if
Op, q) = min {Q(r, 1}
Step 2b. The function Q, is used to find clustering number m + 1 by the

complete-link method and is defined for all pairs (r, #) of clusters in the
current clustering.
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Q. (r, ) = min {d(i, j) : the maximal subgraph
of G(d(i, j)) defined by C,,. U C,, is complete}

Cluster C,,, is merged with cluster C,, under the complete-link method if

0.p, ) = min {Q.(r, )}

Step 3. Set m < m + 1 and repeat step 2. Continue until all objects are in
a single cluster.

The word ‘‘maximal’’ in the definitions of functions Q. and Q, means that
all nodes of the two clusters C,,,. and C,,, must be considered when establishing
connectedness or completeness. Only existing clusters can be merged at the next
level.

Example 3.2

One way to understand the functions Q, and Q. is to consider the sequence of threshold
graphs even though the threshold graphs are not necessary to the evaluation of these functions.
For example, the first seven threshold graphs for the proximity matrix %, (Example 3.1)
are given in Figure 3.4. The third clustering (m = 2) can be numbered as follows.

6, = {Cy, Ca, Cy3}
The three clusters are defined as
Cy = {xs}, Cyp = {23, X3}, Coz = {xy, x4}

To evaluate Q, when m is 2, find the smallest proximity that will connect two of
the existing clusters. Clusters C,; and C,, become connected in threshold graph G(3).
Therefore, (p, g) is (1, 2) and Q,(p, ¢) is 3. Another way of understanding this function
is to realize that Q (r, 1) is the smallest dissimilarity that connects clusters C,,, and C,,
and the smallest of the dissimilarities so found defines the next clustering. In this case,
clusters C,; and C,, first connect at level 3, or in G(3), clusters C;; and C,; first connect
in G(4) and clusters C,, and C,; first form a connected subgraph in G(5). The minimum
of the levels (3, 4, 5) is 3.

The interpretation of Q. is much the same, with completeness replacing connectedness.
For example, @, is found when m = 2 by searching the threshold graphs in sequence
until one is found that merges existing clusters from ‘6, into a complete subgraph. This
does not happen until G(7), so (p, g) is (1, 3) and Q(p, g) is 7. Clusters C,, and C,, first
form a complete subgraph in threshold graph G(9). Clusters C,; and C,; first merge into a
complete subgraph in G(7) and clusters C,, and C,; first form a complete subgraph in
G(10). The minimum of the levels (7, 9, 10) is 7, so the fourth complete link clustering
(m = 3) is achieved at threshold 7 and merges clusters C,; and C,;. The fact that other
complete subgraphs are formed in the process, such as {x,, x,, x5}, is immaterial.

Single-link clusters are characterized as maximally connected subgraphs,
whereas complete-link clusters are cliques, or maximally complete subgraphs.
Jardine and Sibson (1971) have demonstrated several desirable theoretical properties
of single-link clusterings, but several authors (e.g., Wishart, 1969; Hubert, 1974b)
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have objected to certain practical difficulties with clusters formed by the single-
link method. For example, single-link clusters easily chain together and are often
“‘straggly.”” Only a single edge between two large clusters is needed to merge
the clusters. On the other hand, complete-link clusters are conservative. All pairs
of objects must be related before the objects can form a complete-link cluster.
Completeness is a much stronger property than connectedness. Perceived deficien-
cies in these two clustering methods have led to a large number of alternatives,
some of which are explained in Sections 3.2.7 and 3.2.9. For example, Hansen
and DeLattre (1978) noted that single-link clusters may chain and have little homo-
Wlﬁ—link clusters may not be well separated.

Every connected subgraph of a threshold graph is a single-link cluster but
not every clique is a complete-link cluster. Peay (1975) proposed an exclusive,
overlapping, hierarchical clustering method based on cliques and extended it to
asymmetric proximity matrices. Matula (1977) noted that the number of possible
cliques is huge, so clustering based on cliques is practical only for small n.

Suppose that the latest clustering of {x;, x,, . . . , x,,} in one of the hierarchies
has been formed by merging clusters C,,, and C,,, in the clustering

{th CmZ& JICHEH Cm(ﬂ—m)}

The following characterizations may help to distinguish the two clustering methods.
If the clustering was by the single-link method, we would know that

min  {d(i, )} = min{ min {d(,j)}}

X 1 XeC iy r#s  xeC,, xeCy,,

If the clustering was by the complete-link method, we have that

max  {d(i, )} = min{ max {d(, )}}
5,€C,p. €C r#s  x€C,, x€Ch,

These characterizations show why the single-link method has been called
the *‘minimum’’ method and the complete-link method has been named the ‘‘maxi-
mum’’ method (Johnson, 1967). However, if the proximities are similarities instead
of dissimilarities, this terminology would be confusing. This characterization also
explains why the complete-link method is referred to as the ‘‘diameter’’ method.
The diameter of a complete subgraph is the largest proximity among all proximities
for pairs of objects in the subgraph. Although the complete-link method does not
generate clusters with minimum diameter, the diameter of a complete-link cluster
is known to equal the level at which the cluster is formed. By contrast, single-
link clusters are based on connectedness and are characterized by minimum path
length among all pairs of objects in the cluster.

3.2.2 Dendrograms and Recovered Structure

An important objective of hierarchical cluster analysis is to provide a picture of
the data that can easily be interpreted, such as the dendrograms in Figure 3.4.
Dendrograms list the clusterings one after another. Cutting a dendrogram at any
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level defines a clustering and identifies clusters. The level itself has no meaning
in terms of the scale of the proximity matrix.

A proximity graph is a threshold graph in which each edge is weighted
according to its proximity. The proximities used in Section 3.2.1 are ordinal, so
the weights are integers from 1 to n(n — 1)/2. The dendrogram drawn from a
proximity graph is called a proximity dendrogram and records both the clusterings
and the proximities at which they are formed. Proximity dendrograms are especially
useful when the proximities are on an interval or ratio scale.

Example 3.3

A ratio proximity matrix is given below as %,. The threshold and proximity dendrograms
are given in Figure 3.5. Also shown is the sequence of proximity graphs which provides
the actual dissimilarity values at which clusters are formed.

X5 X3 Xy Xs
x, [58 42 69 26

%5 6.7 1.7 1.2
By = X3 1.9 5.6
X4 7.6

A proximity dendrogram is drawn on a proximity scale from a sequence of
proximity graphs and highlights clusters that are ‘‘born’’ early and **last’” a long
time in the dendrogram. These observations are the basis for formal measures of
cluster validity in Chapter 4.

Any hierarchical clustering algorithm can be seen as a way of transforming
a proximity matrix into a dendrogram. Only the single-link and complete-link
methods of clustering have been discussed so far, but the statement applies to
hierarchical clustering methods defined in Sections 3.2.7 and 3.2.9 as well. Thresbh-
old and proximity dendrograms represent cture that the hierarchical clustering
method is imposing on the data. This imposed structure can be captured in another
proximity matrix called the cophenetic matrix. The agreement between the given
proximity matrix and the cophenetic matrix measures the degree to which the
hierarchical clustering method captures the actual structure of the data. Formal
methods for measuring this agreement are discussed in Chapter 4. Here the cophen-
etic matrix is defined to help explain the difference between the single-link and
complete-link methods.

We begin with a hierarchical clustering:

{%0" <€I'J L | (gn—l}
where the mth clustering contains n — m clusters:
(gm = {le’ CmZ': LU | Cmfu-m]}

A level function, L, records the proximity at which each clustering is formed.
For a threshold dendrogram L(k) = k, because the levels in the dendrogram are
evenly spaced. In general,
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L(m) = min {d(x;, x;) : 6, is defined}

The cophenetic proximity measure de on the n objects is the level at which
objects x; and x; are first in the same cluster.

dei, j) = Liky)

where
k;; = min {m : (x;, x;) € C,,,, some q}
2 o 4 2 4 2 4 2 4 2 4
S .—I
1.9
83 3 I 3 4.2 3 3
' 5.6
1® ®@s 18 @5 | ees | 5 1 5
G(1) 6(2) 6(3) G(4) G(5)
2 4 2 4 2 4 2 4 2 4
NS NN
> g )X
1 5 1 ‘ 5 1 ‘ s 1 & i A‘ -
G(6) G(7) G(8) G(9) G(10)
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Threshold
Dendrograms

1 S
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Figure 3.5 Examples of threshold and proximity graphs with corresponding dendro-
grams.
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The matrix of values [dc(x;, x;)] is called the cophenetic matrix. The closer the
cophenetic matrix and the given proximity matrix, the better the hierarchy fits
the data. There can be no more than (n — 1) levels in a dendrogram, so there
can be no more than (n — 1) distinct cophenetic proximities. Since the cophenetic
matrix has n(n — 1)/2 entries, it must contain many ties.

The cophenetic matrix for the single-link dendrogram in Figure 3.5 is shown
below as % and will be used to demonstrate some interesting properties of cophen-
etic matrices.

X2 X3 X4 Xs
x, [42 42 42 256

% 1.9 1.7 42
D= 5 1.9 42
Xq 4.2

Applying the single-link clustering method to %, reproduces the single-
link dendrogram in Figure 3.5. This might be expected. However, applying the
complete-link method to %9, generates the same (single-link) dendrogram. The
complete-link method is usually ambiguous when the proximity matrix contains
ties, as discussed in Section 3.2.6. However, the cophenetic matrix is so arranged
that tied proximities form complete subgraphs and no ambiguity occurs under
complete-link clustering. A cophenetic matrix is an example of a proximity matrix
with perfect hierarchical structure. Both the single-link and the complete-link meth-
ods generate exactly the same dendrogram when applied to a cophenetic matrix.
Repeating this exercise by starting with the complete-link dendrogram generates
the cophenetic matrix %..

X2 X3 Xa Xsg
x [7.6 56 7.6 2.6

g, =X 7.6 1.7 7.6
Ge X 7.6 5.6
X4 7.6

The cophenetic matrix % also has perfect hierarchical structure. The com-
plete-link and single-link clustering methods will produce exactly the same dendro-
gram when applied to %, and that dendrogram will be identical to the complete-
link dendrogram in Figure 3.5. An important question in applications is: Which
dendrogram better describes the true structure of the data?

3.2.3 Hierarchical Structure and Ultrametricity

The fact that both the single-link and the complete-link methods generate exactly
the same proximity dendrogram when applied to a cophenetic matrix suggests
that the cophenetic matrix captures ‘‘true’’ or ‘‘perfect’’ hierarchical structure.
Whether or not the hierarchical structure is appropriate for a given data set has
_ygl_m_tg__nﬂed but the type of structure exemplified by the cophenetic
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matrix is very special. The justification for calling the cophenetic matrix ‘‘true’’
hierarchical structure comes from the fact that a cophenetic proximity measure
dc defines the following equivalence relation, denoted R, on the set of objects:

Rel(a) = {(x;, X)) 1 dc(i, j) = a}

Relation Re(a) can be shown to be an equivalence relation for any a = 0
by checking the three conditions necessary for an equivalence relation. Since
dc(i, iy = 0 for all i,

(x;, x;) € Re(a) foralla =0
s0 Re(a) is reflexive. Since dc(i, j) = dc(j, i) for all (i, j),
(xj, x)) € Rela) if  (x;, X;) € Re(a) foralla = 0
s0 Re(a) is symmetric. The final condition, transitivity, requires that for all a = 0,
if (x;, xz) € Re(a) and if  (xg, x;) € Re(a), then (x;, x;) € Re(a)

This condition must be satisfied for all triples (x;, x;, x;) of objects and all a. It
can also be restated as

dc(i, J) = max {dc(i, k), dc(k, j)} for all (i, j, k)

When stated in this way, the requirement is called the ultrametric inequality.
A close inspection of the cophenetic matrices for Figure 3.5 shows that they
satisfy the ultrametric inequality, so R-(a) is, indeed, an equivalence relation for
any a = 0. The nesting of the clusterings forming the hierarchy assures transitivity.
The only way that the very restrictive ultrametric inequality can be satisfied is to
have many ties in the cophenetic proximity. Recall that, at most, only n — 1 of
the n(n — 1)/2 cophenetic proximities can be distinct. Since cophenetic proximity
measures represent perfect hierarchical structure, proximity measures wi ies
seldom reflect true hierarchical structure. The concept of ultrametricity has been
developed separately in mathematics and has applications in physics. See Rammal
et al. (1986) for an excellent review of ultrametricity and Schikhof (1984) for a
mathematical treatment of ultrametricity in the realm of *‘p-adic’” analysis.

Two items should be noted with regard to the ultrametric inequality. First,
the cophenetic proximities derived from single-link and complete-link clusterings
always satisfy the ultrametric inequality. However, Section 3.2.7 will introduce
some hierarchical clustering methods whose cophenetic proximities are not ultra-
metric. Second, a geometric interpretation of the ultrametric inequality demonstrates
why proximities measured in applications are very seldom ultrametric. Suppose
that_each object is a pattern in a d-dimensional space. If Euclidean distance is
the measure of proximity and if the proximity matrix is to be ultrametric, the
triangles formed by all triples of points must be isosceles triangles with the unequal
leg no longer than the two legs of equal length.

Jardine and Sibson (1971) characterize hierarchical clustering methods as
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mappings from the class of proximity matrices to the class of ultrametric proximity
measures. That is, a hierarchical clustering method imposes a dendrogram on the
Wd this establishes the cophenetic proximity matrix, which
samsﬁe’_ith,e,u]ltmnﬂuc_mgguamy Measures of fit between proximity measures
and cophenetic proximity measures are discussed in Chapter 4. The property of
ultrametricity is also called monotonicity; a cophenetic proximity measure satisfies
the ultrametric inequality only if the clusters form in a _monotonic manner as
dissimilarity increases. In other words, the clusterings are nested in the hierarchy.
Single-link and complete-link clusterings are always monotonic, but other common
clustering methods defined in Section 3.2.7 can create the next clustering at a
smaller dissimilarity than the present one. This issue is discussed in Section 3.2.8.

3.2.4 Other Graph Theory Algorithms for Single-Link
and Complete-Link

The algorithms for single-link and complete-link hierarchical clusterings described
thus far establish step-by-step procedures for forming dendrograms. In this section
we present other algorithms for these clustering methods that provide insight into
the clustering methods and can be computationally attractive.

An algorithm for single-link clustering begins with the minimum spanning
tree (MST) for G(w), which is the proximity graph containing all n(n — 1)/2
edges. Although the single-link hierarchy can be derived from the MST, the MST
cannot be found from a single-link hierarchical clustering. For convenience, we
assume that no two edges in the MST have the same weight, even though Section
3.2.6 shows that ties in proximity pose no problem with single-link clustering.
An agglomerative algorithm for single-link clustering is given below that assumes
a dissimilarity matrix.

GRAPH THEORY ALGORITHM FOR SINGLE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering, which places each object in its
own cluster. Find an MST on G(=).

Repeat steps 2 and 3 until all objects are in one cluster.

Step 2. Merge the two clusters connected by the MST edge with the smallest
weight to define the next clustering.

Step 3. Replace the weight of the edge selected in step 2 by a weight
larger than the largest proximity.

This algorithm follows from the characterization for single-link clustering
given in Section 3.2.1 and the definition of MST. A divisive algorithm is just as
simple. Cut the edges in the MST in the order of \mlm
Each cut defines a new clustering, with those objects connected in the MST at
any stage belonging to the same cluster. As long as no proximity ties occur,
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these algorithms generate the same single-link clusterings as the algorithms presented
earlier. Gower and Ross (1969) first proposed this algorithm. Rohlf (1973) provided
an implementation that examines each proximity value only once.

Example 3.4
Examples of the two algorithms are given in Figure 3.6 for the proximity matrix %, defined
below.

Xy X3 Xy Xs

x, [23 34 12 3.7

g, =% 26 1.8 4.6
LH 42 0.7
X4 4.4

A node coloring of a threshold graph G(v) is an assignment of *‘colors,”
or labels, to the n nodes in such a way that no two nodes connected by an edge
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Figure 3.6 Examples of agglomerative and divisive single-link algorithms based on
the MST.
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in G(v) are colored the same. Baker and Hubert (1976) show how the set of
node colorings is related to hierarchical clustering. The connection between node
coloring and complete-link clustering is not as simple as is the relation between
single-link clustering and the MST. The last complete-link clustering achieved
for a given threshold graph G(v) corresponds to a coloring of the nodes of the
complement of G(v). Hansen and DeLattre (1978) provide other algorithms from
graph coloring.

3.2.5 Matrix Updating Algorithms for Single-Link and
Complete-Link

In this section we discuss algorithms for single-link and complete-link clustering
in terms of a scheme for updating the proximity matrix. This approach was suggested
by King (1967) and popularized by Johnson (1967), who formalized the procedure.
The algorithm is an agglomerative scheme that erases rows and columns in the
proximity matrix as old clusters are merged into new ones. We again simplify
the algorithm by assuming no ties in the proximity matrix. Figure 3.7 provides
examples of this algorithm for the proximity matrix %5 (Example 3.4).

The n X n proximity matrix is 9 = [d(i, j)]. The clusterings are assigned
sequence numbers 0, 1, ..., (n — 1) and L(k) is the level of the kth clustering.
A cluster with sequence number m is denoted (m) and the proximity between
clusters (r) and (s) is denoted d[(r), (s)].

JOHNSON'S ALGORITHM FOR SINGLE-LINK AND COMPLETE-LINK CLUSTERING

Step 1. Begin with the disjoint clustering having level L(0) = 0 and sequence
number m = 0.

Step 2. Find the least dissimilar pair of clusters in the current clustering,
say pair {(r), (5)}, according to

d[(r), ()] = min {d[(}), (D]}

where the minimum is over all pairs of clusters in the current clustering.

Step 3. Increment the sequence number: m < m + 1. Merge clusters (r)
and (s) into a single cluster to form the next clustering m. Set the level of
this clustering to

L(m) = d|(r), (s)]

Step 4. Update the proximity matrix, %, by deleting the rows and columns
corresponding to clusters (r) and (s) and adding a row and column correspond-
ing to the newly formed cluster. The proximity between the new cluster,
denoted (r, s) and old cluster (k) is defined as follows. For the single-link
method,
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d((k), (r, )1 = min {d[(k), ("], dI(k), ()]}
For the complete-link method,

d(k), (r, $)] = max {d[(k), (1], d[(k), ()]}

Step 5. If all objects are in one cluster, stop. Else, go to step 2.

1 2 3 4 5
0 2.3 3.4 1.2 3.7

|
2 0 2.6 1.8 4.6
3 0 4.2
4 0 4.4
5 0
' 2 35 4 1 2 3,5 4
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Figure 3.7 Examples of matrix updating algorithms for single-link and complete-link
clusterings.
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Anderberg (1973) discusses three computational approaches to implementing
the algorithm above, called the stored matrix, sorted matrix, and stored data ap-
proaches. The three approaches differ as to whether the pattern matrix or the
dissimilarity matrix is stored in random access memory or in auxiliary storage,
such as disk. Note that the dissimilarity matrix requires more storage than the
pattern matrix when n > d. The stored matrix approach, where the entire dissimilarity
matrix is stored in random access memory, is fastest.

Example 3.5

The computational examples in Figure 3.7 demonstrate the construction of single-link and
complete-link hierarchies. This example demonstrates the qualitative differences between
the single-link and complete-link hierarchies for the two artificial data sets defined in Section
2.4, The first data set, called DATAI, consists of 100 patterns in a four-dimensional
pattern space generated so as to have four categories, or true clusters. Patterns | through
24 were generated from category I, patterns 25 through 59 from category 2, patterns 60
through 80 from category 3, and patterns 81 through 100 were generated in category 4.
An eigenvector projection is given in Figure 2.9. The proximity measure is squared Euclidean
distance in the pattern space. Since the proximity measure is Euclidean distance and since
the data were generated to several decimal places on a computer, we feel safe in assuming
that no proximity ties exist, so the hierarchies are both unique (see Section 3.2.6). Figures
3.8 and 3.9 show the proximity dendrograms for the single-link and complete-link hierarchies,
respectively.
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Figure 3.8 Single-link hierarchy for 100 clustered patterns in four dimensions.
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Figure 3.9 Complete-link hierarchy for 100 clustered patterns in four dimensions.

This example demonstrates the difficulty in comparing two dendrograms and motivates
the development of methods for automatically isolating significant clusters that are presented
in Chapter 4. The complete-link dendrogram in Figure 3.9 can be cut at level 1.0 to
generate four clusters. These clusters recover the original four categories in the data perfectly.
The four-category structure is not at all apparent in the single-link hierarchical clustering
of Figure 3.8.

Clustering methods have the nasty habit of creating clusters in data even when no
natural clusters exist, so hierarchies and clusterings must be viewed with extreme suspicion.
Figures 3.10 and 3.11 demonstrate this statement on the two hierarchies for a data set,
called DATA2, consisting of 100 points uniformly distributed over a unit hypercube in
six dimensions (see Section 2.4). The patterns are positioned at random, so it is barely
possible that they have arranged themselves into meaningful clusters: however, it is unlikely
that real clusters exist, especially considering the two-dimensional projections in Figure
2.11. We thus interpret Figures 3.10 and 3.11 as hierarchies in which no true clusters
exist. The single-link dendrogram in Figure 3.10 exhibits the chaining that is characteristic
of single-link hierarchies. This chaining can occur even when valid clusters exist, as in
Figure 3.8. The complete-link hierarchy in Figure 3.11 suggests some meaningful clusters;
it looks more clustered than the single-link hierarchy, and this is the lure of complete-link
clustering. It tends to produce dendrograms that form small clusters which combine nicely
into larger clusters even when such a hierarchy is not warranted, as with random data.
This example should demonstrate the difficulties inherent in letting the human eye scan
over the dendrogram to pick out believable clusters and clusterings.
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Figure 3.10 Single-link hierarchy for 100 random patterns in six dimensions.

3.2.6 Ties in Proximity

The computational complexity of competing algorithms for implementing a particu-
lar clustering method and the availability of software should determine which
algorithm is appropriate for a given application. The problem of choosing between
the single-link and complete-link methods is much more difficult than choosing
an algorithm for one of the methods. No list of characteristics exists that lets us
choose between the two methods in a calm, rational manner. Some theoretical
and practical information about the two methods is summarized in this section,
especially the effects of ties in the proximity matrix.

The single-link and complete-link methods differ in many respects, such as
in the graph structures recognized and the updating procedure. The two methods
produce the same clusterings when the proximity matrix satisfies the ultrametric
inequality, as discussed in Section 3.2.3. This section demonstrates that the two
methods differ in the way they treat ties in the proximity matrix. Up to now, we
have assumed that the proximity matrix contains no ties so that two new clusters
are never formed at the same level and the algorithms defined thus far produce

unique dendrograms. A tie implies that two or more edges are added to the proximity
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Figure 3.11 Complete-link hierarchy for 100 random patterns in six dimensions.

graph at once and that the minimum and maximum functions required in matrix
updating are not unique.

Jardine and Sibson (1971) showed that the single-link method does not suffer
from ambiguities due to ties because it has a continuity property. If the ties are
broken in the proximities by adding or subtracting a small amount from the tied
proximities, the resulting single-link dendrograms will merge smoothly into the
same dendrogram as the added amount tends to zero, no matter how the ties are
broken. This statement applies to all single-link algorithms as long as the rank
orders of the proximities are not changed by the added amounts. By contrast,
several complete-link dendrograms can be obtained by breaking ties in this way,
as demonstrated in Figure 3.12.

Figure 3.12(a) shows the first three threshold graphs for the given proximity
matrix. Two edges are added at once in G(3). The s M@Mﬁ_@e
same whether edge (2, 3) is inserted first or edge (3, 4) is inserted first. The
proximity dendrogram for the single-link method in Figure 3.12(b) is unique even
though more than one cluster can be formed at the same level. Algorithms based
on the MST or on matrix updating produce the same results. The situation is
very different with complete link clustering. Figure 3.12(b) shows the hierarchy
defined by adding edge (2, 3) first and that formed when adding edge (3, 4)
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Figure 3.12 Effects of ties in proximity on single-link and complete-link clustering:
(a) proximity matrix and threshold graphs: (b) proximity dendrograms; (¢) altered proximity
matrix and dendrograms.

first. The two clustering structures are very different. This effect can also be
observed on the matrix updating algorithm and with Hubert’s algorithm (Section
3.2.1). Adding the two edges (2, 3) and (3, 4) simultaneously does not solve the
problem because the resulting four-edge threshold graph is not a complete graph.
In fact, the next complete graph would be the one on all five nodes and the
hierarchical clustering would have only three levels.

Figure 3.12(c) emphasizes the seriousness of ties. The given proximity matrix
differs from that in Figure 3.12(a) in only two entries; the (3, 4) and (4, 5)
entries are interchanged, as might occur through a typing error when entering
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data. In this case a unique complete-link hierarchy is obtained because the two
edges o the same proximity can be added in arbitrary order. However, the
hierarchy has two clusters forming at level 3. The single-link hierarchy is also
shown. The single- and complete-link dendrograms in Figure 3.12(c) resemble
one another much more closely than do those in Figure 3.12(b), which might
lead one to believe that the proximity matrix in Figure 3.12(c) had a good hierarchical
structure, whereas that in Figure 3.12(a) has a poor hierarchical structure. This
example raises the issue of sensitivity. It appears t e_hierarchical s e
cilil_illemge dramatically with small changes in the rank orders of the proximities.

The havoc that ties can create in a complete-link hierarchy has been noted
by several researchers. Sibson (1971) and Williams et al. (1971) argue against
the complete-link method as a feasible clustering procedure (see also Hubert,
1974a). The practical problem of ties is subtle. Software packages do not typically
check for ties. The order in which an edge is added from a set of edges with the
same proximity is at the whim of the programmer. The program will generate
only one complete-link clustering, even though a number of clusterings might be
equally justifiable. This problem is compounded when the proximity matrix contains
several ties. The comparative studies in Section 3.5.2 suggest that the complete-
link method produces more useful hierarchies in many applications than does the
single-link method, even though proximity ties make it ambiguous.

3.2.7 General Matrix Updating Algorithms and
Monotonicity

This section generalizes the algorithms in Section 3.2.5 and discusses issues in
the computation and application of these algorithms. Questions of the validity of
cluster structures are taken up in Chapter 4. The general paradigm for expressing
SAHN (Sequential, Agglomerative, Hierarchical, Nonoverlapping) clustering meth-
ods is given in Section 3.2.5. Step 4 of that algorithm specifies how the dissimilarity
matrix is to be updated by defining the formula for the dissimilarity between a
newly formed cluster, (r, 5), and an existing cluster, (k) with n; objects. The
single-link and complete-link algorithms use the minimum and maximum, respec-
tively, of the dissimilarities between the pairs {(k), (r)} and {(k), (s)}. Other clustering
methods can be defined by specifying different combinations of the distances in-
volved. A general formula for step 4 that includes most of the commonly referenced
hierarchical clustering methods is given below.

d[{k)! (r! S)J
= adl(k), (N] + ad((k), ()] + (), ()] + v|d(Kk), (N] = dI(k), (]|

This formula was first proposed by Lance and Williams (1967). Table 3.1
shows the parameter values for the most common algorithms. This table is also
given in Milligan (1979) and in Day and Edelsbrunner (1984).

The acronym ‘‘PGM’’ refers to the “‘pair group method’’; the prefixes **U”’
and ““W’’ refer to unweighted and weighted, respectively. An ‘‘unweighted’” method
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TABLE 3.1 Coefficient Values for SAHN Matrix Updating Algorithms

-
Clustering Method o, o, B ¥
Single-link 1/2 112 0 -1/2
Complete-link 172 112 0 112
n, ny
UPGMA (group average) g ypry 0 0
WPGMA (weighted average) 1/2 112 0 0
. : n, n —na,
UPGMC (unweighted centroid) n——’ vy ﬂ_r ey m 0
WPGMC (weighted centroid) 1/2 1/2 —1/4 0
’ oo o n, + ny n, + ny =Ny
Ward’s method (minimum variance) P ey i e~ 0

treats each object in a cluster equally, regardles of the structure of the dendrogram.
A **weighted’”’ method weights all clusters the same, so objects in small clusters
are weighted more heavily than objects in large clusters. The suffixes **A’" and
*C” refer to ‘‘arithmetic averages’’ and ‘‘centroids.”’ Thus ““UPGMA’’ stands
for “‘unweighted pair group method using arithmetic averages’’ and *“WPGMC”’
refers to “‘weighted pair group method using centroids.’” Rohlf (1970) and Sneath
and Sokal (1973) have used this terminology. The UPGMC method has also been
called, simply, the centroid method, while the WPGMC method has been called
the median method (see Lance and Williams, 1967).

Sneath and Sokal (1973) provide a good discussion of the backgrounds of
these methods and define other SAHN algorithms. Arithmetic averaging attempts
to avoid the extremes of the single-link and completefﬁﬁj('ﬁ':”eth(_)}:l—sf When measuring

the dissimilarity between an existing cluster and a prospective cluster, the single-
link method finds the closest pair of objects in the two clusters, the complete-
link method finds the most distant pair, and the UPGMA and WPGMA methods
use arithmetic averages of the dissimilarities. The arithmetic averaging methods
have no simple geometric interpretation. In contrast, the UPGMC and WPGMC
methods have direct geometric interpretations when the objects are represented as
patterns in a d-dimensional space. The centroid methods assess the dissimilarity
between two clusters by the distance between centroids. The UPGMC method
measures distance in terms of the centroid computed from all patterns in each
cluster. The WPGMC method computes centroids from the centroids of the two
clusters that merge to form a new cluster. The UPGMA weights the contribution
of each pattern equally by taking into account the sizes of the clusters, while the
WPGMC weights the patterns in small clusters more heavily than the patterns in
large clusters. Centroid methods should only be used when the objects are represented
as patterns and the proximity measure is squared Euclidean distance. An important
distinction between centroid methods and other SAHN algorithms is in monotonicity,
as explained later in this section.
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Example 3.6

Dendrograms for the seven algorithms in Table 3.1 are drawn in Figure 3.13. The six
objects involved are the six pattern vectors defined below in a three-dimensional space.

x, =(1.0 2.0 2.0 =30 40 3.07
X, =20 1.0 2.0 xs=(0.0 3.5 3.57
X;=(0.0 1.0 3.007 X =(20 25 257

Under a squared Euclidean distance measure of dissimilarity, the proximity matrix
is given below.

2 3 4 5 6
20 30 90 55 15
0 50 11.0 125 2.5

0 180 6.5 6.5

1
2
3
4 0 o> 3.5
D 0 6.0
6

9.5 °

1
0

The tie in proximity between pairs of patterns (x3, x5) and (x5, x¢) causes no ambiguity
in any of the dendrograms. The dendrograms for Ward’s method, the two arithmetic average
methods, and the two centroid methods all have the same topology and differ only in
levels. They suggest that x, is an outlier because it joins the cluster of the other five
patterns last and the gap between the formation of the five-pattern cluster and the singleton
cluster is large. The single-link dendrogram has much the same topology, except that xs
now appears to be the outlier. The complete-link dendrogram establishes cluster (x,, x5).
All dendrograms agree that (x, x,, x,) is a strong cluster. Quantitative measures of the
strength and quality of clusters and clusterings, defined in Chapter 4, should help answer
such questions as: If one of the dendrograms were to be cut to define a partition, where is
the best cutting level? Is (x,, x,, x4, x;) a good cluster?

Several of the comparative studies discussed in Section 3.5.2 conclude that
Ward's method (Ward, 1963), also called the minimum variance method, outper-
forms other hierarchical clustering methods. This method is based on notions of
square error popularized in analysis-of-variance and other statistical procedures
(Wilks, 1963; Cooley and Lohnes, 1971). Square-error criteria are also used in
partitional clustering algorithms (Section 3.3.1). Ward’s method is implemented
by the standard algorithm using the constants in Table 3.1. These constants are
derived below to see how square error is minimized.

Suppose that a clustering has been achieved with Ward’s method and that
the next clustering in the hierarchy is to be obtained with the matrix updating
algorithm. Ward’s method is designed for the situation when the data appear as
patterns. Thus we begin with a set of » patterns in a d-dimensional space. Let
xi¥) be the value for feature j of pattern i when pattern i is in cluster k for i from
1 to ny and j from 1 to d. The centroid of cluster k, denoted [m{®, ..., m¥], is
the cluster center, or the average of the n, patterns in cluster k.
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Figure 3.13 Examples of dendrograms for matrix updating algorithms.

i

m® = (1ny) > x
i=1

The square-error for cluster k is the sum of squared distances to the centroid
for all patterns in cluster k.
n

=

W M

Z-r\)

d
2 b moP2
J

The square-error for the entire clustermg, which contains K clusters, is the
sum of the square-errors for the individual clusters.

K

> )

Ex =D &
=1

Ward’s method merges the pair of clusters that minimizes AEf,q. the change in
E% caused by the merger of clusters p and ¢ into cluster 7 to form the next clustering.
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Since the square-errors for all clusters except for the three clusters involved remain
the same,
B Bl B 3
AE;, =€ — €, — €
After a bit of algebra, we find that the change in square-error depends only
on the centroids.

2 _ My S ) — @2
AE,, = n, + qug [} — my®]

The clusters p and ¢ selected for merger are the clusters that minimize this
quantity. The square-error must increase as the number of clusters decreases, but
the increase is as small as possible in Ward’s method. Once clusters p and g are
merged into cluster 7, the proximity between all other clusters and the new cluster
¢ must be updated. Letting cluster r represent a cluster other than p, g, or 1, the
following formula can be applied to find 4[(r), (1)]:

!

- -
A, 0] = 2222 4y, ()] + L2 (), (@)] = ——— dI(p), (@)]
1. + n, n, + n, n, +n

r

The choice of a suitable hierarchical clustering method is an important matter
in applications, but theory provides few guidelines for optimizing the choice.
Square-error is a familiar criterion in engineering, so one might feel comfortable
with a procedure that minimizes square-error, such as Ward’s method. However,
the objective of cluster analysis is to investigate the structure of the data, so the
imposition of an apriori criterion, such as square-error, might not be appropriate.
All data do not occur as patterns, so we cannot limit our thinking to geometrical
constructs. Section 3.5.2 reviews several empirical studies that compare hierarchical
clustering methods and that guide the choice of a clustering method.

3.2.8 Crossovers and Monotonicity in Dendrograms

Section 3.2.2 defined perfect hierarchical structure as a proximity matrix
that satisfies the ultrametric inequality. The rationale was that the single-link and
complete-link methods produced the same dendrograms for an ultrametric proximity
matrix, and since these two methods search for very different types of structure,
the fact that they exhibit the same exact structure is meaningful. It is clear from
the single-link and complete-link algorithms based on threshold and proximity
graphs that these methods are monotonic. That is, the level at which the next
cluster forms is always larger, on a dissimilarity scale, than the level of the current
clustering. Monotone methods induce ultrametric cophenetic matrices. Monotonicity
can be expressed in mathematical terms by referring to the matrix updating formula
in Section 3.2.7. If a clustering method merges clusters (r) and (s) into cluster
(r, s), monotonicity demands that

d[(k).. (r! S)J = d[(r)a (S)]
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Figure 3.14 Examples of crossover or reversal in dendrogram.

for all clusters (k) distinct from (r) and (s). That is, no dissimilarity in the updated
matrix can be smaller than the smallest entry in the previous matrix. Another
way of saying this is that the cophenetic matrix generated by these two methods
satisfies the ultrametric inequality.

What can be said about the monotonicity of SAHN algorithms expressed
through matrix updating, especially those defined by the matrix updating algorithm
in Table 3.17 Figure 3.14 provides a simple example of a dissimilarity matrix
and the dendrograms generated by the single-link, complete-link, UPGMC, and
WPGMC methods. The dendrograms from the centroid methods (UPGMC and
WPGMC) are not monotone and exhibit what is called a *‘crossover’” or a *‘reversal”
since clusters (x;, x,) and (x3, x4) merge at a level lower than the level at which
(x3, x4) is first defined.

Monotonicity is clearly a property of the clustering method and has nothing
to do with the proximity matrix. The advantage of the matrix updating formula
s that the monotonicity of any SAHN algorithm that can be expressed in terms
of this updating formula can be predicted from the coefficients. Assuming that

“a, > 0, and a; > 0, Milligan (1979) provided the following results. The matrix
updating formula for step 4 of the SAHN algorithm is repeated below for easy
reference. Clusters (r) and (s) are being merged into cluster (r, s) and the dissimi-
larity between distinct cluster (k) and the newly formed cluster is being estab-
lished.
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d[(k), (r, 5)]
= a,d[(k), ()] + a,d[(k), (s)] + Bd[(r), ()] + y|dI(k), (] — d[(k), (5)]|

Result 1. If o, + o, + 3 = 1 and y = 0, the clustering method is monotone.

This result is easily demonstrated. The first inequality can be rewritten as
B Z 1 = ar — a,"
and substituting in the matrix updating formula shows that

d((k), (r, $)] = d[(r), (9)] + a{d(k), (r)] = d[(r), ()]}
+ afdl(k), ()] = dl(r), (]} + yld[k), (N] — dik), ()]

SAHN algorithms require that d[(r), (s)] be no greater than either d[(k), (r)] or
d[(k), (s)] for any distinct (k). Thus the condition that y be nonnegative implies
that

dl(k), (r, )] = d[(r), (5)]

for all clusters (k) other than (r) and (s), which implies monotonicity.

Result 2. If o, + oy + B =1 and 0 > y = max {—«,, —a}, the clustering
method is monotone.

To demonstrate this result, first consider the case when d[(k), (r)] >
d[(k), (s)]. Using the first inequality and recalling that v is negative, the matrix
updating equation can be rewritten as

d((k), (r, 9)] = d[(r), (5)] + (&, = [YdI(K), (N] = d(r), ()]}
+ (e, + [YD{dI(h), ()] — dI(r), ()1}

Since a, = |y|, the second term on the right is nonnegative for the case under
consideration. The last term on the right is nonnegative because of the way SAHN
algorithms are defined. Thus

d[(k), (r, s)] = d[(r), ()]

as in Result 1, and the clustering method is monotone. The case when d[(k), (s)]
> d[(k), (r)] can be proved in a similar fashion.

The inequality in Result 1 is not satisfied for either of the centroid methods
(UPGMC and WPGMC). It is easy to create examples for which these methods
do not produce monotone hierarchies, as indicated in Figure 3.14. However, all
other methods in Table 3.1 are monotone. Note that only single-link and complete-
link clusterings are invariant under monotone transformation of the dissimilarities.

Figure 3.13 demonstrates that nonmonotone clustenng methods do not neces-
sanlyproducecrossovers e—diseussionof—the—centrotd—methods :

CfﬂﬂM) Con OCCUT  2nrton wrbaten i-.q threl  wre rdt::m o rm~
Speree ard Buelidenan deibp et S g st e Fﬂ"‘*"“:‘
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_will be-eliminated- One is tempted to reject nonmonotone methods out of hand.
Williams and Lance (1977) call them obsolete. Anderberg (1973) claims that they
lack a useful interpretation for general proximities. Sneath and Sokal (1973) claim
that ‘‘the frequency of reversals and the relatively high degree of its distortion of
the original [proximity] matrix has led to the abandonment of this [UPGMC] tech-
nique.”’ On the other hand, the performances of nonmonotone methods in several
comparative studies of clustering methods discussed in Section 3.5.2 do not suggest
that such methods be abandoned. Williams et al. (1971) argue that monotonicity
is not essential for the proper performance of hierarchical clustering.

3.2.9 Clustering Methods Based on Graph Theory

The statements of the single-link and complete-link algorithms in terms of
graph theory in Section 3.2.1 suggest that properties other than connectedness
and completeness can be used to define clustering methods. The idea is to watch
the sequence of threshold graphs or proximity graphs for the appearance of a
suitable property. Hubert (1974a) suggests the following expression of algorithms
that define hierarchical clustering methods. Ties in the proximities can affect the
clusterings in unexpected ways, so we assume that no ties exist in the proximity
matrix.

New hierarchical clustering algorithms are formed by changing step 2 in
the algorithm of Section 3.2.1. The function Q,y, is defined as follows for all
pairs of clusters {C,,,, C,,} in the clustering {C,,;, . . . , Cpuem}:

Qoiy(r, 1) = min {d(i, j) : the maximal subgraph of G[d(i, j)] defined by
C,r U C,, is connected and either has property p(k) or is complete}

Following the algorithm, clusters C,,, and C,,, are merged to form the next
clustering in the sequence if

me(Ps q) = min {Qp(;c;(-" , D}

Some examples of property p are given below. Integer k is a parameter,
so, for example, p(k) could mean a node connectivity of k or a node degree of k.

Node connectivity. The node connectivity of a connected subgraph is the
largest number n,. such that all pairs of nodes are joined by at least n,. paths
having no nodes in common.

Edge connectiviry. The edge connectivity of a connected subgraph is the
largest integer n, such that all pairs of nodes are joined by at least n, paths
having no edges in common.

Node degree. The degree of a connected subgraph is the largest integer n,
such that each node has at least n, incident edges.

Diameter. The diameter of a connected subgraph is the maximum *‘distance’’
between two nodes in the subgraph. The distance between two nodes is the
number of edges in the shortest path joining them.
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Radius. The radius of a connected subgraph is the smallest integer 7, such
that at least one node is within distance n, of all other nodes in the subgraph.

Specifying parameter k and property p defines a new clustering method.
Every cluster must at least be connected. Once all the edges have been inserted
into the subgraph, it is complete and no further properties can be applied. Certain
practical difficulties arise when trying to select a suitable property. Few guidelines
exist other than intuition and experience. Theorems from mathematics provide
some insight into these methods. For example, a node connectivity of k implies
an edge connectivity of k, but the reverse is not true. Similarly, an edge connectivity
of k implies a minimum degree of k, but the reverse does not hold. A compelling
reason must appear before one of these methods is used in place of the single-
link, complete-link, or other SAHN algorithms.

Example 3.7

Figure 3.15 demonstrates hierarchical clustering methods defined by graph properties. An
ordinal proximity matrix is given below on eight objects. Threshold graph G(13) is pictured
in Figure 3.15(a) to help in establishing the dendrograms for several methods, as well as
for the single-link and complete-link methods. Proximity dendrograms are shown in Figure
3.15(b)~(h). A simple way to find these hierarchies with pencil and paper is first to list
the pairs of objects in rank order by proximity. Then construct a sequence of threshold
graphs and find the first threshold graph at which a property is satisfied. It is important to
check the property only on the subgraph formed by the union of the subgraphs for two
existing clusters.

1 2 3 4 5 6 7 8
1 T0 13 21 18 4 8 7 287
2| — 0 9 19 15 14 10 16
3| — = 0222 12 1 17
4| — — — 0 3 23 27 1
5| — — — — 0 5 24 2
6| — — — — — 0 6 25
T |l—= = == == 0 26
Bolos ms ==ims em e =

Ling (1972) examined hierarchical clustering based on notions of connectivity
and compactness that are particularly appropriate for ordinal proximity matrices.
He assumed ordinal proximities with no ties, but his clustering method can also
be applied to interval and ratio proximity matrices. The properties p that Ling
proposed are defined below.

Consider a proximity graph on n nodes. A subgraph is r-connected if all
pairs of nodes in the subgraph are connected by r-chains. An r-chain between
two nodes is a sequence of nodes having d(i, j) = r for all pairs (i, j) of nodes
in the sequence. A subgraph is (k, r)-bonded if every node in the subgraph is
directly connected to at least k nodes and if d(i, j) = r for all k connections.
Finally, a subgraph is (k, r)-connected if it is both r-connected and (k, r)-bonded.
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A subgraph becomes a (k, r)-cluster in the algorithm of Section 3.2.1 as
soon as it becomes (k, r)-connected. Note that (1, r) clusters are single-link clusters.
Ling (1972, 1973a) proposed the (k, r)-cluster as a way of identifying significant
clusters. Given any proximity graph, a (k, r)-cluster can be defined independent
of the hierarchical clustering algorithm. A subgraph is a (k, r)-cluster if r is the
smallest value of s for which the subgraph is (k,s)-connected for some s and the
subgraph is not properly contained in any other (k, 7)-connected subgraph for
t > r. Such clusters have several attractive mathematical properties and are intuitively
appealing since both connectedness and compactness are involved in the definition.

We emphasize that no theory exists for choosing among the various properties
of graphs to select the ““best’’ clustering method for a particular application. Section
3.5 provides some guidance, but familiarity with a method and confidence in the
results of previous applications of the method are the only practical ways of choosing
a method.

4 85 16 7 2 3 4 856 7123 4856 7123
1 (] |
2 3 3
4
= 6 6

8 8
9 [ 9
10
12
16
21
28
(b) (c) (d)

Figure 3.15 Examples of dendrograms from graph theory: (a) threshold graph G(13)
for proximity matrix in example 3.7; (b) single-link; (c) complete-link; (d) 2-node con-
nected; (e) 2-edge connected; () 2-degree; (g) 2-diameter; (h) 2-radius.
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Figure 3.15 (continued)

3.3 PARTITIONAL CLUSTERING

Hierarchical clustering techniques organize the data into a nested sequence of
groups. An important characteristic of hierarchical clustering methods is the visual
impact of the dendrogram, which enables a data analyst to see how objects are
being merged into clusters or split at successive levels of proximity. The data
analyst can then try to decide whether the entire dendrogram describes the data
or can select a clustering, at some fixed level of proximity, which makes sense
for the application in hand. We refer to nonhierarchical clustering methods as
partitional clustering methods. They generate a single partition of the data in an
attempt to recover natural groups present in the data. Both clustering strategies
have their appropriate domains of applications. Hierarchical clustering methods
generally require only the proximity matrix among the objects, whereas partitional
techniques expect the data in the form of a pattern matrix. It is generally assumed
that the features have been measured on a ratio scale.

Hierarchical techniques are popular in biological, social, and behavioral sci-
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ences because of the need to construct taxonomies. Partitional techniques are used
frequently in engineering applications where single partitions are important. Parti-
tional clustering methods are especially appropriate for the efficient representation
and compression of large data bases. Dendrograms are impractical with more
than a few hundred patterns.

The problem of partitional clustering can be formally stated as follows.
Given n patterns in a d-dimensional metric space, determine a partition_of the
patterns into K groups, or clusters, such that the patferns in a cluster are more
similar to each other than to patterns in different clusters. The value of K may or
may not be specified. A clustering criterion, such as square-error, must be adopted.
Criteria can be classified as global or local. A global criterion represents each
cluster by a prototype and assigns the patterns to clusters according to most similar
prototypes. A local criterion forms clusters by utilizing local structure in the data.
For example, clusters can be formed by identifying high-density regions in the
pattern space or by assigning a pattern and its k nearest neighbors to the same
cluster.

The theoretical solution to this partitional problem is straightforward. Simply
select a criterion, evaluate it for all possible partitions containing K clusters, and
pick the partition that optimizes the criterion. The first difficulty encountered is
selecting a criterion that translates one’s intuitive notions about “‘cluster’” into a
reasonable mathematical formula. Criteria are highly dependent on problem parame-
ters and must be simple for computational reasons but complex enough to reflect
various data structures. The second difficulty with this approach is that the number
of partitions is astronomical, even for moderate numbers of patterns, so evaluating
even the simplest criterion over all partitions is impractical.

Let S(n, K) denote the number of clusterings of n objects into K clusters.
The order of the objects in each cluster and the order of the clusters themselves
are immaterial. Empty clusters are not counted. A partial difference equation can
be written for S(n, K) as follows. Suppose that all clusterings of n — 1 objects
have been listed. A clustering of n objects can be formed from this list in two
ways.

1. The nth object can be added as a singleton cluster to each member of the
list with exactly (K — 1) clusters.

2. The nth object can be added to each cluster of any member of the list with
exactly K clusters.
Thus

Sn,K)=Sn—1,K—1)+ KS(n—1,K)
The boundary conditions on this equation are
Stn,1)=1,8(n,n) =1,8n,K)=0 ifK>n

The solution to this equation for S(n, K) requires that values {S(j, p)} be known
forthe set{(j,p): 1 =j=n—2,1=p =K}
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Solutions to the partial difference equation are called Stirling numbers of
the second kind (Fortier and Solomon, 1966; Jensen, 1969):

E = .
Stn. K) =3 2, (= <= (K) o

There are only 34,105 distinct partitions of 10 objects into four clusters,
but this number explodes to approximately 11,259,666,000 if 19 objects are to
be partitioned into four clusters. Clearly, exhaustive enumeration of all possible
partitions is not computationally feasible even for small numbers of patterns. In
addition, K, the number of clusters, must be selected a priori. Chapter 4 discusses
this problem.

To avoid this combinatorial explosion, a criterion function is evaluated only
for a small set of ‘‘reasonable’ partitions. How to identify a small subset of
partitions that has a good chance of containing the optimal partition? The most
common approach is to optimize the criterion function using an iterative, hill-
climbing technique. Starting with an initial partition, objects are moved from one
cluster to another in an effort to improve the value of the criterion function.
Thus each successive partition is a perturbation of the previous one and, therefore,
only a small number of partitions is examined. Algorithms based on this technique
are computationally efficient but often converge to local minima of the criterion
function. Several heuristics for choosing the initial partition, moving objects from
one cluster to the other, and for merging and splitting clusters will be discussed
later.

Another way of avoiding the combinatorial explosion is somehow to identify
and reject a large number of partitions which are not likely to be of interest.
Jensen (1969) uses a dynamic programming approach to eliminate many partitions
and is still able to achieve an optimal solution. A significant computational savings
is realized, especially for large clustering problems, at the expense of algorithmic
complexity. For example, to partition 19 objects into four clusters, less than 2%
of the total number of partitions need to be evaluated using the dynamic programming
formulation. Even this reduction is not enough to make this approach computation-
ally feasible for practical clustering problems. Several related approaches are de-
scribed in the literature (Edwards and Cavalli-Sforza, 1965; Vinod, 1969; Rao,
1971; Koontz et al., 1975; Lefkovitch, 1980).

There is no single ‘‘best’” criterion for obtaining a partition because no
precise and workable definition of “‘cluster’” exists. Clusters can be of arbitrary
shapes and sizes in a multidimensional pattern space. Each clustering criterion
imposes a certain structure on the data, and if the data happen to conform to the
requirements of a particular criterion, the true clusters are recovered. Only a small
number of independent clustering criteria can be understood both mathematically
and intuitively. Thus the hundreds of criterion functions proposed in the literature
are related and the same criterion appears in several disguises. Shaffer et al. (1979)
demonstrate the similarity of a mode-seeking partitional algorithm (Kittler, 1976)
and the MST-based algorithm of Zahn (1971). Similarly, Urquhart (1982) shows
that partitions obtained from a relative neighborhood graph are identical to those
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generated by mutual near-neighbor clustering (Gowda and Krishna, 1978). The
literature of cluster analysis is spread so widely and over so many areas of science
that a single criterion function is rediscovered repeatedly.

In this section we present some of the most common partitional clustering
methods. Several popular criteria are versions of square-error and are discussed
in Sections 3.3.1 to 3.3.3. Another global criterion obtains a partition by fitting
a mixture density model to the patterns (Section 3.3.4). These clustering criteria
create clusters having hyperellipsoidal shapes. Sections 3.3.5 to 3.3.7 describe
several partitional clustering methods based on local criteria of density or mode
estimation, graph connectivity, and near-neighbor relationships. Finally, Section
3.3.8 briefly covers the topic of fuzzy clustering, where each object is permitted
to belong to more than one cluster with a grade of membership.

Most of the partitional clustering techniques presented here implicitly assume
continuous-valued feature vectors so that the patterns can be viewed as being
embedded in a metric space. If the features are on a nominal or ordinal scale,
Euclidean distances and cluster centers are not very meaningful, so hierarchical
clustering methods are normally applied. Wong and Wang (1979) proposed a
clustering algorithm for discrete-valued data. The approach is similar to the mode
estimation procedure for continuous data but approximates the high-order discrete
probability distribution by a second-order product and uses Hamming distance
(Section 2.2) between patterns.

The technique of conceptual clustering or learning from examples (Michalski
and Stepp, 1983) can be used with objects represented by nonnumeric or symbolic
descriptors. The objective here is to group objects into conceptually simple classes.
Clustering of trains using attributes such as number of cars, number of wheels,
colors of wheels, and number of items carried, and the clustering of microcomputers
using attributes such as CPU speed, memory size, and type of processor are more
appropriately handled by associating each cluster with a simple *‘concept.”” Concepts
are defined in terms of attributes. For example, in the train classification problem,
trains with two red cars is a concept. Objects are arranged into a hierarchy of
classes described by concepts.

3.3.1 Square-Error Clustering Criteria

The most commonly used partitional clustering strategy is based on the square-
error criterion. The general objective is to obtain that partition which, for a fixed
number of clusters, minimizes the square-error. Ward’s method of hierarchical
“clustering (Section 3.2.7) uses square-error in a different way. Minimizing square-
error, or within-cluster variation, will be shown to be equivalent to maximizing
the between-cluster variation.

Suppose that the given set of n patterns in d dimensions has somehow been
partitioned into K clusters {C;, C,, . . . , Ck} such that cluster Cy has n patterns
and each pattern is in exactly one cluster, so that
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K
> m=n
k=1

The mean vector, or center, of cluster C, is defined as the centroid of the cluster,
or
ng
m® = (1/ny) > x®
i=1
where x{¥) is the ith pattern belonging to cluster C;. The square-error for cluster
Cy is the sum of the squared Euclidean distances between each pattern in C; and
its cluster center m*). This square-error is also called the within-cluster variation.
nj
e,% - 2 (xi'“ - m(k])'!‘(x(ik} = m(k))
i=1
The Mahalanobis distance (Section 2.2) can also be used to define square-error.
The square-error for the entire clustering containing K clusters is the sum
of the within-cluster variations:

K
- 2
Ex = Z €

k=1

The objective of a square-error clustering method is to find a partition containing
K clusters that minimizes E% for fixed K. The resulting partition has also been
referred to as the minimum variance partition. Figure 3.16 illustrates that the
square-error criterion views the centroids of clusters as prototypes. The error repre-
sents deviations of the patterns from the centroids. In other words, the patterns
are viewed as a collection of K spherically shaped swarms. Square-error clustering
tries to make the K swarms as compact and separated as possible.

Gordon and Henderson (1977) also define the clustering problem in terms
of minimizing the within-cluster sum of square distances. However, they write
their criterion function in such a way that the clustering problem can be formulated
as a nonlinear programming problem. Let x; denote the jth feature of the ith

€12 <1)
X, x2

1>

C12

-

Figure 3.16 Distances used in computing square-error.
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pattern, i = 1, . . . ,mj=1,. .. ,d. Letyy = 1if the ith pattern belongs
to the kth cluster, and 0 if the ith pattern does not belong to the kth cluster, k =
1, . . ., K. The centroid of the kth cluster, z;, is written as z; = (zzy, . . . ,
Zra)» Where

n n
Z, = > (axip) > ik

i=1 i=1

The total within-cluster variation, denoted as Sy, can be written as

9 n K d 5
EK = Sr=2 2 Yu 2 (X — zx)”
i=1 k=1 j=1
Gordon and Henderson (1977) proposed the following two formulations for
minimizing St.

1. Given the pattern matrix, &, and the number of clusters, K, find the n X K
matrix Y = [y;] that minimizes S;. Note that ¥ is an n X K matrix of 0’s
and 1’s with exactly one 1 in each row and at least one | in each column.

2. A more general formulation minimizes Sy under the assumption that y; €
[0, 1] subject to the constraints

K
2 Y = 1 and Ya=0
k=1

The term y; denotes the fraction of the ith pattern that is assigned to the
kth cluster. This concept is similar to fuzzy clustering (Section 3.3.8), where a
pattern belongs to a cluster with a ‘‘grade of membership.’”” A lemma by Gordon
and Henderson shows that the matrix ¥ which minimizes S under these constraints
must contain only 0’s and 1’s. Thus the first formulation is a special case of the
second formulation. The algorithm used to minimize Sy is based on the method
of steepest descent.

A number of clustering criteria related to square-error have been derived
from scatter matrices used in discriminant analysis. They are based on the following
decomposition of the total scatter matrix, &, into the within-cluster scatter matrix,
Yw, and the between-cluster scatter matrix, ¥ (see Appendix D).

g=873+80w

The total scatter matrix & is fixed, no matter how the given patterns are
partitioned. These matrices are scalars in one dimension, so it should be clear
that increasing the between-cluster scatter ¥y decreases the within-cluster scatter
Pw., and vice versa. To define clustering criteria in terms of scatter matrices, we
need to represent the *‘size’” of clusters by the trace and the determinant operators.
A number of clustering criteria are described below in terms of scatter (Friedman
and Rubin, 1967).

We first show that a clustering criterion defined by either the trace of Fy
or ¥ is identical to the square-error criterion.
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K K Nk

r( @)= @)= > &b - mO)Tx® - m®) = £2

k=1 k=1i=1

Note that tr (¥®) is the sum of variances along the feature directions for

cluster k and measures the compactness of cluster C,. Minimizing tr (yy) is identical
to maximizing tr (¥5) because

tr (F) = tr (Fy) + tr (Fp)

and tr (¥) is the same for any partition. The trace criterion, and the equivalent
square-error criterion, are invariant under orthogonal transformations (Appendix
D) of the pattern space, such as rotations, but are not invariant under nonsingular
linear transformations. That is, the minimum square-error partition may change
if the coordinate axes are scaled.

The determinant of ¥ is not a good clustering criterion because ¥ becomes
singular when the number of clusters is less than the number of features, K < d.
Minimizing the determinant of &y, has an advantage over the square-error criterion
in that ¥y, is invariant to nonsingular linear transformations (Appendix D) of the
patterns. However, &y, becomes singular if (n — K) < d or if the patterns lie in
a subspace of the feature space. A linear transformation (Sections 2.4.1 and 2.4.3)
can be used to reduce the dimensionality of the data when ¥y is singular.

Section 2.4.3 showed that the eigenvectors of ¥!¥p define a projection of
the patterns to a space of K — | dimensions. These eigenvectors are invariant
under nonsingular linear transformations of the pattern matrix. Further, since the
eigenvalues of 'Yy determine the ratio of between-cluster to within-cluster
scatter, we can define two additional clustering criterion. Assuming that there are
m = min {d, K — 1} significant eigenvalues, {{;, &, . . . , {nt Of F3'TFp,
these criteria can be expressed as

m

tr (Fw'Fp) =2 ¢  and LUl =11 (1 + 2
i=1 i=1

Clustering methods based on these criteria choose that partition for which
tr (F3'Fp) or |F)/|Fy| is maximized. Note that maximizing |F|/|Fy] is the same
as minimizing |¥y,| because || is independent of the partition of the data.

The clustering criteria above look for globular or hyperellipsoidal clusters.
Different criterion lead to different clusterings. The square-error criterion is less
demanding computationally than the criteria based on scatter ratios because the
latter require the computation of eigenvalues after every partition. Unfortunately,
there is no general guideline available for choosing one criterion over the other.
In practice, one should generate partitions using different criterion functions and

then choose the ‘‘best’” one under some validation scheme (Chapter 4).

Example 3.8

Suppose that the four two-dimensional pattern vectors shown in Figure 3.17 are to be
clustered (Duda and Hart, 1973). It is easy to compute the scatter matrices for the following
three partitions (Duda and Hart, 1973).
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Figure 3.17 Clustering of four patterns in two
&% dimensions.
({xy, x5}, {x3, X)) tr () = 18 [Fw] = 16
({x,%4}, {x2, X3} tr (Fy) = 18 |Fwl = 16
(x5 x5, X3}, {x:h tr (Fy) = 52/3 |yw| = 64/3

Thus the third partition is best of the three according to the tr (¥y,) criterion, which
is equivalent to the square-error criterion. However, the first two partitions are selected by
the || criterion.

3.3.2 Square-Error Clustering Methods

The basic idea of an iterative clustering algorithm is to start with an initial
partition and assign patterns to clusters so as to reduce square-error. The square-
error tends to decrease as the number of clusters increases and can be minimized
only for a fixed number of clusters. An iterative partitional clustering method
can be implemented in several different ways. Different implementations can lead
to different partitions. Dubes and Jain (1976) emphasize the distinction between
clustering methods and clustering algorithms. A clustering method specifies the
general strategy for grouping the patterns into clusters such as minimizing square-
error or maximizing tr (YW Fp). A clustering algorithm, on the other hand, is a
computer program that implements a strategy and incorporates various heuristics.
A general algorithm for iterative partitional clustering method is given below.
Anderberg (1973) provides an extensive discussion of several details of this ap-
proach.

ALGORITHM FOR ITERATIVE PARTITIONAL CLUSTERING

Step 1. Select an initial partition with K clusters.
Repeat steps 2 through 5 until the cluster membership stabilizes.

Step 2. Generate a new partition by assigning each pattern to its closest
cluster center.
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Step 3. Compute new cluster centers as the centroids of the clusters.

Step 4. Repeat steps 2 and 3 until an optimum value of the criterion function
is found.

Step 5. Adjust the number of clusters by merging and splitting existing
clusters or by removing small, or outlier, clusters.

The details of the steps in this algorithm must either be supplied by the
user as parameters or be implicitly hidden in the computer program. However,
these details are crucial to the success of the program. A big frustration in using
clustering programs is the lack of guidelines available for choosing details. We
briefly review some of the crucial parameters and the options available (Anderberg,
1973; Dubes and Jain, 1980).

Initial partition. An initial partition can be formed by first specifying a
set of K seed points. Seed points can be the first K patterns or K patterns chosen
randomly from the pattern matrix. A set of K patterns that are well separated
from each other can be obtained by taking the centroid of the data as the first
seed point and selecting successive seed points which are at least a certain distance
away from the seed points already chosen. The initial partition or clustering is
formed by assigning each pattern to the closest seed point. The centroids of the
resulting clusters are the initial cluster centers. Hierarchical clustering of the data
can also be used to select an initial partition.

Different initial partitions can lead to different final clusterings because algo-
rithms _based on_square-error can converge to local minima. This is especially
true if the clusters are not separated well. One way to overcome local minima is
to run the partitional algorithm with several different initial partitions. If they all
lead to the same final partition, we have some confidence that the global minimum
of square-error has been achieved.

Updating the partition. Partitions are updated by reassigning patterns to
clusters in an attempt to reduce the square-error. The term ‘‘pass’’ or ‘‘cycle’
refers to the process of examining the cluster label of every pattern once. McQueen
(1967) defined a_K-means pass as an assignment of all patterns to the closest
cluster center. The center of the gaining cluster is recomputed after each new
assignment in McQueen’s K-means method. Forgy’s method (Forgy, 1965) recom-
putes cluster centers after all patterns have been examined. The Euclidean metric
is the most common metric for computing the distance between a pattern and a
cluster center but Mahalanobis distance (Section 2.2.1) is also used. However,
Mahalanobis distance requires computation of the inverse of the sample covariance
matrix every time a pattern changes its cluster label.

Friedman and Rubin (1967) define a hill-climbing pass and a forcing pass
in their clustering algorithm based on an invariant criteria using scatter matrices.
A hill-climbing pass changes the cluster label of a pattern only to improve the
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criterion function. Remember that a K-means pass assigns every pattern to its
closest cluster center. A forcing pass perturbs the partition to avoid getting trapped
at a local minimum of the criterion function. A forcing pass tries each pattern of
a cluster in a different cluster. The criterion function is recalculated after each
test, the best partition found is retained, and the forcing pass is repeated for the
next cluster. These passes are applied repeatedly until convergence is obtained.

Adjusting the number of clusters. Some clustering algorithms can create
new clusters or merge existing clusters if certain conditions are met. This capability
allows an algorithm to recover from poor initial partitions and lets it select a
“‘natural’’ or ‘‘suitable’’ number of clusters, especially if the number of clusters
desired is not appropriate. In one of the popular partitional clustering algorithms
called ISODATA (Ball and Hall, 1964), these conditions are determined from

parameters specified by the user of the program. A cluster is split if it has too
many patterns and an unusually large variance along the feature with largest spread.

Two clusters are merged if their cluster centers are sufficiently close, again based

on a parameter supplied by the uger.

An outlier is a pattern that is sufficiently far removed from the rest of the
data to suspect that it was included by error, such as a mistake in data entry.
Quite often an outlier is due to noise in the measurement process or error in data
coding. Outliers can provide useful information about the underlying data generation
process, but forcing an outlier to belong to a cluster distorts the shape of that
cluster. Figure 3.18 demonstrates that an outlier can force a partitional clustering

O: Cluster 1
MN: Cluster 2

Figure 3.18 Effect of outlier in distorting a clustering.
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Figure 3.19 Convergence of K-means clustering: (a) initial data; (b) cluster membership
after first loop; (c) cluster membership after second loop.

algorithm to put two compact and well-separated groups into the same cluster.
Thus it is best to identify an outlier and remove it from further consideration.
Some clustering algorithms also treat ‘*small”* clusters as outliers.

Convergence. When does the algorithm stop? Partitional algorithms termi-
nate when the criterion function cannot be improved. There is no guarantee that
an iterative algorithm will reach a global minimpym. Some algorithms stop when
the cluster Iabels for all the patterns do not change between two successive iterations.
A maximum number of iterations can be specified to prevent endless oscillations.
In practice, K-means type algorithms converge rapidly. Figure 3.19 shows two
well-separated clusters in two dimensions. Even though the two initial seed points
belong to the same cluster, the convergence of the K-means algorithm to the
correct partition requires only two iterations.

Selim and Ismail (1984) rigorously prove convergence of the K-means algo-
rithm. The problem of partitioning n d-dimensional patterns into K clusters can
be formulated as the following mathematical programming problem. Minimize
the weighted sum of Euclidean distances between patterns and cluster centers,

K n
fW, )= > wyd(x;, m®)

k=1 i=1
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subject to the constraint
K
> wy=1, i=1,2,...,n and wye{0, 1}
k=1

The matrix W = [wy] is a K X n matrix of weights for each pattern in each
cluster and A is the d X K matrix of cluster centers.

This is similar to the formulation of Gordon and Henderson (1977) discussed in
Section 3.3.1.

The function fi'W, M) is nonconvex and its local minimum need not be a
global minimum. Frieze (1980) has also studied similar optimization problems.
Consider the data set shown in Figure 3.20. If the two initial cluster centers are

2 6
m [0] and m [2]

then the K-means algorithm will stop after one iteration and converge to the solution
Wi = Wi2 = Wpz = wyy = 1, wy; = 0 otherwise, which yields two clusters {x,,
X5} and {x3, x4} and W, M) = 8. Selim and Ismail show that this solution is
not even a local minimum because by slightly perturbing A, AW, M) = 6 can
be achieved with the cluster centers

0 4
{1)— @ =
m [0] and m [2]

Pollard (1981) also provides conditions for the almost-sure convergence of
the cluster centers in K-means clustering as the number of patterns increases.

Computation. The computational complexity of this algorithm is of the
order O(ndKT), where n is the number of patterns, d the number of features, K

(2)
x m X
2 ] o X o*
1)
X m X,
& - ~O + +»
2 4 6 8

Figure 3.20 Convergence of square-error clustering algorithm.
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the number of clusters desired, and T the number of iterations. The value of T
depends on the initial cluster centers, distribution of patterns, and the size of the
clustering problem. In practice, however, the user specifies an upper bound on
the value of 7. The iterative nature of the square-error clustering methods demands
substantial processing time, even for a few hundred patterns. Two approaches
have recently been taken to speed up square-error clustering algorithms that utilize
advances in microelectronics technology: parallel processing and VLSI architecture.
Tilton and Strong (1984) describe the performance of the ISODATA clustering
algorithm when implemented on the MPP (Massively Parallel Processor), which
contains an array of 128 X 128 microprocessors. A clustering problem involving
a 512 x 512 digital image and 16 clusters required 20 seconds on the MPP
compared to 7 hours on a VAX-11/780 superminicomputer. (See Chapter 5 for a
brief review of digital image processing and image segmentation.) Ni and Jain
(1985) present a systolic architecture for a square-error pattern clustering whose
design has a potential performance gain of 1300 times over a serial processor.

3.3.3 Square-Error Clustering Programs

We now explain two examples of square-eror clustering programs, called
FORGY and CLUSTER and compare their performance on two data sets. Clustering
software is discussed in Section 3.4.

FORGY is the simplest and most straightforward square-error clustering pro-
gram (Forgy, 1965). It uses only the K-means pass. The cluster centers are updated
by recomputing the centroids of all patterns having the same cluster label at the
end of the pass. The seed points are K patterns chosen at random, where K is
specified by the user as the number of clusters desired. Our implementation of
FORGY allows the user to specify a heuristic that creates additional clusters (Dubes
and Jain, 1976). After the square-error has converged for a fixed K, a new cluster
is created when a pattern is found that is sufficiently far removed from the existing
cluster centers. The average distance between pattern x; and the K cluster centers
is given by

K
d. = (UK) S, d(x;, m®)
k=1

A new cluster is created centered at pattern x; if
|d(x;, m'?) — d| = d;T

where the gth cluster center is the cluster center closest to pattern x; and T is a
user-specified parameter, 0 < T} < 1. The left side of the above inequality is
roughly d; for patterns close to an existing cluster and is small for patterns far
removed from all existing clusters. The larger T'j, the more new clusters are created.
FORGY also detects outliers. If the number of patterns in any cluster falls below
another user-specified parameter, T, then all the patterns belonging to that cluster
are considered as outliers and are ignored.

To run FORGY, a user specifies threshold T, for creating new clusters,
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threshold T, for deleting clusters, and the maximum allowable number of iterations.
The most crucial parameter is 7| and a few runs of the program with different
values of T, and 7, may be necessary to obtain a reasonable grouping of the
data. FORGY should be run several times with different starting configurations.

The output of FORGY provides cluster labels for all patterns and several
statistics such as the square error for each cluster, a table of distances between
cluster centers, and the ratio of within-cluster to between-cluster distance. A table
showing the number of patterns in each category is also printed when a priori
category labels for all patterns are available. Since FORGY is based on square-
error, it also generates some statistics that can be applied to analyze the separations
among patterns. Since FORGY tries to group the patterns, an analysis of variance
cannot be applied to these statistics. This point is treated at length in Chapter 4.
Example 3.9 demonstrates the expected output of FORGY. The statistics are ex-
plained below.

The square-error for a clustering, E%, can be decomposed into a feature-
by-feature sum as shown below.

d
Ex =2 f}
i=1

The contribution of feature j to the square-error, f}, is the sum of the squared
differences between each pattern and its cluster center using only feature j.

ni

2= Z > [x“" m}m]z
k=1 i=1
In terms of the standard decomposition (Appendix D), f} is the “‘within-
cluster” variation in feature j. The ‘‘between-cluster’” component, bz, can be
expressed in terms of the cluster centers and m;, the jth coordinate of thc centroid
of all patterns.

K
b} = [2 n(mP)? } — n(mj)?

k=1
l K i

K
2 E r(i) E nkm}k)
=1

k=1 i=1

Discriminant analysis (Appendix D) shows that the total square-error contribu-
tion from feature j, a}, can be written as

=13+ 8
The F-ratio is defined as
bH(K — 1
F-ratio = & =1)

The name “‘F-ratio” comes from analysis of variance (Appendix F). When the
samples are independent and come from Gaussian distributions and when the vari-
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ances of all groups are the same and when the group labels are assigned a priori,
the F-ratio has an F distribution with K — 1 and n — K degrees of freedom.
Large values of the F-ratio, when measured on the scale of an F distribution,
indicate a grouping in which the separation among clusters is significantly large
with respect to the separations among patterns in individual clusters. Unfortunately,
this distribution cannot be applied to determine whether a particular feature contrib-
utes significantly to the clustering because the cluster labels are assigned after
looking at the data. For example, a clustering algorithm labels the patterns so as
to separate the clusters maximally. The null distribution of the F-ratio printed
out by the program is not the standard distribution published in textbooks.

A few other quantities defined in FORGY s output need clarification. For
cluster number k, the *‘squared error’’ is ez, “S.E/(N(k) — 1) is exl(n, — 1),
and ““CLAVGD(k)"’ is (e3/ny)"/?. Other terms are self-explanatory. Note that *‘dis-
tance”’ means ‘‘squared Euclidean distance.”’

Example 3.9

FORGY was applied to data sets DATA1 and DATA2 (Example 2.6). DATAI consists
of 100 patterns arranged into four distinct clusters in a four-dimensional unit hypercube.
Patterns are arranged by category. The first 24 patterns are from category 1, the next 35
from category 2, the next 21 from category 3, and the last 20 from category 4. DATA2
consists of 100 patterns uniformly generated in a six-dimensional unit hypercube. The
following parameter settings were tried for both sets of data:

K=2,4,6 T, =05 T,=1 maximum number of iterations = 20

The objective here was not to finely tune the parameters to get the best clustering,
but to see if reasonable clusterings can be obtained. FORGY converged in fewer than 10
iterations on both data sets. The two-cluster solution took about 12 seconds of CPU time
on a Harris 500 superminicomputer. The execution time increased to 35 seconds when the
number of clusters was increased to six.

We first summarize the results for DATAL, where the true cluster numbers generated
by computer are treated as category information. Part of the output for the two-cluster
solution is shown in Figure 3.21. The output shows that categories | and 2 are grouped
into one cluster and categories 3 and 4 in the other cluster. This grouping is surprising in
light of the two-dimensional representation in Figure 2.10 and might be explained by the
observation that the clusters are hyperellipsoidal with nearly identical covariance structure.
The F-ratio for feature 4 is largest, so the patterns cluster better in feature 4 than in the
other 3 features. We cannot say whether the clustering in feature 4 is significantly best.
Only patterns 13, 16, and 89 fail to cluster properly. The main output of the program is
the locations of the two cluster centers. The total square error for the two-cluster solution
is 17.406 and seems evenly divided between the two clusters.

Only the most useful information in FORGY output is displayed for the four-cluster
(Figure 3.22) and six-cluster (Figure 3.23) solutions. The total square-error reduces to
6.8396 for the four-cluster solution and to 3.4096 for the six-cluster solution. Categories
1 and 4 are confused in lhe four- clustcr solution, whereas they are separated in the two-
cluster solution. &e et -

& solti i io- The six-cluster solution separates patterns
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Results of FORGY algorithm after 6 iterations

0 Patterns were removed.
4 Clusters were cobtained.

Cluster No. for each pattern — LABEL array

B o L B B
B W R B
LS RN S ]
N WRN
B b= L L B
B L LB
[ SR RFNNE ]
B b L L B
SRR Y S
MWW
(SRR E S
B W W
B W W
LSRR R ]
[SE_RFERE S
B W W
B L b
bW W
[SESR TR ]
SRS Tl S ]

Squared error per cluster — K is the cluster No.

N(K) Squared error S5.E./(N(K)-1) CLAVGD(K)
13

K

1 0.20735 0.17279E-01 0.12629

2 44 5.1956 0.12083 0.34363

3 35 1.2852 0.37799E-01 0.19162

4 8 0.15144 0.21634E-01 0.13759
TOTAL 100 6.8396

Squared error divided by (No of patterns in clustering — No. of clusters) =
0.71246E-01

Distances between cluster centers

1 2 3 4
1 0.0000 0.76497 1.0242 0.53347E-01
2 0.76497 0.0000 0.52729 0.73402
3 1.0242 0.52729 0.0000 1.2203
4 0.53347E-01 0.73402 1.2203 0.0000

Cluster membership according to category:
Rows are clusters and columns are categories
i 2 3

4
1 0 0 13 o]
2 24 0 0 20
3 0 a5 0 0
4 0 0 8 0

Figure 3.22 FORGY clustering on DATAI: four clusters.

into clusters according to category except for patterns 13 and 16. The origins of these two
patterns should probably be inspected. Categories 2 and 4 are split into two clusters, so a
bimodal structure might be appropriate for describing these categories.

How many clusters are appropriate for these data? One of the heuristics for deciding
the number of clusters is to look for a “‘knee’” in the plot of total square-error versus the
number of clusters (see Section 4.4.2). This heuristic suggests that DATAL1 has four clusters.
The problem of fixing the “‘correct’’ number of clusters is one of the most fundamental
and unsolved problems in cluster analysis.

One useful statistic printed by FORGY is the ratio of the distances between a cluster
center and all others to the average within-cluster distance. Large values of this statistic
suggest that the clusters are compact and well separated. These values are substantially
higher for both the four-cluster and the six-cluster solution than for the two-cluster solution,
although these statistics naturally increase with the number of clusters. In the four-cluster
solution, only cluster 2, which is a mixture of categories 1 and 4, has a low value for this
statistic. '

A

W

o et %
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Results of FORGY algorithm after 9 iterations

0 Patterns were removed.
6 Clusters were obtained.

Cluster No. for each pattern — LABEL array

HWwino o
Hwioo
Hwl oo
Hwhhoo
W oy
HWwpbo
HWwwmp o
Hwwnumoa
Hwe o,
W= Wy
Hwuuno
W oy
L LN B i
Hwuumoa
HWwm o
W L B LN e
Hwono
HwuUn o
HWwWUt o
HWwwm o

Squared error per cluster - K is the cluster No.

K N(K) Squared error S.E./(N({K)-1) CLAVGD(K)
1 15 0.43799 0.31285E-01 0.17088
2 12 0.25361 0.23056E-01 0.14538
3 21 0.62299 0.31149E-01 0.17224
4 7 0.30889 0.51482E-01 0.21006
5 23 0.71969 0.32713E-01 0.17689
6 22 1.0664 0.50783E-01 0.22017
TOTAL 100 3.4096

Squared error divided by (No of patterns in clustering — No. of clusters) =
0.36272E-01

Distances between cluster centers

1 2 3 4 5 6
1 0.0000 0.88037 0.80797 0.B85551E-01 0.84843 0.32988
2 0.88037 0.0000 0.97198 0.74127 0.39550E-01 0.39932
3 0.80797 0.97198 0.0000 0.61857 1.1596 0.88723
4 0.85551E-01 0.74127 0.61857 0.0000 0.70367 0.20117
5 0.84843 0.39550E-01 1.1596 0.70367 0.0000 0.41891
& 0.32988 0.39932 0.88723 0.20117 0.41891 0.0000

Cluster membership according to category:
Rows are clusters and columns are categories

2
0
12
0 2
0
23
0

O L b

NOoONOoOOH
oo HOoOOW
couUvoowumde

Figure 3.23 FORGY clustering on DATAI: six clusters.

The patterns in DATA2 have no category information, so FORGY cannot construct
cluster by category tables to judge the performance of the clustering program. We can
contrast the output of FORGY for these random data with the clustered data in DATAI
but must be aware that the numbers of features is not the same. Figures 3.24 to 3.26
show that the square-error for DATAZ2 is substantially higher than for DATAI, and the
total square-error for DATA2 does not fall as sharply as for DATA1 when the number of
clusters is increased. Both sets of data have the same number of patterns, but DATA2 is
in six dimensions. Again, the complete output for FORGY on DATA?2 is shown only for
the two-cluster solution (Figure 3.24).

Another noticeable difference between clustering for the two data sets appears in
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Results of FORGY algorithm after 10 iterations
0 Patterns were removed.

4 Clusters were obtained.

Cluster No. for each pattern - LABEL array

1 4 4 1 1 2 1 4 3 4 31 41 2 41 2 3 1
3 4 4 1 4 2 1 4 4 2 1l 2 3 4 4 3 2 1 3 2
2 4 2 2 4 1 1 2 4 2 2 42 3 1 1.1 1 2 4
1 3 2 4 3 1 4 2 1 3 1 2 3 4 3 1 1 4 4 3
4 4 3 31 22 L2 1 l1 4 3 3 3 1 3 1 4 1
Squared error per cluster - K is the cluster No.

K N(K) Squared error S.E./(N(K)-1) CLAVGD(K)

1 32 12.332 0.39782 0.62079

2 22 6.1898 0.29475 0.53043

3 19 5.1512 0.28618 0.52069

& 27 9.6708 0.37195 0.59848
TOTAL 100 33.344

Squared error divided by (No of patterns in clustering - No. of clusters) =
0.34733

Distances between cluster centers

1 2 3 4
1 0.0000 0.44283 0.39219 0.42436
2 0.44283 0.0000 0.30128 0.31992
3 0.39219 0.30128 0.0000 0.66478
4 0.42436 0.31992 0.66478 0.0000

Figure 3.25 FORGY clustering on DATAZ2: four clusters.

the ratio of the average distance between a cluster center and all others to the average
within-cluster distance. This statistic has substantially lower values for random data than
for the clustered data. Clustering tendency (Section 4.6) deals with the issue of whether a
given data set is random.

Example 3.10

Figure 3.27(a) demonstrates a difficulty with square-error clustering. It shows the two-
cluster solution generated by FORGY for a set of patterns in the plane which clearly
contains two well-separated groups. Unfortunately, the partition boundary between the two
clusters does not lie in the sparse region as expected but cuts one of the two ‘‘natural”
clusters in half. Similarly, the cigar-shaped data in Figure 3.27(b) are not clustered correctly
by FORGY. These examples demonstrate that the square-error criterion, which seeks compact
hyperellipsoidal clusters, can produce misleading results when the data do not occur in
compact, hyperellipsoidal boundaries.

The second square-error clustering program to be examined is called CLUS-
TER (Dubes and Jain, 1976). It has the same objective as FORGY but generates
a nonhierarchical sequence of clusterings rather than a single clustering. This
program utilizes both a K-means pass and a forcing pass (Friedman and Rubin,
1967). CLUSTER attempts to find the “‘best’” clusterings containing 1, 2, . . . ,
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Results of FORGY algorithm after 6 iterations
0 Patterns were removed.

6 Clusters were cbtained.

Cluster No. for each pattern — LABEL array

1 3 1 1 1 4 1 3 5 6 1 6 1 5 4 3 6 4 5 1
5 1 3 6 3 4 1 3 3 4 6 2 5 2 3 5 4 1 5 4
4 2 4 4 3 1 6 2 3 2 1 3 2 5 1 6 1 4 4 3
5 6 2 3 5 1 6 2 1 5 1 4 5 3 4 6 4 3 3 5
3 3 4 5 6 4 4 6 4 4 6 3 5 5 2 6 5 4 6 6
Squared error per cluster — K is the cluster No.

K N(K) Squared error S.E./(N(K)-1) CLAVGD(K)

1 18 5.7175 0.33633 0.56360

2 9 1.6167 0.20209 0.42383

3 19 6.0932 0.33851 0.56630

4 21 6.9902 0.34951 0.57694

5 17 4.5053 0.28158 0.51480

6 16 3.8947 0.25965 0.49338
TOTAL 100 28.818

Squared error divided by (No of patterns in clustering - No. of clusters) =
0.30657

Distances between cluster centers

1 2 3 4 5 6
0.0000 0.65279 0.41074 0.44736 0.46324 0.49531
.65279 0.0000 0.32856 0.39610 0.34615 0.51358
.41074 0.32856 0.0000 0.46140 0.83177 0.61105
.44736 0.39610 0.46140 0.0000 0.36814 0.39783
.46324 0.34615 0.83177 0.36814 0.0000 0.60731
.49531 0.51358 0.61105 0.39783 0.60731 0.0000

LN e L B
ooooo

Figure 3.26 FORGY clustering on DATAZ2: six clusters.

K clusters and prints a history of the K clusterings achieved, one for each number
of clusters.

CLUSTER involves two phases which are repeated until a pass through
both phases does not decrease the square-error. Phase 1 creates a sequence of
clusterings containing 2, 3, . . . , K clusters, where K is specified by the user.
The initial two cluster centers are the centroid of the patterns and the pattern
farthest removed from the centroid, not counting the outliers. Given a clustering
with k clusters, the pattern farthest removed from the existing clustering is identified
as the (k + 1)st cluster center. The K-means pass is repeated until no patterns
change clusters or until a maximum number of iterations have been completed.

The first pass through phase 1 gives a set of K clusterings, each containing
a different number of clusters. Phase 2 then creates another set of clusterings by
merging existing clusters two at a time to see if a better clustering can be achieved
(forcing pass). After each pass through phases 1 and 2, the square-errors of the
clusterings are compared with those of the clusterings (having the same number
of clusters) that existed before that pass. If any of the square-errors are smaller
than before, another pass through phases 1 and 2 is initiated. This continues
until square-error cannot be decreased.
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One of the main advantages of CLUSTER over other clustering programs
is that the user need not specify parameters. Only the maximum number of clusters
desired is required. The clustering statistic computed in CLUSTER is a purely
heuristic number.

K K
(VK) 2 [(mep)V* (n = ™" 3 n,d(m®, m))]

k= =
That is, the ratio of the “‘average’ distance from cluster k to all other clusters is
divided by the average within-cluster distance for cluster k. This quantity is averaged
over all clusters. Intuition dictates that the larger this number, the better the cluster-
ing. But how large is large? How does this statistic depend on problem parameters?
These questions have not been answered. We now present the results of CLUSTER
on DATAI and DATA2 and compare these results with those given by program
FORGY.

No. of patterns = 240(200,40) No. of ini. clu. centers = 2
Min clus. size =1 Max no of iterations =5
Max no of inner loop= 10
Thresheld for forming new cluster= 0.4
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Figure 3.27 Inadequacies of square-error clustering.
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No. of patterns = 240(120,120) No. of inl. clu. centers =2
Min clus. size =1 Max no of iterations =5
Max no of inner loop= 10
Threshold for forming new cluster= 0.4
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Figure 3.27 (continued)
Example 3.11
The partitions obtained from CLUSTER for data sets DATA1 and DATA?2 are given in
Figures 3.28 and 3.29. They appear to be better Y. For

example, the four-cluster solution from CLUSTER for DATA] has a total square-error of
4.0677 (Figure 3.28) compared to 6.8396 by FORGY . The partition from CLUSTER uniguely
assoclates a cluster with each category with the exception of a single pattern from category
1. FORGY’s four-cluster solution merged categories 1 and 4 in the same cluster. The
performance of CLUSTER on the random data of DATA2 is comparable to that of FORGY.

In summary, clustering programs that minimize square-error are very practical.
They try to define clusters that are hyperellipsoidal in shape. The square-error
criterion is equivalent to several other criteria involving the scatter matrices used
in discriminant analysis. The numerous square-error programs available differ both
in computational details and in the approach taken to minimize the square error.
Square-error clustering methods do exhibit inadequacies as when the Euclidean
metric is used to measure distance but the features are not on comparable scales.
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Other data sets that cannot be adequately clustered by square-error programs,
such as CLUSTER and FORGY, are demonstrated by Zahn (1971) and Hall et
al. (1973).

3.3.4 Clustering by Mixture Decomposition

A popular approach to clustering is based on the notion of a mixture density.
Each pattern is assumed to be drawn from one of K underlying populations, or
clusters. The clustering problem is to allocate each pattern to its correct population.
Unlike the density estimation or the mode-seeking clustering algorithms discussed
in Section 3.3.5, the form and the number of underlying population densities are
assumed to be known here. The patterns are not labeled by population. If the
parameters of the population densities can be estimated from the patterns, each
pattern can be assigned to its appropriate cluster based on estimated probability
densities. This model of clustering is identical to the problem of unsupervised
learning in statistical pattern recognition (Appendix A) and has been used to estimate
crop acreages from remote-sensing data (Odell and Basu, 1976).

The patterns are drawn from a population with a known number of clusters,
or classes. The underlying probability density function for class w; is denoted
p(x|w;,0;), where 0; is a vector of unknown parameters for w;. If P(w;) is the a
priori probability of class w;, or the chance that a pattern comes from w;, the
mixture density can be written as

K
Pfxlﬁ) = 2 P(x|wi, 0,)P(w;)
i=1
where 8 = (0,, 0,, . . . , 0g). The class-conditional densities p(x|mj, 0,) are

called the component densities, and the a priori probabilities P(w;) are called the
mixing parameters. Note that

;‘t

2 P(@) =1
i=1

We would like to use the patterns to estimate the parameter vector 6 so
that the mixture can be decomposed into its component clusters, assuming that
the mixture is ‘‘identifiable’” (Duda and Hart, 1973; Titterington et al., 1985). If
one cluster is to be assigned to each category, the parameters of each component
density can be estimated separately. This is estimation, not clustering.

The general formulation given above is applicable for arbitrary density func-
tions. In the absence of prior knowledge about the shape and size of the clusters
present in the data, it is a common practice to assume that the component densities
are multivariate normal with different mean vectors and, perhaps, different covari-
ance matrices (McLachlan, 1982; Symons, 1981; Sclove, 1977; Scott and Symons,
1971; Wolfe, 1970; Day, 1969). This approach to clustering is model based, but
the model is Gaussian. The parameter vector 0 is usually estimated by the maximum
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likelihood approach, although the Bayesian approach has also been used (Binder,
1978; Symons, 1981). Duda and Hart (1973) lucidly illustrate the practical difficulties
associated with obtaining the maximum likelihood estimates of 6. One difficulty
is that no explicit solution for the maximum likelihood estimator of @ exists, so
an iterative estimation scheme must be employed. Starting with an initial estimate
of @, a hill-climbing or gradient-descent procedure maximizes the log-likelihood
function. Problems such as the rate of convergence, singular solutions, dependence
on the starting point, and local versus global maximum are inherent in this procedure.
These problems are further compounded as the number of unknown parameters
increases. It is commonly assumed that the K covariance matrices are equal to
limit the size of the problem.

It turns out that this maximum likelihood approach of mixture decomposition
is related to a well-known clustering method (Symons, 1981). If the K covariance
matrices are equal, then the maximum likelihood criterion is a simple modification
of Friedman and Rubin’s invariant criterion of minimizing |#y|. When the covariance
matrices or cluster shapes are different, the maximum likelihood grouping minimizes

K .

[T

i=1

Symons (1981) has compared several of these criteria on real as well as

synthetic data sets. His empirical results show that the choice of the most appropriate
criterion depends on the similarity of the component covariance matrices and the
relative sizes of the clusters. A suboptimal but practical approach is to take the
clusters generated in a square-error clustering program, such as CLUSTER (Section
3.3.3), and use the cluster centers as estimates of mean vectors and sample covariance
matrices from each cluster as estimates of the covariance matrix.

3.3.5 Clustering by Density Estimation and Mode
Seeking

Clusters can be viewed as regions of the pattern space in which the patterns
are dense, separated by regions of low pattern density. Clusters can be identified
by searching for regions of high density, called modes, in the pattern space.
Each mode is associated with a cluster center and each pattern is assigned to the
cluster with the closest center. The probability density estimate at a point x is
proportional to the number of patterns, £, falling in a small region of volume V,,
around x (Duda and Hart, 1973; Silverman, 1986).

ko

5 (x) =
Pn(X) v

where n is the total number of patterns. For a fixed V,, k, will be large for
points lying in a dense region, resulting in a large estimate p,(x). The choice of
V, is critical when # is small and is governed either by the Parzen window approach
or by the nearest-neighbor approach (Duda and Hart, 1973).

The volume V,, in the Parzen window approach is specified as a function of
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n. In the nearest-neighbor approach, k, is specified as a function of n. The region
around each pattern is examined to capture its k, nearest neighbors. In both ap-
proaches, convergence arguments and other heuristics suggest that V,, be inversely
proportional to V. Once more, k, is usually taken as proportional to Vn. The
primary difference between these two approaches is that the window around each
point in the Parzen-window approach has the same volume, whereas the window
size depends on the location of the pattern in the pattern space in the nearest-
neighbor approach.

The simplest way to identify modes in the data is to construct a histogram
by partitioning the pattern space into a number of nonoverlapping regions or cells.
Cells with relatively high frequency counts are the potential modes or cluster
centers and the boundaries between clusters fall in the ““valleys’’ of the histogram.
This method has the capability of identifying unimodal clusters of any shape.
However, the number of patterns must be sufficiently large (compared to the number
of features) in order for the histogram to be a good estimate of the density function.
Even if the sample-size requirement is met, the success of such an approach
depends on two factors. First, cells of small volume will give a very ‘‘noisy”’
estimate of the density, whereas large cells tend to overly smooth the density
estimate. Second, the procedure for locating peaks and valleys in the histogram
must be performed over a neighborhood whose size is known. These factors are
difficult to handle in more than a few dimensions.

The general concept of identifying modes for clustering has been proposed
by a number of researchers (Torn, 1977; Wong and Liu, 1977; Kittler, 1976;
Koontz et al., 1976; Eigen et al., 1974; Katz and Rholf, 1973; Gitman and Levine,
1970; Mucciardi and Gose, 1972; Sebestyen and Edie, 1966). This approach has
been quite popular in the clustering of multispectral data in remote sensing, where
the large-sample-size requirement is easily met and the size of the histogram cells
is naturally defined because of the gray-level quantization (Narendra and Goldberg,
1977; Goldberg and Shlien, 1978; Wharton, 1983). Wharton (1983) shows that
the performance of clustering based on histograms is comparable to that of K-
means clustering. The surprising result of this study was that even for moderately
sized data sets (100 observations per category), the histograms gave a reasonable
estimate of the density function.

The memory and run-time requirements of storing and searching multidimen-
sional histograms can be enormous. Chhikara and Register (1979) get around
this problem by constructing one histogram for each feature. Histograms with
only one mode are eliminated and the set of patterns is dichotomized on the
feature whose histogram has the smallest number of modes. This sequential splitting
procedure is repeated by recomputing histograms for individual clusters. A merging
procedure is invoked whenever the clusters overlap in the pattern space. The
splitting and merging stop when all the clusters have unimodal frequency distribu-
tions for every feature. This algorithm requires the user to interactively specify
the valleys in the histogram for data splitting. Eigen et al. (1974) also use equal-
interval histograms for each dimension and identify modes by recording sign changes
in the finite differences of the cell counts.
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The mode separation procedure of Kittler (1976) uses a Parzen window
estimate of the density function with a hypercubic “‘kernel function’’ (Duda and
Hart, 1973). Unimodal regions of the pattern space are identified as follows. The
starting pattern is chosen randomly and corresponds to the first point in the sequence.
The second point in the sequence is that pattern which has a maximum density
in a hypercubic window around the first pattern. The pattern with the maximum
density in the region which is the union of the windows around the first two
patterns is selected for the third point. A one-dimensional sequence of density
estimates is thus obtained in which each pattern is represented once and only
once. The regions of dense patterns correspond to the peaks in this plot. Shaffer
et al. (1979) have analyzed this algorithm and demonstrate that the results of this
mode-seeking algorithm are always identical to the results of single-link clustering.
Thus, seemingly different clustering algorithms can give the same results.

The underlying density of patterns can also be estimated by the k,-nearest-
neighbor method (Wong and Lane, 1983). Two patterns x; and x; are said to be
neighbors if x; is one of the k, nearest neighbors of x; and if x; is among the k,
patterns closest to x;. The dissimilarity between neighboring patterns x; and X; is
given by

1

i

ZPH( xi) ZP:;( xj)

Pairs of patterns that are not neighbors are assigned arbitrarily large dissimilarities.
A single-link clustering algorithm (Section 3.2.1) is then applied to this dissimilarity
matrix to generate hierarchical clusters. The parameter &, is a function of »n and
is usually taken to be log, n. However, different values of k, can lead to different
clusterings. Wong and Lane (1983) demonstrate that their clustering algorithm is

*“‘strongly set consistent’’ for high-density clusters; that is, the resulting single-
linkage clusters are maximally connected sets of the form

{x|p,(x) = p’}

for some fixed density level p*. Mode-seeking clustering methods have been used
extensively in the engineering literature, particularly in remote sensing applications.

d(x;, X;) =

3.3.6 Clustering by Graph Theory

Various kinds of geometric structures or graphs for analyzing multidimensional
patterns have led to some useful algorithms which can identify irregularly shaped
or nonglobular clusters. Section 3.2 has exhibited a number of algorithms for
hierarchical clustering based on graph theory. This section treats objects as points
in a pattern space, so distances are available between all pairs of objects. The
methods in this section seek single partitions, not hierarchies.

A graph is constructed whose nodes represent the patterns to be clustered
and whose edges represent relations between the nodes (see Appendix G). In the
simplest case, every node is connected to the remaining (n — 1) nodes, resulting
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in the complete graph. The edge weights are distances between pairs of patterns.
For the purpose of clustering, it is the relative positions of the points that is
important; pairs of patterns in the same cluster should be closer than pairs of
patterns belonging to different clusters.

Several graph structures, such as minimum spanning trees, relative neighbor-
hood graphs, and Gabriel graphs, have been imposed on the set of patterns to
capture perceptual grouping. These graphs choose a subset of the n(n — 1)/2
edges in the complete graph to reflect the ‘‘structure’” or the inherent separation
among clusters. The edges in these graphs mostly correspond to small interpoint
distances. These graphs depend only on the ordering of the lengths of the edges.
Clustering methods decompose the graphs into connected components by identifying
and deleting ‘‘inconsistent’’ edges. Each component represents a cluster.

Zahn (1971) demonstrated how the minimum spanning tree (MST) can be
used to detect clusters. His choice of MST was influenced by the Gestalt principle,
which favors that grouping of patterns which represents smaller interpoint distances.
The basic idea of Zahn’s clustering algorithm is very simple and consists of the
following steps.

ZAHN’S CLUSTERING ALGORITHM

Step 1. Construct the MST for the set of n patterns given.
Step 2. Identify inconsistent edges in the MST.

Step 3. Remove the inconsistent edges to form connected components and
call them clusters.

Zahn’s algorithm can be applied iteratively to each of the resulting components
to identify subclusters. Section 3.2.4 explains the relation between single-link
clustering and the MST. The crucial step in the algorithm is the definition of
inconsistency. Zahn considers several criteria for inconsistency. In one, an edge
is inconsistent if its weight (interpoint distance) is significantly larger than the
average of nearby edge weights. Thus the inconsistent edges are related to cluster
separation. The number of standard deviations by which an edge weight differs
from the average of nearby edge weights and the ratio of the edge weight to the
average of nearby edge weights are two means for identifying inconsistent edges.
An edge with a factor of inconsistency of two usually links two clusters and can
be deleted.

Figure 3.30 illustrates inconsistent edges for a two-dimensional data set.
Figure 3.30(a) shows a set of two-dimensional patterns containing three well-
separated clusters. Figure 3.30(b) demonstrates an inconsistent edge in the MST
for a set of seven patterns. Since the z-score of edge (C, D) is greater than 3, it
is unusually long compared to its neighboring edges, and hence is labeled as an
inconsistent edge. Figure 3.30(c) identifies inconsistent edges in the MST for the
data in Figure 3.30(a). The two intercluster edges have been correctly identified,
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but an additional inconsistent edge breaks the cluster in the upper left corner into
two components.

Zahn has applied his algorithm to a number of data sets consisting of clusters
with different shapes and properties, including touching clusters, clusters with
smoothly varying point densities, smoothly varying nonhomogeneous clusters, and
line-like clusters. The results show that while the above-mentioned notion of incon-
sistent edges works well for disjoint clusters, special heuristics are needed for
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Figure3.30 Inconsistent edges in two-dimensional data: (a) three well-separated clusters;

(b) an example of an inconsistent edge; (¢c) MST of (a) with inconsistent edges marked
X.
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(c)
Figure 3.30 (continued)

more complex situations. For example, in the case of two fairly homogeneous
clusters of different point density shown in Figure 3.31, several inconsistent edges
will be found in the sparse cluster. Zahn suggests first detecting and deleting the
denser cluster and then analyzing the remaining data. The histogram of the edge
lengths in the MST helps us in identifying the intercluster edges; intercluster edges
occupy the region between the two peaks (corresponding to within-cluster edge
lengths) in the histogram of edge lengths.

Prior knowledge of the shapes of the clusters is needed to select the proper
heuristic to identify inconsistent edges. This is the greatest deficiency of the MST-
based approach in more than two dimensions. The very reason for applying cluster
analysis is often to estimate the shapes of clusters and their structure. Nevertheless,
MST-based clustering is an important technique which complements the square-
error partitional technique. Some other variations of Zahn’s idea have also been
reported in the literature (Fehlauer and Eisenstein, 1978; Page, 1974; Magnuski,
1975). Koontz et al. (1976) and Mizoguchi and Shimura (1980) base their clustering
algorithms on directed trees.

Two other geometric structures, the relative neighborhood graph (RNG) and
the Gabriel graph (GG), have also been used in cluster analysis (Urquhart, 1982;
Matula and Sokal, 1980). These connected graphs are based on a region of influence
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Figure 3.31 Two homogeneous clusters with different density.

(Toussaint, 1980). Patterns x; and x; are defined to be relative neighbors, and are
connected in the RNG, if and only if

d(x;, x;) = max {d(x;, x;), d(x;, x;)} forallk, k#iandk#j

where d(x;, x;) denotes the Euclidean distance between x; and X;. Or, we can say
that x; and x; are connected in RNG if and only if no other point falls in
LUNE(x;, x;), where LUNE(x;, x;) is the intersection of the two disks of radius
d(x;, x;) centered at x; and x;. LUNE is the region of influence of RNG and is
shown in Figure 3.32(a).

The Gabriel graph (GG) is defined as follows. Points x; and x; are connected
in GG if and only if

d*(x;, X)) < d*(x;, xp) + dP(x;, %) forallk, k#iandk #j

This is equivalent to the condition that two points x; and x; are connected in GG
if and only if no other point lies in DISK(x;, x;), where DISK(x;, x;) is the disk
with diameter d(x;, X;) as shown in Figure 3.32(b). We say that DISK is the
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Figure 3.32 Regions of influence for RNG and GG.

region of influence for this graph. The construction of RNG and GG is well
understood for two-dimensional data, but the construction of these graphs in high
dimensions is a difficult problem.

Delaunay triangulation (DT) is another graph structure that is useful in point
pattern analysis and plays a prominent role in many algorithms that compute GG
and RNG:; efficient algorithms for computing DT are available and RNG and GG
can easily be obtained from DT by deleting some of the edges in DT. The definition
of DT is best made in terms of its dual structure, the Dirichlet tessellation. The
Dirichlet tessellation, also well known as the Voronoi diagram, of a set of patterns
% in R? (d-dimensional Euclidean space) is a partition of R into “‘cells’” about
each pattern vector x; such that each cell consists of those points of R? lying
closer to x; than to any other pattern in Z. Cell boundaries are intersections of the
perpendicular bisectors of the lines connecting X; to each of the (n — 1) other
patterns in &. Thus each cell is a convex polygon.

The Delaunay triangulation is defined as follows. The edge connecting points
x; and x; is in the DT if and only if the two cells of the Dirichlet tessellation
containing X; and x; share a common boundary. A large body of applications of
DT resides in such varied disciplines as biology and geography. For example,
DT has been used as a model of territories of breeding bird species (Sibson,
1980). Ahuja (1982) outlines applications of DT to problems in clustering, matching,
and segmentation. (See Chapter 5 for segmentation and matching in the image
processing context.) An implementation of an agglomerative clustering algorithm
based on DT has been made by Howe (1978) and applied to observations of
pollen in lake sediments with the goal of partitioning the region with respect to
forest type. However, these applications have been developed only for two-dimen-
sional data.

A minimum spanning tree and a Delaunay triangulation (DT) play important
roles as ‘‘bounds’” on RNG and GG. It can be shown that

E(MST) C E(RNG) C E(GG) C E(DT)

where E denotes the edge set of a graph. The first set inclusion guarantees that
the RNG is a supergraph of its MST. Thus every RNG is connected. Lee and
Preparata (1984) define a method for efficiently computing the RNG or GG. Figure
3.33 demonstrates the MST, RNG, GG, and Delaunay triangulation for the data
in Figure 3.30(a).
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Figure 3.33 MST, RNG, GG, and Delaunay triangulation for the data in Figure 3.30(a):
(a) MST: (b) RNG; (c¢) GG; (d) Delaunay triangulation.



Sec. 3.3 Partitional Clustering

(d)

Figure 3.33 (continued)
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Clustering algorithms based on RNG, GG, and DT are very similar to Zahn’s
MST-based clustering algorithm. Only the first step in his algorithm needs to be
changed: from *“*Construct the MST"’ to ‘“‘Construct the appropriate graph struc-
ture.”” The heuristics needed to define inconsistent edges becomes more complex
with larger sets of edges. In the case of the MST, removing a single edge always
results in two components. This is not always true with the RNG, GG, and DT
because there can be more than one path between two patterns. Applications of
the RNG, GG, and DT have been limited so far to two- and three-dimensional
patterns primarily due to computational difficulties in higher dimensions.

Urquhart (1982) favors the use of GG and RNG over the MST for clustering
problems for the following reasons. First, RNG and GG are less sensitive to
changes in the positions of patterns than the MST. Second, since the GG and RNG
are supergraphs of the MST, they exhibit a greater degree of interconnectedness
of patterns and so may be more appropriate in capturing the cluster structure in
the data than the MST. Indeed, the RNG-based clustering algorithms developed
by Urquhart avoid some of the problems of Zahn’s MST algorithm. Ahuja (1982)
and Tuceryan (1986) argue for the intuitively appealing characteristics of DT over
other graph structures in processing patterns. They have demonstrated that DT is
useful for grouping or clustering two-dimensional patterns. However, we again
emphasize that the performance of a clustering algorithm is data dependent.

3.3.7 Nearest-Neighbor Clustering

A natural way to define clusters is by utilizing the property of nearest neighbors;
a pattern should usually be put in the same cluster as its nearest neighbor. Two
patterns should be considered similar if they share neighbors. The notion of nearest
neighbors is inherent in the construction of various graphs, particularly the graphs
discussed in Section 3.3.6, so graph-theoretic clustering methods are closely related
to nearest-neighbor clustering methods. However, they differ significantly in how
the clusters are formed and, most important, in the final partition.

A very simple clustering algorithm which is based on the nearest neighbor
rule is given below (Lu and Fu, 1978). A set of patterns & = {x;, %5, . . . ,
X,} is to be partitioned into K clusters. The user specifies a threshold, ¢, on the
nearest-neighbor distance.

NEAREST-NEIGHBOR CLUSTERING ALGORITHM

Step 1. Seti « I and k < 1. Assign pattern x, to cluster C;.

Step 2. Set i « i + 1. Find the nearest neighbor of x; among the patterns
already assigned to clusters. Let d,, denote the distance from x; to its nearest
neighbor. Suppose that the nearest neighbor is in cluster m.

Step 3. If d,, = 1, then assign x; to C,,. Otherwise, set k < k + 1 and
assign x; to a new cluster C;.
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Step 4. If every pattern has been assigned to a cluster, stop. Else, go to
step 2.

The number of clusters generated, K, is a function of the parameter 1. As
the value of ¢ increases, fewer clusters are generated. The nearest neighbor distance
in step 2 can be replaced by the average distance between x; and its p nearest
neighbors in the mth cluster. Then the user has to specify another parameter,
namely, p. Lu and Fu (1978) have used this clustering algorithm to cluster patterns
represented by sentences or strings in an application of syntactic pattern recognition
to character recognition.

Jarvis and Patrick (1973) defined a proximity measure as the number of
matches in near-neighbor lists for two patterns. Their clustering algorithm can be
summarized as follows: Place patterns x; and X; into the same cluster if x; and x;
share at least k, near neighbors and x; and X; are k-near neighbors of each other.
This algorithm is noniterative and is computationally attractive since near neighbors
can be computed efficiently (Kamgar-Parsi and Kanal, 1985). However, the user
has to specify the size of the neighborhood, k, and the similarity threshold, k.
Jarvis and Patrick (1973) do not provide any guidelines for choosing these parameters
but suggest finding the ‘‘best’’ value interactively. Note that large values of k
bias the algorithm toward globular structures, whereas small values of k favor
chained or elongated structures (Jarvis, 1978). A hierarchy can also be generated
by varying the value of k,. Jarvis and Patrick claim that since Zahn’s MST method
is based on the first near neighbor, it is a first-order method and seeks linear and
elongated clusters at the expense of globular structures.

The notion of proximity based on shared nearest neighbors has been modified
by Gowda and Krishna (1978) to measure the ‘‘mutual nearness’’ of two patterns.
If x; is the pth near neighbor of x; and x; is the gth near neighbor of x;, then the
mutual neighborhood value (MNV) between x; and x; is defined as (p + g). The
smaller MNV, the more similar the patterns. This represents a stronger notion of
similarity than the number of shared neighbors of Jarvis and Patrick. Gowda and
Krishna’s clustering algorithm is described below.

MUTUAL NEIGHBORHOOD CLUSTERING ALGORITHM

Step 1. Determine the k near neighbors of every pattern.

Step 2. Compute the MNV for every pair of patterns. If patterns x; and X;
are not mutual neighbors for a given value of k, set MNV (x;, x;) to an
arbitrarily large number.

Step 3. Identify all the pairs of patterns with MNV of 2. Merge each such
pair into a cluster, starting with the pair having the smallest distance.

Repeat step 3 for MNV thresholds of 3,4, . . . , 2k to generate a hierarchy.

The parameter k that controls the neighborhood depth is crucial to the perfor-
mance of the algorithm. Small values of k give several “‘strong’” clusters and
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large values of k give fewer ‘‘weak’ clusters. In fact, & can always be chosen
sufficiently large to make the algorithm return a single cluster. Gowda and Krishna
(1978) demonstrate that the algorithm is able to identify nonspherical clusters,
linearly nonseparable clusters, clusters with unequal populations, and clusters with
low-density bridges when k is 5 in two dimensions. However, no heuristic is
provided to select an appropriate value of k for arbitrary data sets.

3.3.8 Fuzzy Clustering

The clustering algorithms described so far assign each pattern to one and
only one cluster. In other words, the patterns are partitioned into disjoint sets;
patterns in one cluster are supposed to be more similar to each other than to
patterns in different clusters. If the clusters are compact and well separated, as
demonstrated in Figure 3.34(a), there is no ambiguity or uncertainty associated
with assigning each pattern to one cluster. We can easily see that there are two
clusters in Figure 3.34(a) with well-defined boundaries. But what happens if the
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Figure 3.34 Examples of cluster structures: (a) well-separated clusters; (b) touching
or overlapping clusters.
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clusters are touching or overlapping? Figure 3.34(b) illustrates a case in which
cluster boundaries are not sharp and the assignment of patterns to clusters is difficult.
Although it is clear that patterns x; and x; should be put in different clusters,
pattern x; could be put into either the cluster containing x; or the cluster containing
;- Such clusters are said to have ‘*fuzzy’’ boundaries.

The fuzzy set theory developed by Zadeh (1965) permits an object to belong
to a cluster with a grade of membership. The degree of membership takes a
value in the interval [0, 1]. For ordinary clusters, called ‘‘crisp’’ clusters, the
membership grade for pattern x; in a particular cluster is 1 if the pattern belongs
to the cluster and 0 if it does not. With fuzzy clusters, pattern x; has a grade of
membership, f,(x;) = 0, or degree of belonging to the gth cluster, where
2, f4(x;) = 1. The larger f4(x;), the more confidence exists that x; belongs to cluster
q. If fi{x;) is 1, pattern x; belongs to cluster j with absolute certainty. The interpreta-
tions of values such as 0.3 is less clear. Membership grades are subjective in
nature and are based on definitions rather than measurements (Zadeh, 1984). For
example, pattern x; in Figure 3.34(b) could belong to one cluster with membership
value 0.45 and to the other cluster with membership value 0.55.

The grade of membership is not the same as the probability that the pattern
belongs to the cluster even though grades of membership and probabilities both
take values in the range [0, 1]. Under a probabilistic framework, pattern x; belongs
to one and only one cluster, depending on the outcome of a random experiment.
In fuzzy set theory, pattern X; can belong to two clusters simultaneously. The
membership grades determine the degree to which two cluster labels are applicable.

Another interpretation of the degree of membership is that it measures the
compatibility of a pattern or an object with the description of a fuzzy set. Sometimes
this property is useful in interpreting the results of a clustering algorithm. Consider
the problem of clustering a variety of computers ranging from microcomputers to
mainframes based on such attributes as memory size, CPU speed, and processor
type. The objective might be to partition computers into two clusters labeled **per-
sonal’’ and ‘‘multiuser system.”” To which cluster should a computer based on a
Motorola 68020 processor be assigned, which is used in a variety of personal
computers and workstations?

Proponents argue that fuzzy clustering is more appropriate than ordinary
clustering for capturing human concepts such as ‘‘small,”” “*big,”” “*high,” and
““low.”” Fuzzy sets are likely to find increasing use in applications involving impre-
cise and incomplete information, commonsense reasoning, and complex concepts
(Zadeh, 1984). Skeptics of fuzzy clustering do not doubt its mathematical correct-
ness, but are not convinced that it offers any advantages over the classical and
better understood clustering methods. Many more papers have been written on
the theoretical foundations of fuzzy sets and fuzzy logic than on its practical
applications.

Clustering has always been a popular domain for fuzzy sets. Early work by
Bellman et al. (1966), Ruspini (1969), Gitman and Levine (1970), Bezdek (1974),
and Dunn (1974) have culminated in two books on fuzzy clustering (Bezdek,
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1981; Backer, 1978). Virtually all the clustering algorithms based on fuzzy set
theory are partitional in nature, but a few generate hierarchies. Some of these
fuzzy algorithms are straightforward modifications of the square-error type of parti-
tional algorithms discussed in Section 3.3.1. Indeed, Bezdek (1976) proposed a
fuzzy ISODATA clustering algorithm for which convergence theorems are available.

The crucial step in a fuzzy clustering algorithm is the definition of the member-
ship function. Backer (1978) shows how to construct a membership function based
on similarity decomposition. Let the set of patterns {X;, . . . , X,} be initially
partitioned into clusters {C,, . . . , Cg} and let n; be the number of patterns in
C;. Let 8(x, C;) denote the similarity between pattern x and cluster C;. The larger
this value, the closer are the pattern and the cluster. The cluster membership
function f¢(x) for pattern x induced by cluster C; is given by

K
fe(X) = P3(x,C) [ D, Pid(x, C)
k=1

where P, = m/n is the relative size of cluster C;. This membership function is
nonnegative and sums to 1 for every pattern.

K
fex) =0 and D fe®=1
k=1

The similarity or affinity function, 8(x, C;), can be based on the distance
concept, the neighborhood concept, or the probabilistic concept (Backer, 1978).
It measures the relationship between a pattern and a cluster as a whole or between
a pattern and one or more representatives of that cluster. The choice of this function
depends on the data. Backer and Jain (1981) define an affinity function based on
the mean vectors of the clusters. The membership function is

1 — (1/B)d(x, m®)
K — (1/B) D d(x, m?)
J

ka(x) =

where d(x, m®) denotes the Euclidean distance between the pattern vector x and
the centroid m® of cluster Cy. The parameter B controls the neighborhood size
and affects the values of cluster belongingness. Only general guidelines are available
for choosing . The performance of a fuzzy clustering algorithm depends critically
on the definition of the membership function.

Fuzzy partitional clustering algorithms generate partitions that minimize in-
duced fuzziness following the same steps as square-error clustering algorithms.
The induced fuzziness takes its minimum value if we can obtain a partition for
which fc(x) € {0, 1} or, equivalently, when the partition is nonfuzzy. Therefore,
a criterion function needs to be defined to characterize the induced fuzziness of a
partition. Backer (1978) defines a number of fuzzy partitioning criterion functions.
For example, a criterion based on the average pairwise fuzzy set separability is
given by
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2 K-1 K
O=1-——3 2 Ifc,Nfc)
K k=1 j=k+1
where K is the number of clusters and I(fe, N fc) is the intersection of two fuzzy
sets (clusters) defined as follows:

1
I(fe, Nfcy) = = % min [ fc, (%), fc,(x)]

The minimum value of ®; is 0, which represents maximum fuzziness, and the
maximum value of ®is 1, which corresponds to a nonfuzzy partition. The problem
of fuzzy clustering is to find that partition which maximizes ®,. The basic steps
in a fuzzy partitional clustering algorithm are given below.

FUZZY PARTITIONAL CLUSTERING ALGORITHM

Step 1. Select an initial partition {C;}f—;.

Repeat steps 2 to 4 until the cluster memberships stabilize.
Step 2. Compute the membership functions {fc (x;)}.

Step 3. Compute the criterion function @;.

Step 4. Reclassify patterns to improve ®;.

The output of a fuzzy algorithm not only includes a partition but also additional
information in the form of membership values. However, the new information
provided by the membership values must be interpreted by the data analyst. In
summary, fuzzy clustering is an interesting concept that includes most partitional
clustering algorithms as special cases. However, its superiority to ordinary clustering
has yet to be demonstrated in applications.

3.4 CLUSTERING SOFTWARE

Someone interested in applying clustering techniques has plenty of software to
choose from. As we reported earlier, there is no shortage of clustering algorithms,
and most of them have been implemented to run on a variety of computers. One
of the main reasons for the large number of ‘“different’’ clustering programs available
is that most researchers and research groups put all their trust in the algorithm
they have developed even though it is very similar to existing algorithms. In
addition, documented and tested clustering packages were not available until re-
cently, so users had to write their own software. The paper by Johnston et al.
(1979) illustrates how the ‘‘law of serendipity’” can lead to a ‘‘new’’ clustering
algorithm. During the coding of the mode-seeking algorithm by Koontz et al.
(1976), Johnston et al., by mistake, modified one of the expression for the relative
density of a pair of patterns. This led to a new clustering algorithm which provided
better clustering for ‘‘uniform, touching’’ clusters than the original!
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A clustering technique imposes a particular structure on the given data.
Since the purpose of cluster analysis is to reveal structure or ‘‘pattern’” in large
quantities of numerical data, one should not put too much faith in interpreting a
single clustering. An agreement in the clusterings generated by two or more different
clustering methods increases one’s confidence in accepting the imposed structure
as the true structure present in the data. We again emphasize the difference between
a clustering method and a clustering algorithm. An algorithm is a particular way
of implementing a method. Thus the square-error clustering method can be imple-
mented in several ways, as illustrated by programs such as ISODATA, CLUSTER,
FORGY, and K-MEANS. These algorithms might not generate the same clusterings
when applied to a data set. So it is important that a user of cluster analysis
should be aware of the true differences between the various clustering programs.

Blashfield et al. (1982) provide excellent coverage of the availability of
cluster analysis software. They even suggest that ‘‘there may be as many different
programs in existence to perform cluster analysis as there are users.”” They list
three major categories of cluster analysis software which are summarized briefly
below.

1. Collection of subroutines and algorithms. These are usually programs devel-
oped by a research group which can be obtained without any charge. Some
of these collections have appeared in the books by Anderberg (1973) and
Hartigan (1975). There is generally no guarantee on the quality of such
software. A few subroutines are available through a commercial organization
called IMSL (International Mathematical and Statistical Library of scientific
subroutines) which are well maintained. Users have to write their own driver
programs to execute IMSL routines.

2. General statistical packages that contain clustering methods. Several of the
well-known statistical packages, such as the BMDP series, SAS, and OSIRIS,
have a limited collection of clustering programs. These packages are widely
available at university computer centers, are well maintained, and come
with good documentation. New versions of these packages now run on personal
computers also.

3. Cluster analysis packages. The best known and most versatile clustering
package available is a collection of programs written in Fortran called CLUS-
TAN. CLUSTAN contains a comprehensive choice of clustering techniques.
This package can be obtained from: Computer Center, University College,
London, 19 Gordon Street, London, WCIH 0OAH. Other clustering packages
are NT-SYS, CLUS, TAXON, BC-TRY, S, and CLAB. A package called
ICICLE performs hierarchical clustering and displays the results as Icicle
plots. It can be obtained from: Computer Information Services Group, Room
2F128, AT&T Bell Laboratories, Murray Hill, NJ 07974. These packages
offer more flexibility than a general statistical package. Some of the options
available to the user include data screening, data transformation, a wide
choice of similarity measures, and cluster diagnostics.



Sec. 3.5 Clustering Methodology 135

In summary, there is no ‘‘complete’” cluster analysis package available in
the market. The software described above implements only the most popular tech-
niques. Perhaps this is appropriate in light of the large number of clustering methods
reported in the literature. The packages available tend to favor hierarchical techniques
over the partitional techniques because of the predominance of clustering users in
social, behavioral, and biological sciences. Since there is no ‘‘best™ clustering
program, serious users of clustering must be prepared to implement algorithms
which are more suited to their data than those available commercially. Software
for pattern recognition algorithms, such as ISPAHAN (Gelsema, 1980), and multidi-
mensional scaling, such as MDSCAL, will also be useful to a user of cluster
analysis.

3.5 CLUSTERING METHODOLOGY

This chapter has explained the details of clustering algorithms. Chapter 2 presented
ways of inspecting and representing data. Chapter 4 reviews a number of techniques
for validating the results of clustering algorithms. How does it all go together?
This section proposes a generic methodology for focusing the tools developed in
this book into a procedure for analyzing data. The needs and special circumstances
encountered in individual problems may make parts of the methodology unnecessary
and other parts impossible. However, it is worthwhile to take a step back from
the details and look at the big picture as is done in Section 3.5.1. Comparative
analyses of clustering methods that summarize experimental facts about cluster
analysis and aid in choosing strategies and tactics are reviewed in Section 3.5.2.

This methodology is more of a proposal than an accepted standard. Case
studies that follow this methodology are difficult to find because each application
has its special needs. We recommend this methodology for the serious practitioner.

3.5.1 Exploratory Data Analysis

Figure 3.35 relates the major steps to be considered when undertaking an
exploratory data analysis whose central component is a cluster analysis. We see

Data

Initial —Hﬂentﬂtion |
Collection Screening

y

Y

A

: THEORY i
Interpretation INTUITION Clustering
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Validation | Clustering —+
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Figure 3.35 Clustering methodology.
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the process as an endless loop in which new insights are obtained and new ideas
generated each time through the loop. The end result could be the design of an
experiment that uses standard statistical tools to come to decisions about the phenom-
enon being studied. One might derive enough information about the phenomenon
from an exploratory data analysis itself to draw informal conclusions. We do not
intend to discuss the appropriate use of information but hasten to add that an
expert in the field of application is invaluable in guiding the data analysis and
providing insights. Exploratory data analysis remains a tool for discovery and the
techniques presented in this book should serve that end. However, the fact that
cluster analysis is exploratory in nature does not mean that only ad hoc procedures
can be adopted. Comments on the individual boxes in Figure 3.35 are given
below.

1. Data collection. The careful recording of data in accordance with the
standards in the area of application is the first important step in the analysis.
Previous work in the subject matter, the resources available, and the patience of
the investigator must be considered. The amount and type of data will strongly
influence the strategies available for analyzing the data, so a few iterations through
the loop in Figure 3.35 might be necessary before a meaningful and compact
procedure for data collection can be established. The material in Sections 2.1
and 2.2 should be applicable to this phase.

2. Initial screening. Raw data usually need some massaging before they
are ready for formal analysis. We have the normalizations in Section 2.3 in mind,
but the data can be looked at in a rough manner in several ways by Chernoff
faces, Andrew’s plots, and other visual aids (Section 2.5.1). For example, all
the values of a particular feature might be the same, so that feature can be eliminated.
The feature variances quickly isolate such features. The screening method should
suit the data and the investigator should have an understanding of and confidence
in the method chosen.

3. Representation. The problem here is to put the data into a form suitable
for further analysis. This includes choosing a proximity index (Section 2.2), project-
ing the data to a suitable feature space (Sections 2.4 and 2.5), examining the
intrinsic dimensionality (Section 2.6), and performing a multidimensional scaling
(Section 2.7). The suitability of any of these procedures depends on the problem
at hand. The end result should either be a pattern matrix or a proximity matrix.
The representation chosen will depend on the data, the application area, the experi-
ence of the investigator, and the availability of computer software.

4. Clustering tendency. Are the data random or does some justification exist
for clustering? This step is often ignored, but we feel that it is important. The
information gained from this step can not only prevent the inappropriate application
of clustering algorithms, but can also provide information on the fundamental
nature of the data. Section 4.6 reviews the procedures for this step. The issues
raised are somewhat subtle and require one to determine just what is known about
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the data, such as the sampling window and the definition of randomness suited
to the data. If the data cannot be shown to have the tendency to cluster, one is
well advised to pursue analysis techniques other than cluster analysis.

5. Clustering strategy. Sections 3.1 to 3.3 lay out the factors involved in a
cluster analysis and in choosing a clustering strategy. A major question is the
choice between hierarchical (Section 3.2) and partitional (Section 3.3) procedures.
Within each type of clustering, thought must be given to several details, such as
matching the algorithm to the data, the presentation of results, and the choice of
parameters. The amount of data, as measured by the number of patterns and the
number of features, is a major factor. One can also choose to cluster both the
patterns and the features. Section 3.5.2 summarizes information about the compara-
tive performance of clustering algorithms that might help in choosing an algorithm.
Computer software (Section 3.4) in which the investigator has confidence must
be available.

6. Validation. The prudent and enlightened validation of clustering results
is the essential step that changes a qualitative analysis into hard evidence. The
external indices of cluster validity discussed in Chapter 4 compare the results of
cluster analysis to what the investigator would like to see. Internal indices assess
the merit of the clustering results on an objective basis. Both types of indices
should be considered. Validation often involves Monte Carlo analysis and statistical
testing. It demands more computer resources, time, and care than collecting the
data and clustering it. This is the price for generating reliable results.

Validation can mean more than the application of the validity indices in
Chapter 4. One might choose to study the stability of the analysis by perturbing
the data slightly and repeating the analysis. The data can be ‘‘shaken’ (Van
Ness, 1983; Gnanadesikan et al., 1977; Strauss, 1973) by adding random noise
or by removing some patterns or by removing some features. Smith and Dubes
(1980) propose two indices for studying the stability of single- and complete-link
hierarchies. Stability is one basis for comparing clustering methods.

7. Interpretation. How does one integrate the results of cluster analysis
with previous studies and draw conclusions about the data? How does one get
ideas? We can offer no concrete suggestions, except to look at the applications
in Chapter 5 and other uses of cluster analysis to see what has been done. The
more exploratory data analysis is used, the more confident one becomes in its
use.

3.5.2 Comparative Analysis

Several choices must be made in selecting a clustering strategy (Dubes and
Jain, 1976). Setting aside the question of data representation, the key choices are
the clustering method and the validity index. Few theoretical guidelines are available
to choose among methods and indices. In this section we review some work on
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comparative analysis of clustering methods. No generally accepted methodology
for comparative analysis exists, so we report a sampling of the approaches taken
in the literature.

@

Basis for comparison. Milligan (198!\) reviews most of the literature on
comparative analysis of clustering algorithms prior to 1981 and provides details
on several early studies. Most of this work tried to understand the relative accuracy
of various clustering algorithms in extracting the ‘‘right’’ number of clusters from
artificially generated data. Anderberg (1973) provides a comprehensive discussion
of the factors involved in comparing clustering methods. Dubes and Jain (1976)
apply some of these suggestions. It is difficult to summarize the findings of all
this work. No two studies used the same methodology or included all the same
clustering methods. In fact, it is not clear that the same implementation of a
clustering method was used by two studies claiming to be using a particular method.
Some studies introduced outliers and noise of various kinds. Each study has its
own way of generating artificial data.

A theoretical comparison of clustering algorithms is not feasible because
clustering algorithms are almost impossible to model mathematically in such a
way that the models can be compared. Jardine and Sibson (1971) attempted to
list the essential characteristics of useful clustering methods and concluded that
the single-link method was the only one that satisfied all the mathematical criteria.
However, many Monte Carlo studies performed over the years report that the
single-link method almost always performs poorly. Various attempts have been
made to create an axiomatic basis for clustering analyses, thus implying a means
for rating clustering methods. Wright (1973) provides one such approach, but the
result is a standard K-means algorithm. The axioms automatically bias the result
toward a certain procedure.

One way to distinguish among clustering methods is by examining the cluster-
ing criteria themselves. Gower (1967) concluded one such study by acknowledging
the difficulty in defining “‘cluster’’ and stressing the relation between clustering
method and the type of cluster expected. Marriott (1982) used the effect of adding
a single pattern to the data as a way of comparing clustering algorithms. Golden
and Meehl (1980) found that the average-link, complete-link, and Ward’s clustering
method outperformed the single-link, centroid, and median methods on a particular
data set. Part of the lore of cluster analysis is that the single-link method produces
“‘straggly’” clusters (Hartigan, 1985), while the complete-link and Ward’s method
look for hyperspherical, compact clusters. The basis for these observations are
discussed in Section 3.2.

Another strategem for comparing clustering methods is to compile a list of
“‘admissibility criteria,”” such as those suggested by Fisher and Van Ness (1971)
or Rubin (1967). The idea is to propose a desirable property, P, and call a clustering
method P-admissible if it has this property. Such properties reflect the manner in
which clusters are formed, the structure of data, and the sensitivity of clustering
techniques to changes in the data such as cluster size. Dubes and Jain (1976)
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give these properties for several clustering methods. Admissibility provides some
insight into a clustering method but does not provide a fair comparison of the
performance of clustering algorithms. The remainder of this section considers
only Monte Carlo studies.

Monte Carlo studies. Specific conclusions are difficult to distill from all
the Monte Carlo studies because the results are limited by the scope of each
study. No general agreement exists on names of clustering methods, which further
frustrates the process of comparing results. Some examples of broad conclusions
drawn from the literature are listed below. All these examples must be qualified
by the factors involved in the various studies.

Bayne et al. (1980) suggested preprocessing data prior to cluster analysis
to delete unnecessary features and small clusters. Hierarchical methods such as
Ward’s method and complete-link method were preferable to median, group average,
and centroid methods. The single-link method was particularly unsuited to Gaussian
data. Blashfield (1976) found that single-link clustering tended to form chains
rather than compact clusters, but surprisingly, performed well with spherical clusters
and that Ward’s method provided accurate results. Cunningham and Ogilvie (1972)
concluded that the UPGMA method of hierarchical clustering performed as well
as single-link clustering when data were perturbed and stressed the strong interaction
between the type of input data and clustering method. Edelbrock (1979) noted
that algorithms using correlation as a proximity measure were uniformly more
accurate than those using Euclidean distance. Edelbrock and McLaughlin (1980)
determined that no single algorithm is best for all applications; clustering methods
and proximity measures should be chosen rationally. Gross (1972), Kuiper and
Fisher (1975), and Mojena (1975) emphasized the accuracy of Ward’s method.
Milligan and Isaac (1980) found that both the UPGMA and the complete-link
hierarchical clustering methods outperformed Ward’s method and that single-link
clustering performed worst of the four.

The most comprehensive comparative analysis available in the literature was
reported in related papers by Milligan (1980), Milligan et al. (1983), and Milligan
and Cooper (1985). The methodology for this study is summarized below. The
key elements are the manner in which artificial data are generated and the choice
of criterion.

1. Fifteen clustering algorithms, including all the popular hierarchical and parti-
tional ones, were compared to determine if they recovered the *‘right’”” number
of clusters.

2. Ten groups of artificial data sets were constructed, each with 108 pattern
matrices. One group was ‘‘error-free’” and the other nine had various error
conditions imposed, such as outliers, errors in distance, noise features, and
normalizations. The 108 error-free pattern matrices consisted of three replica-
tion of each of 36 cells. A cell was defined by three factors: the number of
clusters (two, three, four, or five), dimensionality (4, 6, or 8) and three
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types of cluster sizes. All pattern matrices contained 50 patterns. Individual
features were generated from truncated normal distributions.

3. The Rand statistic (Section 4.4.1) was the external criterion and Hubert’s I’
index (Section 4.1.2) was the internal index. The external index measured
the degree to which the correct partition was recovered. The correct solution
is known for all the data sets and dendrograms were cut at the level correspond-
ing to the correct number of clusters.

4. All 1080 data sets were clustered by each of the 15 clustering algorithms.
Random data consisting of 108 random pattern matrices formed the baselines
for evaluating the values of the Rand and I indices.

Milligan (1980) provides tables showing averages of the two indices over
all 108 data sets corresponding to each error condition and performs a careful
statistical analysis of the results. The effects of alternative starting configurations
on the performance of the K-means algorithm were also examined. The main
results of this study are summarized next.

The K-means algorithm gave better results than hierarchical methods only
when the starting partition was close to the final solution. The single-link method
was only mildly affected by outliers but was strongly affected by errors in distance
at levels having virtually no effect on other hierarchical algorithms. No one group
of hierarchical algorithms was consistently superior to any other group. The choice
of clustering algorithm was found to be more important than the choice of proximity
measure. Researchers are cautioned to select variables carefully.

Milligan and Shilling (1985) used the same data set with four external measures
of validity (Rand, corrected Rand, Jaccard, and Fowlkes and Mallows, Section
4.4.1) but limited the comparison to four hierarchical clustering methods (single-
link, complete-link, UPGMA, and Ward’s). Ward’s method performed best for
clusters of equal size and UPGMA performed best for clusters of unequal size.
Recovery increased with the number of dimensions, as would be expected since
the number of patterns was fixed at 50. The paper drew other conclusions about
the validity indices which are not considered here.

These two papers carried out some of the five recommendations Milligan
made in his 1981 paper reviewing Monte Carlo tests of cluster analysis. The
number of factors and levels in each factor can skyrocket in such comparisons,
but there is no other way to compare clustering methods. The method of data
generation suggested is as carefully done as any reported in the literature. However,
it involves a number of ad hoc decisions about ranges and levels that are unsettling.
Most comparative analyses that begin with pattern matrices generate data from
Gaussian distributions because the separation of clusters can be assured (Blashfield,
1976).

Fowlkes and Mallows (1983a,b) proposed another methodology for comparing
two hierarchical clusterings; their index is defined in Section 4.4.1. The basic
cluster structure was defined by a mixture of Gaussian distributions (Section 3.3.4)
in two dimensions. Choosing the variances and correlation coefficient defined the
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“‘true”’ structure. The data were ‘‘shaken’’ by adding random (normally distributed)
deviates to the feature values. They suggested plotting the Fowlkes and Mallows
index as a function of the number of clusters to compare two clustering methods,
which is a valuable suggestion. Unfortunately, they tried to interpret their external
index as an internal index and the results cannot reasonably be interpreted. This
fact was noted in discussions of the paper.

Baker (1974) compared single- and complete-link clustering on their sensitivity
to perturbations in the structure of the data. The complete-link method was found
to outperform the single-link method under a chained type of structure, to which
the single-link method is supposed to be sensitive. Hubert (1974b) extended this
work to the effects of sample size. Hartigan (1985) supplies evidence for the
superiority of single-link over complete-link by stating that complete-link is the
worst of all standard methods for finding clusters defined as regions of high density
because of its asymptotic behavior.

The comparative analysis of clustering methods presents a continuing problem
for research. Hartigan (1985) provides a succinct summary of this research: *‘Differ-
ent classifications [clusterings] are right for different purposes, so we cannot say
any one classification is best.”’ The sampling of studies and conclusions summarized
in this section suggest that one must carefully define the problem domain before
a meaningful comparison of clustering methods is possible. New clustering methods
are published regularly and are often justified on the basis of their performance
on a few carefully chosen sets of artificial data or on a single application. We
agree with Everitt (1979) who states that “‘it appears unlikely that the relations
between different methods and data types will be un-tangled solely by formal
analysis and argument.”” We reiterate his call for more investigations using a
range of data types. Milligan’s (1980) methodology might serve as a model for
such investigations.

3.6 SUMMARY

A large collection of clustering algorithms is available to analyze experimental
data in a variety of scientific disciplines. New clustering programs continue to
appear in the scientific literature. However, most of these algorithms are based
on the following two popular clustering techniques: iterative square-error partitional
clustering and agglomerative hierarchical clustering. Hierarchical techniques orga-
nize the data in a nested sequence of groups. This nesting is displayed in the
form of a dendrogram. To obtain clusters from the tree, a threshold on the similarity
value (among the patterns) needs to be specified so that the dendrogram can be
cut to obtain a partition or clustering. Various agglomerative hierarchical algorithms
differ in their definition of the similarity measure between a pattern and a cluster,
and between two clusters.

Square-error partitional algorithms attempt to obtain that partition which
minimizes within-cluster scatter or maximizes between-cluster scatter. To guarantee
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that a global optimum solution has been obtained, one has to examine all possible
partitions, which is not computationally feasible. So various heuristics are used
to reduce the search, but then there is no guarantee of optimality. The type of
heuristics used differs from one algorithm to the other. Hierarchical techniques
are popular in biological, social, and behavioral sciences, whereas partitional tech-
niques are used more frequently in engineering applications.

Several software packages containing clustering algorithms are available.
There is no *‘best’’ clustering algorithm, so a user is advised to try several clustering
algorithms on a given data set. How should one select a clustering method? Several
comparative studies have been reported in the literature which can serve as useful
guidelines. Cluster analysis is just one of the tools for exploratory data analysis.
Thus issues of data collection, data representation, assessing the results of clustering,
and interpreting the clusters found are as important as the choice of clustering
strategy.



Cluster Validity

Cluster validation refers to procedures that evaluate the results of cluster analysis
in_a quantitative and objective fashion. Hierarchies, clusterings, and clusters are
somefimes justiied by ad hoc mecthods based on the application area. After all,
exploratory data analysis uses whatever tools are handy to get the job done. This
chapter examines statistically based indices for judging the merits of clustering
structures in a quantitative manner.

In the first section we explain some tools that are employed in several phases
of cluster validity. In particular, the language of testing hypotheses and procedures
for performing a Monte Carlo analysis are reviewed. Section 4.2 lays out the
factors that must be considered when choosing an index of cluster validity. The
next three sections review the three classes of cluster validity problems: the validation
of hierarchies, partitions, and individual clusters. Section 4.6 looks at the problem
of testing for randomness. The methodology in Section 3.5 links the ideas of this
chapter to the algorithms in Chapter 3.

4.1 BACKGROUND

This chapter is based on the premise that the problems of cluster validity are
inherently statistical. A clustering structure is *‘valid’’ if it is ‘‘unusual’’ in some
sense. We choose to express unusualness in a statistical framework and require
that probabilities have an objective interpretation to whomever is validating cluster-
ing structures. The first section presents the fundamentals of statistical testing of
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hypothesis to define terms used throughout the chapter. In other sections we introduce
the Goodman—Kruskal gamma statistic and Hubert-Mantel statistics from which
tests for cluster validity can be formed. In the last two sections we discuss two
computer simulation tools: Monte Carlo analysis and bootstrapping.

4.1.1 Testing Hypotheses

It is easy to propose indices of cluster validity. It is very difficult to fix
thresholds on such indices that define when the index is large or small enough to
be ‘‘unusual.”’ Statistical methods provide a framework for rationally deciding
how large is “‘large’” and how small is ‘“‘small.”” Several textbooks in statistics

cover this material, such as Conover (1971) and Wilks (1963).

A statistic 7 is a function of the data that is supposed to contain useful
information. Statistic T could be the square error of a clustering or the level at
which a partition forms in a hierarchy or a compactness measure for a cluster. In
mathematical terms, 7 is a random variable and its distribution describes the relative
frequency with which values of T occur under some hypothesis. A distribution
requires that a sample space, or baseline population, exists. The choice of population
and assumptions made about the population embody ideas of randomness and
structure. A hypothesis is a statement about the relative frequency of events in
the sample space that expresses one’s concept of phrases such as “‘the data are
random’’ or *‘the data are clustered.”” A hypothesis is tested by observing a value
of T and deciding whether the observation is unusual, based on a distribution
for T.

Randomness hypotheses. A null hypothesis in cluster validity is a statement
of ““no structure,’’ or randomness, that asserts the frequency with which members
'of a baseline population occur. The three most common null hypotheses in cluster
validity work are the random graph hypothesis, the random label hypothesis, and
the random position hypothesis. The subscript ““0’* refers to a null hypothesis. A
major problem in cluster validity is establishing the distributions of statistics under
null hypotheses.

Random graph hypothesis:

Hy: All n X n rank order proximity matrices are equally likely.

Random label hypothesis:
H,: All permutations of the labels on n objects are equally likely.

Random position hypothesis:

Hy: All sets of n locations in some region of a d-dimensional space are
equally likely.
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The selection of a null hypothesis depends on the type of data and the
aspect of the data being tested. Several examples are presented in this chapter.
Some details of the three null hypotheses are explained below.

The baseline, or reference, population for the random graph hypothesis is
the set of all ordinal proximity matrices on n objects. An n X n ordinal proximity
matrix, also called a rank-order proximity matrix, has n(n — 1)/2 entries, which
can be taken to be the integers from 1 to n(n — 1)/2. Ties in proximity do not
occur in this reference population. The random graph hypothesis states that all
rank-order proximity matrices are equally likely (Ling, 1973a), so each distinct
ordinal proximity matrix is assigned probability 1/[n(n — 1)/2]!. Applications are
discussed in Section 4.5.

The baseline population for the random label hypothesis is the set of n!
permutations of the labels on the n objects under study. The labels are usually
the integers (1, 2, . . . , n). Each permutation has probability 1/n!. This h is
establishes baseline distributions for statistics which match an observed proximity
matrix to a structure imposed a priori, as discussed in Section 4.1.2, and can be
applied with all data types.

The random position hypothesis requires that all sets of n points in some
region of a d-dimensional space be equally likely and is appropriate for ratio
data. For example, the region could be a hypercube having side 1 or a hypersphere
of fixed radius. Another way of expressing the random position hypothesis is to
require_that each of the n points be inserted randomly into the region. With a
hypercube, this implies that the coordinates of each point have uniform distributions
over the edges of the hypercube. Yet another expression of the random position
hypothesis is that the points are samples of a Poisson process, conditioned on the
number of points, as discussed in Section 4.6. The idea behind the random position
hypothesis is to specify a set of points with no structure in such a way that the
meaning is clear and the distribution of statistics of interest can be either derived
or estimated. Being able to generate samples of points on a computer under a
hypothesis is of great value in Monte Carlo analysis.

The first major difference between the random graph and the random position
hypotheses is that the former is for ordinal proximities and the latter is for proximities
on a ratio scale. A second major difference involves dimensionality. When n
points are restricted to a few dimensions and Euclidean distance is the measure
of proximity, some rank orderings of distances cannot occur. For example, if
points a, b, and ¢ are placed on the real line in that order, the distance from a to
¢ cannot be smaller than the distance from a to b. The triangle inequality prevents
all orderings of distance from being realized. In fact, n points must be placed in
a space of (n — 2) dimensions to ensure that all rank orderings of the n(n — 1)/2
distances can be realized. Thus the random graph hypothesis is not a reasonable
null population when the data occur as patterns, or points in d dimensions.

Definition of a test. Suppose that a statistic 7" and a null hypothesis H,
have been agreed upon. Suppose further that the distribution of T is known under
this null hypothesis. (We will see that finding this distribution is a very difficult
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task.) How to test whether hypothesis H, is an appropriate description for the
data at hand? In cluster validity we want to determine if the fit of a hierarchy or
a partition to the given data is unusually good. To be unusual, the fit must at
least be better than the fit of a hierarchy or partition to a random data set. A
mechanism for testing whether an observed statistic is unusual is now discussed.

Let P(B | Hy) be the probability of event B under the null hypothesis. Event
B could by “T = ¢ or ““T = 1,”" where 7 is a fixed number called a threshold.
One must know whether a small value or a large value of T corresponds to good
structure. For example, the smaller the square error, the better the clustering, but
the ratio of between-cluster scatter to within-cluster scatter should be large for a
good clustering. We now establish a test of the null hypothesis.

Let o be a small number, such as 0.05 or 0.01, called the size or level of a
test. Given the distribution of T under H, and assuming that a large value of T
indicates that H, should be rejected, we can place a threshold, f,, on T by solving
the following equation:

P(T = t,| Hp) =

Suppose that the value of T measured in an experiment is t". To answer the
question: **Should H, be rejected?””, which can be rephrased as *‘Is 1" large enough
to call the fit unusual?’’, apply the following rule.

If 1" = 1, reject Hy at level a.

Thus « is the probability of deciding against H, when Hy is actually true.

“This test produces one of two answers; either T is large or it is not, so
either the clustering structure is valid at level « or it is not. The critical region
of the test is the set of values of the statistic that lead to rejection of Hj, or
{t : t = t,}. This test requires that the null distribution of T be known.

Another way of assessing validity is to solve the following equation for a’;
recall that 1" is the value of T observed in an experiment.

PT=)=a"

Since H, would be rejected at level o", the value o is called the critical level
for the test. The smaller o, the better evidence we have for deciding against H.
We seek statistics having smooth distributions so that small changes in threshold
do not have dramatic effects on decision making. The testing situation is pictured
in Figure 4.1. When small values of 7 imply nonrandom structure, the test is to
reject the null hypothesis when T is smaller than a threshold. In general, one can
define any sort of critical region, but in cluster validity, statistics are chosen so
that either large values or small values reflect structure.

Power of a test. The test of Hy tells only half the story. What is missing
is a hypothesis of structure, or an alternative hypothesis, H,, to which H, can be
compared. Alternative hypotheses establish specific structures, such as *‘the clusters
are samples from a Gaussian mixture’” or ‘‘the data contain two clusters.”” If the
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Density of T under Hg

(a) Critical region

Density of T under Hg

t* (measured value)

(b)

Figure 4.1 Hypothesis testing and critical level: (a) critical region for testing Hg: (b)
critical level of significance a*,

critical region of a test is {t : 1 = 1,}, the power of the test is the probability of
reaching the correct decision when H, is true, or

power = P(T = 1, | H))

We seek statistics T that lead to tests having high power.

The concepts of size and power can be extended to critical regions other
than the simple ones discussed so far. However, we assume that statistics have
smooth distributions under H, and H,, so critical regions {t : r = 1} or
{t : t = 1,} are ordinarily used. This assumption is justified by the fact that the
distributions of 7 under the two hypotheses are not normally available. We do
not intend to discuss decision theory, by which optimal critical regions can be
selected and statistics can be compared. See Duda and Hart (1973) or Devijver
and Kittler (1982) for decision-making strategies from a pattern recognition view-
point.

In summary, our approach to cluster validity involves several steps. A null
hypothesis expressing our idea of no structure must be defined with the data type
in mind. A statistic, or index, sensitive to the presence of structure in the data
must then be selected and the distribution of the statistic under the null hypothesis



148 Cluster Validity Chap. 4

must be established. A threshold can then be found that defines how large is
“large” for the statistic selected. The threshold establishes a formal test of hypothe-
sis. The power of the test evaluates the ability of the statistic to recognize the
presence of a structure specified in an alternative hypothesis. These steps will be
illustrated throughout this chapter.

4.1.2 Hubert's I" Statistics

One way of validating a clustering structure is to compare it to an a priori
structure, which is assigned without regard to the measurements. For example,
the cluster numbers assigned to objects by a clustering algorithm can be compared
to category labels, assigned independent of the clustering. The statistic that has
come to be known as Hubert’s I" has been shown to be effective in assessing fit
between data and a priori structures. Hubert and Schultz (1976) provide a comprehen-
sive explanation of the statistic and display an impressive list of applications.
The idea behind this statistic is attributed to Mantel (1967), who was trying to
identify subtle space-time clustering in the outbreaks of disease. Barton and David
(1962) used statistics based on permutations that are similar to Mantel statistics
when assessing the randomness of points in a plane.

The abstract problem to which Hubert’s I' is applicable can be stated as
follows. Let & = [X(i, j)] and ¥ = [Y(i, J)] be two n X n proximity matrices on
the same n objects. The matrices must contain data having no built-in or implied
relationships. For example, X(i, j) could denote the observed proximity between
objects i and j and Y(i, j) could be defined as

o wine T if objects i and j have the same category label

YG.) = {1 if not

Other applications have X(i, /) as the geographical separation between objects
i and j, while Y(i, j) is the separation of these objects in time, as when the
objects are outbreaks of a disease. Still another application has X(i, j) as the
observed proximity between objects i and j and Y(i, j) as the reconstructed proximity
from some theoretical model.

The Hubert T' statistic is, simply, the point serial correlation between the
two matrices. It can be expressed in raw form as follows when the two matrices
are symmetric:

n—1 &
=2 > XGj)Ya,.Jj
i=1 j=i+1
In normalized form, I' is the sample correlation coefficient between the entries of
the two matrices. If m, and m, denote the sample means and s, and s, denote the
sample standard deviations of the entries of matrices & and Y (Section 2.3), the
normalized I” statistic is

n—1 n
= [(UM) > > [XG, )= mYG, j) — m_v]]fsxsy

i=1 j=i+1



Sec. 4.1 Background 149

where M = n(n — 1)/2 is the number of entries in the double sum and the moments
are given by

m, = (1/M) % 2 X(i, j) m, = (1/M) % % Y(i, j)
s2 = (I/M) 2 3 X%, j) — m? s2 = (UM) 2 3 Y, j) — m?

All sums are over the set {(i, j): 1 =i=n—1,i + 1 =j = n}. When the
matrices % and % are not symmetric, all sums extend over the n? entries in the
two matrices. We limit our treatment to symmetric matrices.

The I statistic measures the degree of linear correspondence between the
entries of ¥ and Y. Unusually large absolute values of I' suggest that the two
“natrices agree with each other. The normalized I' is always between —1 and 1,
while the range of the raw 1" depends on the ranges of values in the matrices and
on the number of entries. The most common application of I' tests whether the
association between ¥ and % is unusually large under the random label hypothesis.
That is, could the row and column numbers on one of the matrices have been
inserted at random? The random label hypothesis can be stated as follows for
this purpose.

Hy: All permutations of the row (and column) labels of [Y(i, j)] are equally likely.

The permutation referenced in H, is a reordering of the object labels {1, 2, . . . ,
n}. The reordering is applied to both the rows and the columns of ¥, so the
entries of % are rearranged. However, the entries of % are not themselves rearranged
randomly as in the random graph hypothesis, which specifies that all permutations
of the entries of ¥ are equally likely. The intelligent application of tests based
on I' demand that the null hypothesis be understood in each case. Testing the
random label hypothesis means asking whether the observed I" could have been Z
reasonably obtained by chance labeling.

One often tests whether the value of I' is unusually large, but the absolute
value is also used in some cases. No matter how the test of hypothesis is formulated,
the distribution of T" under H, must be known, estimated, or approximated to fix
a threshold and establish how large is “‘large.”” For very small values of n, this
distribution can be found by evaluating T for all n! permutations of the row and
column numbers of % and accumulating them in a histogram.

Example 4.1

Matrices ¥ and Y are given below.

X; Xy X3 Xy X; Xy X3 X4
x| 0 1.2 06 02 0 1 0 1
x|— 0 03 04 Xl— 0 1 0

9p = %2 =2
Xz|— — 0 0.1 Y Xyl = 0 1
Xl— — — 0 X4l— — — 0

Matrix % is a dissimilarity matrix for four objects and matrix % is derived by placing
objects x, and x; in one category and objects x, and x, in a second category, then assigning
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proximity 0 to pairs of objects in the same category and proximity 1 to object pairs in
different categories. There are 24 permutations of the sequence numbers {1, 2, 3, 4} on
the objects. The distribution of I' under H,, is found by computing

3 4
= ZIX(i.j)}’[g(f}. 8]
i=1 j=i+

for all 24 permutations {g(1), g(2), g(3), g(4)} of {1, 2, 3, 4}. For example, the Y matrix
for the permutation {g(1), g(2), g(3), g(4)} = {2, 4, 1, 3} is given below.

Xy Xg X X3

»[0 0 1 1
Lo xl— 0 1 1
Y@, e =,1_ _ o o
Xyl === "—= 0

The I value for this permutation is the sum of the four numbers in the upper right
of the % matrix, or I'(g) = 1.5. Eight other permutations lead to 1.5. In fact, only the
three values shown in the following frequency table can occur.

Value of I' i 15 1.8 23

Frequency | 8 8 8

The observed value of I', computed from ¥ and the original ¥ matrix, is 1.8. Thus a
value as Targe as the observed I is not at all unusual and we might conclude that the rows
and columns of Y are randomly labeled.

Computational realities prevent the application of the procedure in Example
4.1 to practical problems. With 8 objects, 8! = 40,320 values of T must be
computed, and with 12 objects, over 470 million values must be found. It _is
clear that the distribution of I under H, must be approximated or estimated. The

two standard approaches to this problem are Monte Carlo analysis and moment
estimation.
Let {g(1), g(), . . . , g(n)} denote a permutation of the integers {1,:2,
., n}. For example, {6, 3, 1, 4, 2, 5} is a permutation of {1, 2, 3, 4, 5, 6}.
The random variable whose distribution is required under H, can be written as

n—1

I'(g) = {(UM) > 2 1XG, ) — mlyigh), gl — m‘;-]}fs,rf_\-

i=1 j=i+1

We could have applied permutation g to the entries of % instead of %Y. The sample
means and standard deviations are invariant to permutations g.

A Monte Carlo analysis (Section 4.1.4) randomly selects a number of permuta-
tions g, and rank orders the resulting sequence {T'(g)} to estimate the distribution
of T under H,. This distribution can be visualized by a histogram, as in Example
4.2. The methodology of Section 4.1.4 is applied by deciding that the observed
[ is unusually large if it is larger than, say, 95% or 99% of the values in {T'(g)}.
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Example 4.2

This example demonstrates the estimation of the distribution of I' under the random label
hypothesis for two pattern matrices. The 80X data set, introduced in Chapter 2, contains
15 patterns in an eight-dimensional space from each of three categories for a total of 45
patterns. Suppose_that we want to test whether the category labels are matched unusually
well to the locations of the patterns in the eight-di ional feature space. Matrix & is
taken to be the matrix of Euclidean distances between the patterns and matrix %Y contains
a 1 in position (i, j) if the ith and jth patterns are in different categories and a 0 if they
are in the same category. If the first 15 patterns are from category 8, the next 15 are from
category O, and the last 15 are from category X, then % can be blocked into nine 15 X
15 submatrices as indicated below, where / denotes a 15 X 15 matrix of 1’s and 0 denotes

a 15 % 15 matrix of 0’s.
0o 1 1
Y=\|1 0 I
1 1

0

Only the 990 upper diagonal entries are used in the computation. A simple counting
argument shows that

3x 152 675 675 (675\*1"?
my = W = ‘99—0 = (.682 and Sy = Ii'(% (@) ] = 0.466

The mean and standard deviation of the Euclidean distances between patterns were
found to be

m, = 9.07 and s, = 1.88
The gamma statistic can be written as follows for this example.

R 45
I'(g) = {(1@90) > > XL IYig(h, g — (0.682)(91)7)}!(0.466)(l,88)
i=] j=i+1

Figure 4.2 shows a histogram of {I'(g)} for 100 permutations g of the 45 pattern
labels. The 100 values of I'(g) were grouped into 40 bins and Figure 4.2 shows the counts
in each bin. The observed value of I is 0.33087 and is the blip on the right of the histogram.
It is clear that the observed value is significantly higher than all the values in the histogram,
so we Tgject the random label hypothesis. That is, the evidence suggests a nonrandom
assignment of category labels.

The same procedure was repeated for a set of 45 patterns chosen randomly inside
an_eight-dimensional hypercube having sides of length 12. The first 15 of the random
patterns were assigned to the first category, the next 15 were arbitrarily assigned to the
second category, and the last 15 to a third category to match the category numbers in the
80X data. Of course, the category labels have no meaning whatever. The histogram of
I'(g) values for 100 permutations is shown in Figure 4.3. The observed value of I' is
—0.0014 and falls in_the middle of the histogram. At least 42 of the 100 permutations
produced larger values of I than the observed value, so we would reject Hy only at level
0.42. Thus we strongly suspect that the category labels have no meaning.

A second way of assessing whether I is unusually large that avoids creating
all n! permutations is to compute the mean and variance of I'(g) under the random
label hypothesis and assume that the underlying distribution is normal. Figures
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4.2 and 4.3 suggest that the assumption of normality is reasonable. The normalized
statistic is

_I'—EM
SDy(I)

where the expected value, Ej;, and the standard deviation, SD,, are computed
under the random label hypothesis. Hubert and Schultz (1976) and Mantel (1967)
provide explicit formulas for the two moments required and support the claim
that I'" is asymptotically normal. The formulas are quite complicated and demand
a significant amount of computation, perhaps comparable to that required in a
Monte Carlo analysis. Expressions for the moments will be provided in a few
special cases later in this chapter.

Siemiatycki (1978) cites studies indicating that the asymptotic normality of
I' is not always an appropriate assumption and suggests computing the first four
moments of the raw I" and approximating the distribution under H, by Pearson
curves. The computation of all these moments is not a simple task.

The I' statistic has a wide range of applications. Hubert and Subkoviak
(1979) use I' to test whether a given proximity matrix supports an a priori labeling
of the objects, as in Example 4.2. Hubert and Golledge (1981) examine five
problems involving matching of matrices via correlation coefficients. Hubert (1979)
devises a statistic based on I' to assess the concordance among elements of K
independent proximity matrices. Dietz (1983) compares two proximity matrices
computed from different statistics with two versions of the I' statistic and studies
the performance of other nonparametric tests of association. Sokal (1979) tests
the significance and nature of departure from randomness in patterns of geographic
variation by Mantel statistics. Several other papers authored by Hubert that attack
problems with I' are listed in the bibliography. Specific applications in cluster
validity are treated later in this chapter.

l"f

4.1.3 Goodman-Kruskal y Statistic

The Goodman—Kruskal (1954) vy statistic measures rank correlation between
two ordinal sequences of numbers. These numbers may be obtained from proximity
matrices, as with Hubert’s I' statistic. The I' statistic is more effective when at
least one of the proximity matrices is on a quantitative scale. Here both sequences
of numbers are assumed to be on an ordinal scale. For example, Hubert (1974b)
suggests using vy to measure correspondence between a rank order proximity matrix
and the cophenetic matrix. However, Milligan and Cooper (1985) apply vy with
ratio data, as discussed in Section 4.4.

The idea behind this statistic can be seen from an abstract problem. Let
A={a,a,...,a, and B={by, by, . . . , b,} be two ordinal sequences
of m numbers. Ties can exist in one or both of the sequences. The v statistic
measures the degree of association between the two sequences in terms of the
number of ‘‘concordant’’ pairs, denoted S, and the number of ‘‘discordant™
pairs, denoted S_. A “‘pair’’ is a set of two doublets, one doublet from A and
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one doublet from B, taken from corresponding positions in the two sequences. A
doublet is a pair of numbers from one of the sequences. For example, (a,, a,) is
a doublet and (b, b,) is another doublet.

The pair of doublets {(a;, a,), (b;, bj}} is concordant if either of the following
conditions is satisfied.

(1) a; < a; and b; < b; or (2) a; > aj and b; > b;
The pair is discordant if either of the following is satisfied.
(3) a; < ajand b; > b; or (4) a; > a; and b; < b;

The pair of doublets is neither concordant nor discordant if a; = a; or if
b; = b;. For example, the pair of doublets {(3, 15), (8, 12)} is concordant because
3 << 15 and 8 < 12. The pair {(3, 5), (8, 7)} is discordant because 8 > 7 whereas
3 < 5. The pair {(3, 3), (5, 7)} is neither concordant nor discordant because of
the tie in the first doublet. The vy statistic is computed from the total numbers of
concordant and discordant pairs as follows:

_ S+ == S._
LAY
Example 4.3
The six-position sequences of ranks A = {a,, . . . , agt and B = {b,. . . ., bg} are

given below. Note the tie in the first sequence.

All 15 possible doublets defined by these sequences are listed in Table 4.1 along

]

with their states of concordancy. State **+’" means ‘‘concordant,’’ state **—"" means *‘dis-

cordant,”” and *‘*’" means ‘‘neither concordant nor discordant.’’
Adding up the plus and minus signs in Table 4.1 shows that

§,=9 S_=35 vy =4/14

The computation can be simplified by rewriting the two sequences so that one of
them is ordered. For example, the two sequences above can be written. in the order of the
first sequence as follows:

With the sequences written in this form, one need only scan the {b;} sequence from
left to right.
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TABLE 4.1 Computation of v Statistic

Ranks Ranks
Doublet _— Doublet _—
(i, j) A B State (i, J) A B State
1,2 3,5 (2, 3) + (2, 6) (5, 6) 3,5 -
(1, 3) (3,2) 2, 1) + 3,4 (2,2) (1, 6) #
(1. 4) (3, 2) (2, 6) = (3, 5) (2, 4) (1, 4) +
(1, 5) (3, 4) (2, 4) + (3, 6) (2, 6) (1, 5) +
(1, 6) (3, 6) (2, 5) + (4, 5) (2, 4) (6, 4) -
2, 3) (5,2 3, 1) + (4, 6) (2, 6) (6, 5) =
(2, 4) (5,2) (3, 6) = (5, 6) (4, 6) (4, 5) +
(2, 5) (5, 4) (3, 4) -

e 7y statistic takes on xa]ugg between —1 and +1 and is_invariant to

monotonc transformation uence. Values of y near 1 suggest that
one sequence increases when the other one does. Values near — | suggest a strong
correlation between the sequences, but one decreases when the other increases.
Values near 0 indicate no relation between the patterns of increase and decrease
in the sequences, in some unstated sense of ‘“‘relation.’” The actual distribution
of ~y depends on the null hypothesis of interest, the sample size, and the number
of ties.

4.1.4 Monte Carlo Analysis

Monte Carlo analysis is a method for estimating parameters and probabilities
by computer sampling when the quantities are difficult or impossible to calculate
directly. The distributions of various indices of cluster validity depend on many
problcm specific parameters and can be estimated only by Monte Carlo sampling.
Hammersley and Handscomb (1965) provide a readable and compact introduction
to the topic. Shreider (1964) is another general reference. To illustrate the general
idea of Monte Carlo sampling, suppose that the integral

Q= fnlﬂ.r) dx

is to be estimated, where f{(x) is known to be between 0 and | when x is between
0 and I. Suppose that fix) can be computed for any x but that the integral is
intractable. Evaluating the integral is equivalent to estimating the area under the
function, as shown by the shaded region in Figure 4.4. Two approaches to estimating
this area are called the crude Monte Carlo estimate and binomial sampling. The
general paradigm for Monte Carlo estimation by binomial sampling, also called
“‘hit or miss’’ sampling, is given below.
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0,0 1

Figure 4.4 Evaluating an integral with Monte Carlo analysis.

ALGORITHM FOR MONTE CARLO ESTIMATION BY BINOMIAL SAMPLING

Step 1. Arrange to perform a computer sampling experiment in which the
occurrence of an event is observed each time the experiment is performed
and the event is related to the quantity being estimated.

Step 2. Repeat the experiment a large number of times, counting the number
of experiments which end in ‘‘success,’”” meaning that the event happens.

Step 3. Estimate the quantity of interest by the relative number of successes.

For the integration example, the sampling experiment is to select two statisti-
cally independent U(0, 1) samples, which are numbers in the interval [0, 1] chosen
so that all numbers are equally likely. These numbers locate a point in the unit
square in Figure 4.4. A ‘‘success” occurs when the point falls in the shaded
region. The relative number of successes estimates the value of the integral.

If X; is a random variable representing the outcome of the ith experiment
that is 1 when the event happens (success) and 0 when it does not, Monte Carlo
sampling produces values of the binomial random variable Y.

Here m is the number of Monte Carlo trials and {X;, . . . , X,,} are independent
and identically distributed (i.i.d.) because the Monte Carlo trials are assumed to
be conducted independently. Properties of the binomial distribution show that the
mean of a binomial distribution is an unbiased estimator of the quantity, O, being
sampled. The expectations and probabilities are with respect to the sampling distribu-
tion, which is derived from the assumption of i.i.d. uniform samples. The mean
and variance of Y are
En=g vam=21"9

m



Sec. 4.1 Background 157

Confidence bounds can be placed on the estimate Y (Conover, 1971). A
95% confidence interval, also called a 95% interval estimator, is the interval

[Y — Cm» Y + ch

where ¢, is selected so that the probability of Q being within the 95% confidence
interval is 0.95. Tables of c,, as a function of m are given in Conover (1971) for
several values of m.

The second approach, the crude Monte Carlo estimate, is more difficult to
set up than binomial sampling but has certain theoretical advantages. This approach
is now demonstrated on the integration problem above. Let X be a U(0, 1) random
variable and define random variable ¥ = f(X). Probability theory shows that

I
E(Y)=| fix)dx
0

so the problem is to estimate the mean of Y. If {x;, . . . , x,} are samples of
random variables distributed as U(0, 1), the usual estimate of the mean is

m

0 =m Y fix)
i=1
Estimator Q is an unbiased estimator of Q since its expected value is Q. Accuracy
is measured by the standard error, which is the standard deviation of Q, or
o/Vm, where o is the standard deviation of fX) and can be estimated by s.

l T‘ . 12
5 = [ > (fx) - Q)”J

m—1:5

The results of the Monte Carlo study would be reported by saying that Q is
in the interval

[0 — (s/'Vm), O + (s/\/m)]

Confidence intervals are one way of monitoring the accuracy of Monte Carlo
estimates. The Chebychev inequality can be employed to construct a bound on
the error |0 — Q] in terms of the variance of (. The normal approximation to
the binomial distribution, through the central limit theorem, is a third possibility.
The central limit theorem shows that Q has an asymptotic normal distribution
with mean Q. Its standard deviation can be estimated by s. Thus we know that if
m is large enough,

Prob {|Q — Q| = 3s} = 0.997

The relative error is defined as the actual error divided by the true value,
or |0 — Q|/Q. An asymptotic analysis shows that

g — _ 112
Prob {IQ—Q—Q’ = % [Q“T@] ; } =0.997
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so the bound on the relative error is 3[(1 — Q)/Qm]"?. For small Q this is approxi-
mately 3/(Qm)"2, so we cannot expect extremely accurate results when Q is small
unless m is very large.

Monte Carlo analysis can approximate an unknown distribution if an experi-
mental sampling procedure can be programmed on a computer that simulates the
process being studied. This occurs when estimating the null, or baseline, distribution
of an index for cluster validity. For example, the scatter ratio, or Wilks’s lambda
statistic S (Section 2.4.3), measures clustering but its distribution, even under
randomness assumptions, is unknown because it depends on several problem parame-
ters. A Monte Carlo analysis defines an experiment, such as sampling a random
population in a hypercube in d dimensions, which embodies the notion of random-
ness. One can form several pattern matrices that match the given matrix in number
of patterns, features, and spread of features. Each pattern matrix is clustered and
the scatter ratio is recorded to develop an empirical distribution which serves as
a baseline distribution.

Suppose that s, is the value of the index, such as the scatter ratio or Hubert’s
I' statistic, measured on the data being clustered, and let 55, . . . , s, denote
m — | values obtained from Monte Carlo sampling under some null hypothesis.
How to determine if s; is *‘significantly’’ large, or small? Suppose that large
values of the statistic are desired for “*good’” clustering. In the case of scatter
ratio, small values would be desirable, but the methodology remains the same.
To test whether s; is significantly large, select integer k so that k/m = «, where
« is the level of significance, such as 0.05 or 0.01. If s, is among the k largest
of the m values {s;}, the index is significantly large and the null hypothesis can
be rejected at level a. The probability of incorrectly rejecting the null hypothesis
is exactly a. One interesting application of this methodology is given by Besag
and Diggle (1977), who apply it to the problem of recognizing nonrandom structure
in spatial patterns of points. Foutz (1980) proposed a randomized version of this
test that can increase power.

The Monte Carlo analysis blurs the critical region of the test, in comparison
to when the null distribution is known. The threshold for rejecting the null hypothesis
can be viewed as a range of values in the Monte Carlo method, instead of the
single value that is obtained when the null distribution is known. Increasing m
would reduce this blurring, but at a heavy computational cost. Let g be the actual
probability that a sample from the true distribution of the s-value is greater than
s1. The probability that the Monte Carlo test would reject the null hypothesis is
the probability that no more than &k — 1 of the samples from this distribution
exceed s, or

=l m— 1 .
Pk, p) = 2‘ ( . )pm r lqr
r=0

where p = 1 — g. Small values of this probability are desirable. Since m = k/a,
this probability is a function of k and p. Marriott (1979) examined P(k, p) for k
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from 1 to 10 and « of 0.05 and 0.01. If & is too small, say 1 or 2, there is a
substantial probability of reaching a seriously wrong conclusion. For example, if
a = 0.05,p =099, and k = 1, Pk, p) = 0.826, so the null hypothesis has a
high probability of being rejected when it is true. Increasing k, and thus increasing
m, decreases P(k, p) but with a diminishing return for increased computing. Marriott
agreed with earlier work that a k of about 5 is a reasonable compromise. For o
of 0.03, this result suggests that 100 Monte Carlo trials are required, while for o
of 0.01, it suggests at least 500 trials. If o is fixed, say at 0.05, then k = am,
so m = 20k for a = 0.05.

The most difficult computational question in Monte Carlo analysis is arranging
to sample from an arbitrary distribution. Random number generators are usually
available for generating *‘pseudorandom’ samples from U(0, 1) distributions
(Knuth, 1969; Fishman and Moore, 1982; Whitney, 1984) and techniques are
available for translating these uniform samples into samples from other distributions
(Dubes, 1968; Hammersley and Handscomb. 1965). A significant literature exists
on algorithms for computer sampling. For example, Johnson et al. (1980) propose
a new family of probability distributions appropriate for Monte Carlo studies.
Deak (1980) examines computationally efficient ways of sampling the normal distri-
bution, Atkinson (1979a,b) provides ways of sampling Poisson random variables,
and Shore (1982) approximates quantities related to the normal distribution. Exam-
ples of Monte Carlo analysis are given throughout this chapter.

4.1.5 Bootstrapping

A Monte Carlo analysis requires that a computer experiment be set up to
simulate the generation of data under some hypothesis, such as randomness. Boot-
strap techniques are for situations when such an experiment cannot easily be arranged
and all one has is the set of data itself. The general idea is to resample the data,
with replacement, to create a set of *‘fake’” data, which is used as if it were a
replication of a Monte Carlo experiment.

At first glance, bootstrapping may appear to be a classy way of cheating.
However, bootstrapping has been successfully applied to many problems in estima-
tion and statistical inference since it was first proposed by Efron (1979, 1981,
1982, 1983). Diaconis and Efron (1983) provide a particularly readable introduction.
Bootstrap techniques have not yet been applied to the problem of validating clustering
structures, so no experience exists in this application. A sense of the bootstrapping
approach taken can be gained from the following estimation problem.

Suppose that a parameter, 0, of the distribution of random variable X is to
be estimated. A single sample ¥ = {x1, %, . . ., x,}is a set of i.i.d. random
variables, all distributed as X, and represents the data in hand. If little is known
about the distribution of X, and no further samples are available, even by Monte
Carlo means, how can properties of estimators for 8 be determined? The bootstrap
technique is described as follows.
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ALGORITHM FOR BOOTSTRAP PARAMETER ESTIMATION

Step 1. Define a distribution with cumulative distributive function F by
assigning probability mass (1/n) to each of the n data points in ¥. This is
the nonparametric maximum likelihood estimator of the distribution function
for X.

Step 2. Draw a bootstrap sample " = {x], x3,. . . ,x,} from F by sampling
& with replacement. Thus Z" contains samples of i.i.d. random variables
distributed as F' and some x; may be repeated.

Step 3. Compute 6" = 6(%", F), an estimate of 8 from the bootstrap sample.

Step 4. Repeat steps 2 and 3 m times to obtain bootstrap replications 07,
850 e ; 0,, and calculate properties of interest.

For example, the expected value of 6 can be estimated by
(1/m) 3, 6;
k=1

The choice of m is not critical, but Efron (1983) suggests values between
100 and 200. The distribution of the bootstrap estimate converges to the true
distribution of the estimator for several statistics (Bickel and Freedman, 1981;
Singh, 1981) as n increases without bound. The bootstrap confidence interval
for an estimator has been shown to have almost the same width as the usual confi-
dence interval. Bootstrap techniques substitute computational power for theoretical
analysis.

Other applications of bootstrapping include the estimation of bias in decision
rules (Efron, 1983; Chernick et al., 1985; Jain et al., 1987), the significance of
principal components (Diaconis and Efron, 1983), and the fit of regression lines
(Efron and Gong, 1983). Bootstrapping has also been suggested in the problem
of estimating density functions for spatial point processes (Silverman, 1984). The
importance of bootstrapping in cluster validity has yet to be determined, but some
work is appearing that uses bootstrapping (Moreau and Jain, 1986).

4.2 INDICES OF CLUSTER VALIDITY

An index for cluster validity measures the adequacy of a structure recovered through
cluster analysis in terms that can be interpreted objectively, which we take to be
probabilities. The adequacy of a clustering structure refers to the sense in which
the clustering structure provides true information about the data, or the ability of
the recovered structure to reflect the intrinsic character of the data. The three
types of structures to which we refer are listed below.

Hierarchies are the nested sequences of partitions obtained by applying hierar-
chical clustering methods and model the global structure of the data (Section
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3.2). Hierarchies can also be proposed independent of data, as from a theoreti-
cal model.

Partitions result from partitional clustering algorithms and impose equivalence
relations on the data (Section 3.3). Partitions are also obtained from category
information.

Clusters are individual subsets of patterns that can be defined by any means
whatever, including cluster analysis, category information, and pure hunches.

The validity of a clustering structure can be expressed in terms of the three
types of criteria named below.

External criteria_measure performance by matching a clustering structure
to_a prior1_information. For example, an external criterion measures the
degree of correspondence between cluster numbers, obtained from a clustering
algorithm, and category labels, assigned a priori. An external criterion can
also measure the degree to which data confirm a priori ideas without a
formal cluster analysis being performed.

Internal_criteria assess the fit between the structure and the data, using

only the data themselves. For example, an internal criterion would measure
“the degree to which a partition, obtained from a clustering algorithm, is
Justified by the given proximity matrix.

Relative criteria decide which of t

Such as being more stable or more appropriate for the data. For example, a
relative criterion would measure quantitatively whether a single-link or a
complete-link hierarchy fits the data better.

A criterion expresses the strategy by which a clustering structure is to be
validated, while an index is a statistic in terms of which validity is to be tested.
Tests of hypothesis use indices to determine if a recovered structure is appropriate
for the data. In the case of external and internal criteria, this comes down to
testing whether the value of the index is either unusually large or unusually small.
This, in turn, requires that a baseline population be established, as discussed in
Section 4.1.1. The same index can be used in an internal and an external criterion,
although the baseline distributions of the index will be different for the two criteria.
Various statistical tools are employed to define actual tests of cluster validity.
Some of these tools, such as Monte Carlo analysis and bootstrapping, can be
used across the board. Other statistics, such as Hubert’s I and the Goodman—
Kruskal vy, can be modified to work in individual situations. The main issues in
using an index of cluster validity are summarized below.

Definition of index. The index should make good intuitive sense, should
have a basis in theory, and should be readily computable.

Baseline distribution. A baseline distribution is a null distribution derived
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from a population containing no ‘‘structure.”” A reference population is defined
or implied by the baseline distribution.

Test for nonrandom structure. An index of cluster validity is applied by
comparing it to a threshold that establishes a given level of statistical signifi-
cance. The threshold is defined from the baseline distribution, which is seldom
known from theory. Monte Carlo analysis and asymptotic approximations
are often required.

Test for specific structure. The statistical power of an index for cluster validity
can be established by examining its ability to recover a known structure.
The choice of structure depends on the particular application.

Other issues turn up when specifics are considered. The data type (qualitative
or quantitative) is a particularly important consideration in choosing an index of
validity. Each type of recovered structure is considered in a separate section.

Example 4.4 v*

This example demonstrates the difference between uamg the Hubert I statistic in an lntemal
and in an external criterion. Example 4.2 uses I as an external index because it assesses
the degree to which category labels are justified. The category label 8, 0, or X is a characteristic
of the object itself and has nothing to do with the manner in which the pattern is measured.
The baseline distribution of I, illustrated in Figures 4.2, was generated in Example 4.2
by specifying the % matrix from category information, then computing I" for several permuta-
tions of the rows and columns of Y.

Hubert’s I" is used as an internal criterion when the classification of the patterps is
obtained from a cluster analysis of the data. The I value for the 80X data is obtained by
'cumng the complete-link dendrogram for the 80X data to obtain three clusters and defining
the %Y matrix as follows.

Vi j) = 0 if patterns x; and x; are in the same cluster
/ if x; and x; are in different clusters

The cluster-by-category table for the three-cluster complete-link clustering, including row
and column sums, is given in Table 4.2.

TABLE 4.2 Cluster by Category Table
for 80X Data from Three-Cluster
Complete-Link Classification

Category
8 0] X
1 13 15 4| 32
Cluster 2 2 0 0 2
3 0 0 11 11
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Can the baseline distribution for I" be approximated as in Example 4.27 Is the random
label hypothesis reasonable when I is to be used as in an internal criterion? Suppose that
we answer both questions in the affirmative and evaluate I'(g) for 100 permutations of the
45 row and column numbers of the %Y matrix. The results are shown in Figure 4.5._The
observed value o is 0.567, which is substantially above all values {I'(g)}. Can we
conclude that the three-cluster complete-link clustering fits the data unusually well?

Before answering the last question, consider the effect of applying the same procedure
to the random data set described in Example 4.2. Figure 4.3 shows the baseline distribution
for 45 random patterns in eight dimensions when category labels are assigned randomly.
We decided that the randomly applied category labels were, indeed, applied at random in
Example 4.2. When we replace the random category labels by cluster labels obtained by
applying the complete-link clustering method and cutting the dendrogram to obtain three
clusters, Table 4.3 and the histogram of I" in Figure 4.6 are obtained.

The observed I" is 0.291 for the random data, which is twice as large as the largest
{I'(g)} in Flgure 4.6. Does this mean that the cluster labels fit the data unusually well?
Certainly not. The datd were generated randomly, so no valid classifications should exist.
lt_rTl?i?happen, by pure chance, that a three-cluster clustering fits well. However, repeating
this procedure for any number of clusters produces similar results, so one suspects that
something other than pure chance is at work. Thus the random label hypothesis is not
appropriate with an internal index and Figure 4.5 cannot be used to decide that the three-
cluster complete-link solution fits the data well.

20
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Figure 4.5 Histogram of I" for 80X data under random label hypothesis from three-
cluster complete-link classification.
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Figure 4.6 Histogram of I' for random data under random label hypothesis when
classification is obtained from cluster analysis.

Figure 4.6 illustrates that the degree to which clusters derived from cluster analysis

match the clusters in the data cannot be verified under the random label hypothesis. _Of

_course, the cluster labels fit better than random labels. The cluster analysis tries hard to
do a good job, even with random data. Needed is a null population and a null hypothesis

that is appropriate to the problem at hand. The choice of a baseline population and the

manner of generating the baseline distribution are the primary differences between an internal

and an external index.

We now suggest a procedure for generating a baseline distribution appropriate for
an internal criterion to be used with the 80X data. The general idea is to create a large
number of random matrices under the random position hypothesis, determine the three-
cluster complete-link solution for each, and compute the corresponding I" values.

TABLE 4.3 Cluster by Category Table
for random Data from Three-Cluster
Complete-Link Classification

Category
1 12 13

Cluster 2 1 3 5 9
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Figure 4.7 Histogram of I for 45 random patterns under random position and random
label hypotheses from three-cluster complete-link classification.

ALGORITHM FOR BASELINE DISTRIBUTION OF INTERNAL INDEX

Step 1. Generate a set of 45 random vectors in an eight-dimensional hypercube and
form the matrix & of interpoint distances.

Step 2. Cluster the vectors by the complete-link method and cut the dendrogram to
form three clusters.

Step 3. Form the % matrix from the three-cluster solution as explained earlier and
compute I" between Y and %.

Step 4. Repeat steps 1 to 3 100 times and record the I" values in a histogram.

The results of applying this algorithm are shown in Figure 4.7. The histogram of I'
values has shifted up by about 0.33 when compared to the histogram under the random
label hypothesis. An internal criterion can now be est@ ed. The ata produced an
internal index value of 0.567, while random data produced one of 0.291 when evaluated
for the three-cluster complete-link solution. The scale of Figure 4.7 shows that 0.567 is
significantly large but 0.291 is not unusually large; it is in the middle of the histogram.
Thus the three-cluster complete-link solution does fit_the 80X _data unusually well but
does not fit random data unusually well.

4.3 VALIDITY OF HIERARCHICAL STRUCTURES

How well does a hierarchical structure, such as that imposed by a hierarchical

clustering method (Section 3.2), fit a given pattern matrix? This section reviews

some measures of global fit for hierarchies.
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4.3.1 External Indices

The problem here is to determine if a hierarchy computed for a given data
set matches an expected hierarchy. The expected hierarchy can be expressed as a
type of dissimilarity matrix in which entry (i, j) is k if objects i and j are expected
to first be in the same cluster at level k of the hierarchy. Such a matrix can be
compared to the cophenetic matrix determined from a hierarchical clustering by
Hubert’s T" statistic or the Goodman-Kruskal vy statistic, depending on the data
type. As discussed in Section 4.1.2, the null distributions for these statistics depend
on a number of factors, especially the type of reference population, the number
of objects, and the type of hierarchical clustering used. This particular problem
in validating clustering structures has not received a great deal of attention because
an expected hierarchy is not often available.

4.3.2 Internal Indices

Does a hierarchy obtained from a hierarchical clustering method fit the data
from which it was derived unusually well? Should one be confident in the results
of a hierarchical clustering, or not? The index used for answering these questions
depends on the data scale. The cophenetic correlation coefficient (CPCC) has
been proposed for quantitative data, and measures of rank correlation have been
used with quantitative data.

In the notation of Chapter 3, d(i, j) is the given proximity between objects
i and j and dc(i, j) is the cophenetic proximity, or the level in the dendrogram
for a particular clustering method at which objects i and j are first placed in the
same cluster. Both proximities are assumed to be on ratio or interval scales. The
CPCC is the product-moment correlation coefficient between the entries of these
two n X n matrices and is defined below. Only the M = n(n — 1)/2 entries
above the main diagonals are used because the two matrices are symmetric.

(/M) 3. d(i, )dc(i, j) — (mpme)
[(1/M) 2 d2(i, j) = mp]"? [(UM) 2 d%(i, j) — mc]"?

where mp = (1/M) % d(i, j), me = (1/M) 3 de(i, j), and all sums are over the set

CPCC =

{i,):1=i<j=n}

The value of CPCC is between —1 and J; the closer CPCC to 1, the better
the match and the better the hierarchy fits the data. But how close is “‘close™?
The cophenetic matrix is an ultrametric matrix, so a perfect fit demands that all
triples from the given proximity matrix satisfy the ultrametric inequality. This is
seldom the case in practice since the proximity matrix would need to contain
large numbers of ties, as discussed in Section 3.2.3. The CPCC depends on all
problem parameters and on the clustering method employed. Rohlf and Fisher
(1968) studied the CPCC by Monte Carlo analysis when patterns were randomly
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chosen from uniform and Gaussian distributions and were clustered by the UPGMA
method. The average CPCC tended to decrease with n, the number of patterns,
and to be independent of the number of features. However, very few Monte Carlo
trials were used. This study also showed that CPCC is more sensitive to the
choice of proximity measure than to the underlying distribution of the patterns.
Rohlf and Fisher exhibited approximate 5% thresholds for testing the null hypothesis
of a single Gaussian cluster against the alternative of a system of nested clusters
using CPCC as a test statistic. Rohlf ( 1970) found that the UPGMA method seemed
to produce consistently high values of CPCC and warned that “‘even a CPCC
near 0.9 does not guarantee that the (dendrogram) serves as a sufficiently good
summary of the phenetic relationship.”’

The CPCC has been widely used, especially in numerical taxonomy. For
example, Farris (1969) proposed a clustering method that optimized CPCC but
warned against using CPCC in this capacity. The major difficulty with CPCC in
validating hierarchies is that its distribution depends on so many factors that one
is forced into a Monte Carlo analysis to establish a baseline distribution for each
particular problem. When the patterns occur as points in a d-dimensional space,
one might choose the n patterns randomly, cluster them by a particular hierarchical
method, record the CPCC, and repeat the process a large number of times. This
Monte Carlo method would develop a baseline distribution for CPCC. A CPCC
that is large on the scale of such a baseline distribution indicates that the hierarchy
fits the data better than hierarchies fit random data.

A rank correlation can measure the match between proximity and cophenetic
matrix when the proximities are on an ordinal scale. Hubert (1974b) proposed
the Goodman-Kruskal vy statistic (Section 4.1.3) for this purpose. Cunningham
and Ogilvie (1972) suggest another measure of rank correlation called Kendall’s
T statistic for comparing rank matrices.

— S+ _S_
nin — 1)/2

where S, and S_ are the numbers of concordant and discordant pairs of objects,
respectively, as defined in Section4.1.3. Thus T and v differ only in the denominator.

As with CPCC, one sequence of numbers used to compute <y consists of
the n(n — 1)/2 proximities given and the other consists of the cophenetic proximities
obtained from a clustering method. The Y statistic has been used more for comparing
clustering methods than for objectively validating the global fit of a hierarchy
(Baker, 1974; Hubert, 1974b). Only when «y is 1 can one conclude that a dendrogram
truly fits the proximity matrix. The baseline distribution of v, like the distribution
of CPCC, depends on all the problem parameters. The random graph hypothesis
can be used with ordinal proximities in a Monte Carlo analysis. Hubert (1974b)
created tables of percentage points for vy under the random graph hypothesis with
single-link and complete-link clustering for n between 4 and 16 from the following
algorithm.
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ALGORITHM FOR BASELINE DISTRIBUTION OF y UNDER RANDOM
GRAPH HYPOTHESIS

Step 1. For fixed n (number of objects) form a dissimilarity matrix under
the random graph hypothesis; that is, fill in the n(n — 1)/2 entries with a
randomly chosen permutation of the integers from 1 to n(n — 1)/2.

Step 2. Cluster the n objects by a clustering method, such as the single-

link or complete-link method.

Step 3. Form the cophenetic matrices for the dendrogram resulting from

the clustering method.

Step 4. Compute y between the dissimilarity and cophenetic matrices.
Repeat steps 1 to 4 on a Monte Carlo basis to create a baseline distribution

for vy specific to the clustering method and value of n. Hubert (1974b) used

1,000 trials for each value of n.

This algorithm for generating a baseline distribution is clumsy because it
must be repeated for each possible value of n. Hubert conjectured that the statistic

ny —aln(n)

has an approximate standardized normal, or N(O, 1), distribution with a = 1.8
for complete-link clustering and @ = 1.1 for single-link clustering. If the conjecture
is correct, Monte Carlo analysis is not needed and a single distribution can be
used for all n.

Example 4.5

This example demonstrates the use of vy in measuring the degree to which two hierarchies
fit the ordinal proximity matrix given below on five objects.

2 3 4 5
4 6 1 5
2[— 8 9 3
3|— — 7 10
4l— — — 2

Figure 4.8 shows the single-link and complete-link threshold dendrograms for this
dissimilarity matrix. Two <y statistics can be found for the two dendrograms showing the
rank correlation between the given proximity matrix and the cophenetic matrices. Note
that -y is invariant to transformations on proximity that do not change the order of the
proximities so that either a threshold dendrogram, as in Figure 4.8, or a proximity dendrogram
will give the same vy value. Table 4.4 shows the proximity ranks and the partition ranks
for the two dendrograms in a form that makes it easy to find y. Recall that the *partition”’
rank for object pair (i, j) is the first level in a dendrogram at which objects i and j are in
the same cluster.

Table 3 in Hubert (1974b) shows that the 70th percentile for the single-link baseline
distribution is 0.76 and the 50th percentile for the complete-link baseline distribution is
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Figure 4.8 Single-link and complete-link dendrograms for the ordinal proximity matrix
in Example 4.5.

TABLE 4.4 Proximity and Partition Ranks for
Computation of v in Example 4.5

Partition Ranks

Object Pair Proximity SL CL

(1,4) 1 1 1
(4, 5) 2 2 4
2,5 3 3 2
(1,2) 4 3 4
(1, 35) 5 2 4
(1,3) 6 4 3
(3.4) 7 4 3
2,3) 8 4 4
(2,4 9 3 4
(3,5 10 4 4

§i 30 22

s 5 7

¥ 0.714 0.517
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0.72 when n is 5. If we are testing the fit of the single-link and complete-link hierarchies
to the given proximity matrix, we could conclude that the single-link method provides a
better fit than the complete-link method but that neither method fits the data unusually
well. The proximity matrix itself may be judged to have little hierarchical structure based
on these results.

4.3.3 Relative Indices

In addition to the problem of validating a specific hierarchical clustering,
one is often faced with the problem of deciding which of two hierarchical clustering
solutions fits the given data better. This is separate from the problem of whether
either of them fits the data unusually well. The indices are the same as those
discussed above, but they are applied differently.

Baker (1974) provided a prototype for comparative studies on ordinal data.
He began with three ‘‘basal’’ taxonomies, or dendrograms shown in Figure 4.9
for n = 16. Baker perturbed the ranks, R4, obtained from the cophenetic matrices,
with noise and generated the following proximities.

Rnew = Rnld{l + KU)

where U is a sample of a uniform random variable over the range (—1, 1) and K
is a constant that reflects the magnitude of the noise perturbation. Rank ordering
the resulting proximities produces the perturbed, ordinal proximity matrix.

One would expect the single-link method to pick out proximity matrices
obtained by perturbing the chained taxonomy in Figure 4.9(a), and the complete-
link method to be sensitive to the binary taxonomy in Figure 4.9(b). The arbitrary
taxonomy [Figure 4.9(c)] should provide an intermediate basis for comparison.
A number of proximity matrices were generated by the perturbation procedure.
Each was clustered by single- and complete-link methods and a y was computed
between each pair of proximity and corresponding cophenetic matrices.

The procedure was repeated 100 times for each basal taxonomy and for
three values of K (0.9, 1.0, 1.1). Thus three basal taxonomies and three noise
levels were examined. The mean vy for the complete-link method was better than
that for the single-link method in all situations, with the lone exception of a
chained basal taxonomy at low noise (K of 0.9). The standard deviations of v
did not exhibit a consistent pattern. The fact that the complete-link method provided
a larger mean vy even under chaining is counterintuitive. Hubert (1974b) extended
Baker’s study and provided more evidence for the superiority of the complete-
link method over the single-link method in practical situations with ordinal proximi-
ties.

Fowlkes and Mallows (1983a) suggested comparing two hierarchical cluster-
ings by computing an external criterion for each partition of the patterns that appears
in the hierarchy and plotting this criterion as a function of the number of clusters.
Unfortunately, they tried to apply their procedure as if it were an internal criterion.
Such a procedure is interesting, but we are left with the problem of establishing
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Figure 4.9 Basal taxonomies: (a) chained
taxonomy; (b) binary taxonomy; (c) arbitrary
taxonomy.



172 Cluster Validity Chap. 4

the behavior of such a plot under a baseline distribution. This, in turn, depends
on several problem parameters.

4.4 VALIDITY OF PARTITIONAL STRUCTURES

The validation of a partition is the most commonly encountered of all the validation
problems. This problem includes questions such as: ‘‘How many clusters are in
the data?,”” “*Does the partition match the categories?,”” **Where should the dendro-
gram be cut?,”’ and ‘“Which of two partitions fits the data better?”’ This section
examines several indices for attacking these questions in a quantitative manner.

4.4.1 External Indices

An external index of partitional adequacy assesses the degree to which two
partitions of n objects agree. One partition comes from a clustering solution,
such as from a partitional clustering algorithm or from cutting the dendrogram
generated by a hierarchical clustering algorithm. The second partition is assigned
a priori, independent of the data and the first partition, as from category labels.
Hubert and Arabie (1985) carefully define several indices for comparing two parti-
tions. When the partitions are ‘‘independent,’’ in the sense that one depends on
the data values and the other does not, the distributions of some of these indices
can be established from theory. All such indices are derived from the contingency
table constructed from the two partitions in Table 4.5. The two partitions of the
n objects are denoted AU and V. The partitions are identified with the clustering
algorithm and a priori information when a specific index is defined.

OU.Z{HI, Ugy s o o ,HR} and E‘V:{’Ul,vz,. . "vc}
Entry n; in Table 4.5 is the number of objects that are both in group ;
and in group v;. The term n; is the row sum for the ith row, or the number of

objects in group u; and n ; is the number of objects in group v;.
External indices of partitional adequacy can be expressed in terms of this

TABLE 4.5 Contingency Table for Two

Partitions
7 V2 Ve
iy nyy n2 e ny.
it 1y Ry e LTe n
Up g1 N2 . Rpc L
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contingency table. They can also be expressed in terms of the following indicator
functions to show their similarity to measures of proximity for binary data (Section

2.2). The n objects are denoted {x;, x5, . . . , x,}
;e |3 if x;€ u, and x;€ u,, some 1 =r =R
Ia@i, )) = {0 otherwise
RS b if x; € v; and x; € v, some 1 =s=C
(i, ) = [0 otherwise

If partition “U is obtained from a clustering solution and partition /' is obtained
from category labels, then Io(i, j) is 1 when objects x; and x; are in the same
cluster and O if they are in different clusters. Similarly, I4(r, s) is 1 if the two
objects have the same category label and 0 if not. The contingency table for the
two indicator functions given in Table 4.6 lists the numbers of ways in which
the pairs of patterns are treated by the two partitions.

TABLE 4.6 Contingency Table for
Indicator Functions

Iy
1 0
P 1 a b my
B 0| ¢ d M —m,
(] M- ms

Thus a is the number of pairs of objects that are in the same group in both
partitions, d the number of pairs that are in different groups in both partitions,
and b the number of pairs of objects that are in the same group in % but in
different groups in V. The number of pairs of objects that are in the same group
in U is denoted m; = a + b, while m, = a + c is the number of pairs in the
same group in V. The total number of pairs of objects is

nn—1)

M=a+b+ctd==—

The entries in Tables 4.5 and 4.6 are related as shown below. These equations

can be obtained by straightforward combinatorial considerations. To simplify the
notation, we use 2; to denote =X, and 3, to denote 3.

a=33 ("21) ~U)ES % — (n2)

b=3(3)-23(3)=unSh-amS S

i

=% (’;) ~Z % (';;) =3 n? — (1/2) 3 2
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d=(;)—a—b—c=ﬂ(n—;u—%[2nf_+2nﬁ-]

If the marginal sums in Table 4.5 are fixed, which means that the sizes of
the groups in the two partitions are fixed, the four entries in Table 4.6 are all
linear functions of

Z=2 2.7
i

so they are linear functions of one another. Table 4.7 lists some common external
indices for comparing two partitions.

Note that the Rand statistic, the Fowlkes and Mallows statistic, and the T’
statistic are all linear functions of Z and thus are linear functions of one another
when the row and column sums are fixed in Table 4.5. The Jaccard statistic is
not a linear function of Z. Large values of the three statistics imply close agreement
between the two partitions. The I statistic is a correlation, so its value is between
—1 and 1. The Rand and Jaccard statistics have values between O and 1. The
maximum value of 1 may not be achievable when the two partitions have different
numbers of clusters.

The T statistic in Table 4.7 is a special case of the Hubert I statistic introduced
in Section 4.1.2. The notation of Section 4.1.2 can be identified here as follows:

X@@, ) = Iy, )

m, = (/M) 2 2 X(i, j) = m)/M m, = my/M

2= (1UM) 2 3 X0, j) — m2 = m/M — (m)/M)? s2 = my/M — (my/M)>
(/M) 2 3 X(, )Y, j) = alM

. [a/M — (my/M)(my/M))] _ Ma — mym,
\/l(m.fM - (m]f’M}Z][msz - {n.i'zi"M}zi \/E|HIQ(M =5 m|)(M = mg]

The key step in applying these external indices of partitional adequacy is
the formation of a baseline, or reference distribution. A clustering can then be

TABLE 4.7 External Indices of Partitional Adequacy

Name Formula
Rand (1971) (a+ a‘)f(;) =1+ [z - (172) (2", n o+ - ,,;)J/(;)
Jaccard ala+b+c)=(Z— n),-’(z n+>ni—Z- n)
: ;

Fowlkes and

172 — s, - [ M n; 2
Mallows (1983)  2/(mma)™ = (112)Z ")/[2’ (2) E,: (Zj)]

I statistic (Ma — myma)/[myma(M — m)(M — ms)]'?
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termed ‘‘valid’” if it has an unusually high value, as measured with respect to
the baseline distribution. The baseline distribution can also be used to correct an
index for randomness. Hubert and Arabie (1985) suggest a baseline distribution
in which the row and column sums are fixed in Table 4.5 but the partitions are
selected at random, so the hypergeometric distribution can be applied to determine
the expected values of quantities such as

E[;; = ("21)] =(R)EZ~n =3 (%) s (”2,:)/(;)

The expected values of the Rand, Fowlkes and Mallows, and I statistics
can be obtained from this result. Correcting a statistic for chance means to normalize
the statistic so that its value is 0 when the partitions are selected by chance and
I when a perfect match is achieved. If S is a statistic, the form of the corrected
statistic 1s

S — E(S)
Max — E(S)

r

where Max is the maximum value of the statistic. Hubert and Arabie (1985)
assume that the maximum value of the Rand statistic is 1 and propose the following
““corrected”” Rand statistic. Other corrections have been suggested in the literature
but some have been based on incorrect mean values.

woler?/@)]-[ara/()]
—Elera/ ()]

A [/E13®)s(%)
@332 @]-0/613(3()

Corrections for other indices can be found in a similar manner. The Jaccard
coefficient is not a linear function of Z, so its mean does not have a simple
form. Fowlkes and Mallows (1983a) give the mean and variance of their statistic
under the baseline distribution. Although the mean values of these indices are
known, the distributions themselves are not known. Thus no theoretical thresholds
exist for deciding when the indices are unusually large.

The null distribution of I' is usually taken to be the distribution under the
random label hypothesis. The cluster sizes are fixed. Hubert and Schultz (1976)
provide the mean and variance of I' under this baseline distribution. A threshold
for “‘unusually large”” can be approximated by assuming that the baseline distribution
is normal and using the estimates of the mean and variance, but precise thresholds
can only be found by Monte Carlo methods.

Milligan et al. (1983) compared the Rand, a corrected Rand, the Jaccard,
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and the Fowlkes and Mallows statistics as external indices of partitional adequacy.
They suggest selecting either the Rand or corrected Rand and either the Fowlkes
and Mallows or the Jaccard statistics. Their correction to the Rand statistic is not
the same as that given above.

The external indices defined here can also be used to judge the relative
merits of two partitions in recovering structure from the data and to test whether
the data themselves confirm a prior hypothesis, independent of any clustering.
For example, one can ask whether the proximity matrix itself, as opposed to a
partition of the objects, corresponds to a set of category labels. The data are not
clustered. Hubert and Subkoviak (1979) provide an example.

Example 4.6

It is often necessary to generate data having a specified number of clusters, as when two
indices for estimating the number of clusters are being compared in a Monte Carlo study.
The algorithm in Appendix H generates clustered data by choosing a cluster center at
random and dispersing patterns around each cluster center according to a Gaussian distribution
with a specified spread parameter. Provisions are made to ignore potential cluster centers
that overlap existing clusters. This example, drawn from Dubes (1986), demonstrates the
use of external indices of partitional adequacy in verifying that data generated by the
algorithm in Appendix H are, indeed, clustered. This is not a trivial exercise. Large spread
parameters could generate data which, for all practical purposes, are random with no well-
defined clusters.

This example is concerned with data sets containing 100 patterns generated in five-
dimensional hypercubes. Random data refer to sets of patterns chosen independently and
uniformly from five-dimensional hypercubes. A spread parameter of 0.1 was used for clustered
data and either two or eight clusters were required with at least 40 and 10 patterns in each
cluster, respectively. The baseline distributions of the Jaccard and the corrected Rand indices
were developed as follows. Table 4.8 summarizes the results.

ALGORITHM FOR BASELINE DISTRIBUTION OF EXTERNAL INDEX

Step 1. Generate a set of 100 patterns in five dimensions. Category labels for clustered
data are taken as true cluster labels. Category labels for random data are assigned
randomly to match the category sizes used with clustered data.

Step 2. Cluster the pattern matrix by the single-link and complete-link methods
and cut the dendrograms at the ‘“‘correct’’ levels of two and eight clusters to obtain
cluster labels.

Step 3. Compute the Jaccard and the corrected Rand indices between the partition
obtained from category information and that from cluster analysis for each clustering
method.

Repeat 100 times for each situation.

Table 4.8 demonstrates clearly the need for correcting an index for randomness.
The mean Jaccard index becomes almost 0.5 for purely random data, while the corrected
Rand index maintains a mean close to 0 under all experimental conditions. The mean
values of both indices are much larger under clustering than under randomness. Considering
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TABLE 4.8 Comparison of External Indices for Partitions

Jaccard Corrected Rand

K Mean Std. Dev. Mean Std. Dev.

Clustered data

SL
2 0.934 0.169 0.870 0.336
8 0.597 0.172 0.683 0.169
€L
2 0.989 0.043 0.988 0.050
8 0.859 0.116 0.908 0.082
Random data
SL
2 0.496 0.007 0.00027 0.005
8 0.118 0.004 0.00053 0.004
CL
2 0.354 0.029 —0.00069 0.017
8 0.068 0.008 —0.00102 0.015

Note: * k is the true number of clusters for clustered data and the
number of pseudo clusters for random data.

the relatively small sample standard deviations, it is clear that the clustered data do, indeed,
contain clusters. However, this conclusion can be drawn more readily with the corrected
Rand coefficient than with the Jaccard coefficient because one would need to create a
baseline distribution for the Jaccard index in each case. It appears that the corrected Rand
coefficient maintains a zero value with a small standard deviation under randomness, indepen-
dent of experimental conditions such as the number of clusters and the clustering method.
Note that the complete-link method produces consistently larger index values than the
single-link method.

4.4.2 Internal Indices

Internal indices of partitional adequacy measure the degree to which a cluster-
ing obtained from a clustering algorithm is justified in light only of the pattern or
proximity matrix. In other words, they measure the fit between the partition imposed
by a clustering algorithm and the data themselves. Category labels and other a
priori information are not used in internal indices. Dubes and Jain (1979), Milligan
(1981), and Milligan and Cooper (1985) provide definitions and evaluations of
several internal indices.

The partitional adequacy problem includes the problem of estimating the
““true’” number of clusters, which has been called the fundamental problem of
cluster validity (Duda and Hart, 1973; Everitt, 1979). The question ‘‘How many
clusters in the data?’’ can be asked in at least three meaningful ways. One might
ask: ““Do the data contain the number of clusters I expect?”” An external index
(Section 4.4.1) is appropriate for answering this question when an a priori partition
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is available. A second posing of the question is: “‘Is it unusual to achieve an
external index as small (or as large) as the one I have just computed?’” For example,
the partition may have come from one of the square-error clustering algorithms
in Chapter 3, and one would like to know if the value of square-error obtained is
“‘significantly’” small, or small enough so that the clustering is *‘valid.”” Two
major difficulties arise in attempting to quantify the meanings of ‘‘significant™
and “‘valid’’ that are serious enough to make one doubt that this question can
ever be answered satisfactorily. The difficulties are the definition of baseline distribu-
tion and the dependence of indices on problem parameters and are discussed in
this section. A third way of asking the question is: ““Which of two clusterings is
better?”’ Section 4.4.3 treats this question.

Consider first the definition of a baseline distribution. A Monte Carlo analysis
will develop a baseline distribution of square-error, or of any other internal index,
if a suitable model for the data is available. Choosing such a model is not a
trivial task. One could simply generate data randomly over some sampling window,
such as a hypercube or hypersphere, but what sampling window is appropriate?
A more serious difficulty is inherent in the fact that data with any number of
clusters will probably yield a smaller square-error than random data. Thus, imposing
a clustering solution with four clusters on data having six true clusters will result
in a smaller square-error than will imposing a four-cluster solution on random
data. Comparing the square-error for the four-cluster solution to the baseline distribu-
tion could then lead one to the erroneous conclusion that the four-cluster solution
is valid. A way out of this conundrum is to employ internal indices as relative
indices, as discussed in Section 4.4.3.

The second difficulty with internal indices is their dependence on problem
parameters, such as the numbers of patterns, features, and clusters, and the spread
of the data. Square-error, for example, naturally decreases as the number of clusters
increases and increases as the number of patterns and the number of features
increase. We exhibit this dependence in the analysis of 16 artificial data sets
which were generated to demonstrate the point. Each consists of four Gaussian,
symmetric, reasonably separated clusters of approximately the same size in a unit
hypercube (see Appendix H). Dimensionalities of 2, 4, 6, and 8 and sample
sizes of 50, 100, 200, and 400 for each dimensionality were chosen to establish
the 16 data sets. Four random data sets in six dimensions with the four sample
sizes given were also generated. In an attempt to reduce the effects of sample
size, we used the average error, or the square root of the square-error divided by
the sample size, as a criterion. The 20 data sets (16 clustered and 4 random)
were analyzed by the CLUSTER program (Section 3.3.3) and solutions containing
from one to eight clusters were obtained for each of the 20 data sets. Figure
4.10 shows eigenvector projections of three clustered data sets in six dimensions
for sample sizes of 50(c), 100(d), and 200(a) and of the random data set in six
dimensions (b).

Figure 4.11 demonstrates the effects of dimensionality and number of clusters
on average error when sample size is fixed. The curves of average error for the
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eight-dimensional data sets show definite knees at four clusters, the ‘‘correct’
number. Only with 400 patterns does a sharp knee occur at four clusters in four
and six dimensions. The two-dimensional data sets do not exhibit knees at the
correct number of clusters with any of the data sets. Spurious knees can be seen
in a few cases, especially the one at three clusters for six-dimensional data with
200 patterns. The random data sets exhibit no knees whatever. The same data
are plotted in Figure 4.12 for each of the dimensionalities. It is clear that only
the eight-dimensional data exhibit the correct number of clusters at all sample
sizes. Intuitively, the eight-dimensional data contain more information about cluster-
ing than comparable data sets in fewer dimensions and eight dimensions provide
enough space for the clusters to form. We do not hazard a guess as to why this
effect occurs at eight dimensions rather than at a lower number of dimensions.
This simple experiment suggests that the effects of dimensionality and sample
size are severe, even for idealized data that are well matched to the clustering
algorithm.

If one is willing to risk the difficulties discussed above, a baseline distribution
can be established by Monte Carlo means and one can perform a test of hypothesis,
as discussed in Section 4.1. This requires generating m — 1 sets of random data
that match the given data in number of patterns, number of features, and overall
spread. If small values of the index denote good clusterings, as with square-error,
the null hypothesis of randomness is rejected at significance level r/m if the index
observed is among the r smallest values achieved in the Monte Carlo trials. This
approach is discussed in Section 4.2. The use of random data is crucial. For
example, McClain and Rao (1974) overlooked this point in their test of hypothesis,
which resulted in a misleading test (Milligan, 1981).

Another way of determining whether an index is unusually small is to know
the theoretical distribution of the index under some reasonable hypothesis of random-
ness. Although actual distributions are known only in trivial cases, Bock (1985)
has derived asymptotic distributions of some indices. It is never clear that an
asymptotic distribution is appropriate in a particular situation. One must be extremely
cautious in applying derived and asymptotic distributions to evaluate internal indices.
For example, the distributions of several statistics which clustering algorithms
optimize, such as ratios of within to between scatter, have been derived (Wilks,
1963; Cooley and Lohnes, 1971). But these distributions require that the labels
on the patterns be category labels, which means that the labels are assigned without
regard to the data themselves. Theoretical distributions of within-cluster and be-
tween-cluster measures are useful in analysis of variance, but not in cluster analysis.

Although comparing an internal index to a baseline distribution is not advisable
when validating a partition, this procedure is appropriate when trying to determine
if a given set of data is better described with one or two clusters. This can be
useful in deciding whether or not to split a cluster. Engelman and Hartigan (1969)
obtained the distribution of the between-cluster scatter to the within-cluster scatter
(Section 3.3.1) under a null hypothesis of a single Gaussian distribution in one
dimension. The alternative hypothesis contained two clusters. This distribution
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Figure 4.10 Eigenvector projections of six-dimensional data sets.
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Figure 4.11 Average error as a function of number of clusters for each sample size.

can be realistically obtained only in one dimension, where only (n — 1) clusterings
need be evaluated for each Monte Carlo trial. The huge number of possible cluster-
ings (Section 3.3) makes developing the null distribution impractical in more than
one dimension. Hartigan (1975) shows that the log of the scatter ratio has an
asymptotic Gaussian distribution under the null hypothesis. Bock (1985) has pro-
posed some extensions of this “‘gap’” test to higher dimensions, but their utility
has yet to be demonstrated. Sneath (1977) proposed another gap test based on
scatter ratios of data projected to the line joining the centers of two clusters.
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Figure 4.11 (continued)

4.4.3 Relative indices

Which of a set of clusterings best matches the data? A relative index of
partitional adequacy should answer this question in a quantitative way. All of the
internal indices could serve as relative indices. A relative index is distinguished
by the manner in which it is applied. For example, one might develop a procedure
for recognizing a ‘‘significant’” knee in curves, such as those in Figures 4.11
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Figure 4.12 Average error as a function of sample size for each dimensionality.

and 4.12. The sequence of clusterings can be obtained from repeated applications
of a nonhierarchical clustering algorithm, such as CLUSTER, but are usually
obtained from cutting a dendrogram at successive levels. A procedure for choosing
the best level for cutting a dendrogram is called a stopping rule.

A relative index is easier to apply than an internal index because a sequence
of values is obtained, one for each clustering in the sequence. One looks for
some unusual aspect of the sequence, such as a maximum, minimum, or significant
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Figure 4.12 (continued)

knee. Milligan and Cooper (1985) provide a comparative study of 30 internal
indices used in stopping rules. Several of the indices are based on Hubert’'s I’
(Section 4.1.2). Two specific indices are explained below to demonstrate the applica-
tion of relative indices. We are not promoting either index. Few results are available
that permit one confidently to choose a relative criterion.

The Davies—Bouldin (1979) index was originally proposed as a way of deciding
when to stop clustering data. The index is plotted against the number of clusters
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and clustering is stopped when the index is minimized. It was claimed that the
index does not depend on either the number of clusters or the clustering method.
Given a partition of the n objects into K clusters, one first defines the following
measure of within-to-between cluster spread for all pairs of clusters (j, k) in the
notation of Section 3.3.1.
=+ e
R; = e
5%

where ¢; is the average error for the jth cluster and m;; is the Euclidean distance
between the centers of the jth and kth clusters. The index for the kth cluster is

Ri = max{R; 4
and the Davies—Bouldin index for the K-cluster clustering is
K
DB(K) = (1/K) >, Ry forK > 1
k=1

The smaller DB(K), the better the clustering. This index is identically zero
for the trivial clustering that places each object in an individual cluster and should
be computed only when each cluster contains a reasonable number of objects. It
is not defined for the case when all objects are in the same cluster. One plots
DB(X) against K for successive values of K, as when a dendrogram is cut at
successive levels, and chooses that partition that minimizes the index. The case
when the data contain exactly two clusters should produce a curve whose only
minimum occurs at K = 2, the lowest possible value of K. A heuristic procedure
must be adeped to distinguish this from the case of no clusters, in which DB(K)
may exhibit the same behavior. Figure 4.13 illustrates the behavior of DB(K) for
well-clustered data (o of 0.01) and poorly clustered data (o of 0.1), both containing
four clusters generated by the algorithm in Appendix H, and also for random
data. All data sets contained 100 objects, generated as points in a five-dimensional
hypercube. The data were clustered by the complete-link method. Figure 4.13
demonstrates the wild behavior of DB(K) for random data. The index is supposed
to decrease monotonically as K decreases until the ‘‘correct’” number of clusters
is achieved for well-clustered data.

A second index is a modification of Hubert’s I (Section 4.1.2) defined as
the point serial correlation coefficient between the proximity matrix, assumed to
be the Euclidean distance between n patterns in a d-dimensional pattern space,
and a ‘“‘model’’ matrix. The model matrix in Section 4.1.2 is an n X n matrix
with 0 in position (i, j) if objects i and j are in the same cluster and 1 if not.
Here the Euclidean distance between the centers of the clusters to which the objects
belong are used instead of 0 and 1. The intuitive idea is that cluster centers
estimate the *‘true’” positions of the clusters in the pattern space and that deviations
from the centers are due to errors and distortions.
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Figure 4.13 Davies-Bouldin relative index for strongly and weakly clustered data
containing four clusters and for random data.

The new statistic MH (modified Hubert I') can be defined in the notation
of Section 4.1.2 as follows. A clustering is defined by the label function:

L(i))=k if object i is in the kth cluster

If m; ;. is the Euclidean distance between cluster centers j and k, then

Y, J) = mygyiii

The index MH(K) is computed by the formula for I' in Section 4.1.2. This
index decreases monotonically as K decreases, so one must seek a significant
knee in a plot of MH(K) against K. This index will be 1 for the trivial clustering
in which each object is in an individual cluster and is not defined for the clustering
in which all objects are in the same cluster. Figure 4.14 provides examples of
this index for cases similar to those in Figure 4.13. Again, the data contain four
true clusters. The main difference between well-clustered and weakly clustered
data is in the level of the curve for a large number of clusters. The knee at four
clusters is evident in the strongly clustered data but shifts to three clusters in the
weakly clustered data. Separating data with two clusters from random data, or
data with one cluster, can be accomplished by observing the slope of the curve.
The plot of MH(K) as K increases tends to be flat when the data contain clusters
but tends to have a positive slope for random data.
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Figure 4.14 MH relative index for strongly and weakly clustered data containing four
clusters and for random data.

A preliminary Monte Carlo study suggests that MH is a more reliable way
to identify the true number of clusters than DB. However, MH requires some
judgment as to the definition of a significant knee, whereas DB requires only
that a minimum be identified. The Hubert I" ranked third best in Milligan (1981)
and seventh best in Milligan and Cooper (1985), both out of 30 indices. The
MH index was not part of either study. The DB index ranked tenth best out of
30 in Milligan and Cooper (1985).

These indices provide only two examples and demonstrate how a relative
index of partitional adequacy can be applied. These indices depend on a number
of problem-specific parameters and may be applicable only when the data cluster
into hyperspherical clusters. Not much is known about the performance of relative
indices.

4.5 VALIDITY OF INDIVIDUAL CLUSTERS

The two main properties of a cluster are compactness and isolation. Compactness
measures the internal cohesion among the objects in the cluster whereas isolation
measures separation between the cluster and other patterns. A valid cluster is
unusually compact and unusually isolated. Clusters that are isolated but not compact
or compact but not isolated are valid in a restricted sense. All indices of individual
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cluster validity measure compactness and isolation. The trick is to define a reference
population and baseline distribution in terms of which ‘‘unusual’’ has meaning,
that make intuitive sense, and which can be established from theory.

4.5.1 External Indices

An external index of cluster validity is appropriate when the cluster labels
are assigned without regard to the proximity matrix. When the data are on an
ordinal scale, the problem of validating individual clusters can be solved from
probability theory. This section is restricted to the case of ordinal data and follows
Bailey and Dubes (1982).

The reference population is implied by the random graph hypothesis (Section
4.1.1), which states that all ordinal proximity matrices are equally likely. Given
n objects, the proximity matrix contains n(n — 1)/2 entries, so there are
[n(n — 1)/2]! different proximity matrices. Selecting a proximity matrix under the
random graph hypothesis is equivalent to randomly placing edges between distinct
nodes on an n-vertex graph where all unfilled positions are equally likely at each
step. The order in which the edges are inserted establishes the ordinal proximities.

The compactness and isolation indices of a cluster are defined as the number
of edges internal to the cluster and the number of edges linking the cluster to
other clusters at each level of proximity. When the cluster is specified a priori,
with no reference to the proximities, the distributions of compactness and isolation
at a particular level of proximity can be obtained from the hypergeometric distribution
so that an exact measure of cluster validity can be formed. The details of this
idea are now explained.

An (n, N) random threshold graph is a graph formed by inserting N edges
at random into an n-node graph, where each node represents one object. A set of
objects is represented by the integers {1, 2, . . . , n}, and the a priori cluster of
interest is defined by the subset of integers A; d(i, j) denotes the ordinal proximity
between objects i and j, expressed as an integer in the range

. _nn—1)
1=di, j)= >

Given a set of n objects and ordinal dissimilarities, the edges in an (n, N)
random threshold graph are classified into sets of *‘inner,”” “‘outer,”” or *‘linking’’
edges as follows for cluster A.

Inner edges: D;,(A) = {d(i, j):ieA,jeA,i<j}
Outer edges: Dy, (A) = {d(i, ) :i ¢ A, j€ A, i <j}
Linking edges: Dy (A) = {d(i, j):i €A, j €A, i <j}

The compactness of cluster A at level N, e4(N), is the number of internal, or
inner, edges in an (n, N) random threshold graph.
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ea(N) = | {d(i, ) : d(i, j) = N} N Dip(A)} |

The isolation of cluster A at level N, by(N), is the number of edges linking A
with the rest of the graph.

ba(N) = |{d(i, j) : d(i, j) = N} N Dy(A)}
Letting k = |A|, the number of objects in cluster A, a perfect cluster at
level N is one for which
k(k— 1)
2

byN)=10 and es(N) =

A valid cluster should have e4(N) unusually large and b,(N) unusually small.
How large and small are “‘unusually’’ large and small? Here is where the baseline
distribution comes into play. Let B be a random variable denoting the number of
linking edges and E be a random variable denoting the number of internal edges
in an (n, N) random threshold graph. The hypergeometric distribution (Appendix
B) provides the distributions for these random variables under the random graph
hypothesis as long as A is chosen without regard to the proximity matrix. For
example, letting *‘defectives’” be linking edges in a random threshold graph
containing n nodes and N edges, the probability of observing exactly b edges
linking nodes in A to the rest of the graph in an (n, N) random threshold graph
is given below. The notation “‘n:2”" means ‘‘n things taken two at a time,”” or
n(n — 1)/2.

b N-b
n:2
(v)
where max {0, N — (n:2) + k(n — k)} = b = min {N, k(n — k)}.

In the language of Appendix B, this is the probability of observing b defectives
in a sample of size N when the population of n : 2 edges contains k(n — k) defectives.
The probability of exactly e internal edges is also obtained from the hypergeometric
distribution by labeling edges internal to cluster A as **defectives.”” The probability

of observing e defectives in a sample of size N when the population of n:2
edges contains k : 2 defectives is given next.

2N s 2—=ks2
C)Cwz")
n:2
(")
where max {0, N — (n:2) + (k:2)} = e = min {N, k:2}.
If b, is the observed number of edges linking objects in a priori cluster A

to the rest of the objects at dissimilarity level N, the isolation index for A is
defined as

kin—Fk\ /n:2—kin—k%)
P(B=b|H0)=( )( )

P(E =e|Hp) =
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ba
I(A)=PB=<by|Hy) = > PB=hb|Hy
b=0

Denoting the number of edges internal to a priori cluster A at level N as e4, the
compactness index for A is

k:2
C(A) = P(E=ey|Hy) = > P(E=e|H)
e=e
Both indices should be small for a “‘good’’ cluster at level N. A cluster
profile is a plot showing /(A) and C(A) as functions of N. A valid cluster has
both indices small for acceptably long spans of N values. Both indices will be 1
when all n(n — 1)/2 edges have been inserted. The definition of ‘‘acceptably
long™” must be established in each application. The responsibility lies with the
user of the indices.

Example 4.7

This example demonstrates the use of the compactness index as an external index of validity
for an a priori cluster. The ordinal dissimilarity matrix for 10 objects is given below and
the cluster

A=1{2,3,6,8}
is to be examined for compactness. We emphasize that this cluster was chosen without
regard to the dissimilarity matrix.

2 3 4 5 6 7 8 9 10
29 27 16 10 34 5 15 1 30

I
2 — B 33 28 4 32 22 37 10
3 — — 45 19 20 12 23 44 41
4§ — — — 9 385 17 1 2 4
5 o— o= — — 36 11 6 18 31
6 — — — = — 38 31 39 26
7 — — — — — — 25 42 3
§ — — — — — — — 43 24
0 = = = i = == e s 18

It is difficult to judge the compactness of a priori cluster A from the proximity
matrix itself. Drawing threshold graphs is not very informative. Figure 4.15 shows the
threshold graph containing the first 20 edges. We can observe that three edges are internal
to the cluster, five edges link the cluster to the remaining nodes, and 12 edges are external.
Is it unusual to have as many as three internal edges and five linking edges in a 20-edge
threshold graph on 10 objects under the random graph hypothesis? The answer to this
question determines whether a priori cluster A is valid.

Cluster profiles plot C(A) and I(A) against N, the number of edges in the threshold
graph, to assess the compactness and isolation of the a priori cluster A. For instance,
exactly two internal edges occur when N is between 14 and 19. Thus the numerical formula
for C(A) can be written as follows when N is between 14 and 19:
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4 9

Figure 4.15 Threshold graph on 10 objects with 20 edges.
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A compact cluster has small C(A) and an isolated cluster has small /(A) for a range
of N values. A valid cluster is both compact and isolated. The cluster profiles in Figure
4.16 plot C(A) and I(A) for all values of N.

The edges internal to cluster {2, 3, 6, 8} are inserted at ranks 8, 14, 20, 21, 22, and
23. The response of C(A) to the occurrences of these edges is clear in Figure 4.16. Figure
4.16 exhibits some evidence of compactness between rank 23 and 28 because C(A) is less
than 0.05 between these ranks. However, it exhibits much more evidence of isolation
than of compactness. For how wide a range of N must /(A) be less than 0.05 for one to
call A a truly isolated cluster? The answer depends on the experience and philosophy of
the experimenter. Remember that we require probabilities to have intrinsic meaning for
our measures of cluster validity to be meaningful. It appears that cluster A is more isolated
than compact. The evidence for compactness is weak, so we would not call A a valid
cluster.

4.5.2 Internal Indices

An external index validates an a priori cluster by contrasting the isolation
and compactness of the cluster to the compactness and isolation of a randomly
chosen cluster. This validation scheme is not fair when a cluster is chosen after
inspecting the data with a clustering algorithm. Almost any cluster identified by
a clustering algorithm is unusually isolated and compact when compared to a
randomly chosen cluster. How to define a reference population and baseline distribu-
tion that provide fair tests of cluster validity? We discuss two possibilities: the
CM-reachable method (CM for ‘‘clustering method’’) and the best-case method.
The CM-reachable method uses Monte Carlo analysis and the best-case method
employs bounds on probabilities.

Consider an (n, N) threshold graph selected under the random graph hypothesis
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Figure 4.16 Cluster profiles for a priori cluster {2, 3, 6, 8}.

and suppose that a population of k-node clusters is to be defined. Under the random
graph hypothesis, all n : k clusters in this population are equally likely. The CM-
reachable method limits the population of clusters to those clusters that can be
“‘reached,’” or achieved, by a particular clustering method when applied to proximity
matrices created under the random graph hypothesis. A sampling distribution can
then be worked out over the limited population by Monte Carlo means, taking
into account the number of objects, the level, N, at which the cluster is formed,
the size of the cluster, and the clustering method being employed. Baker and
Hubert (1976) develop a test of cluster validity in this way for complete-link
clusters. We emphasize that the number of parameters implies that a Monte Carlo
analysis be carried out for each particular case.
The procedure suggested above is specific to a particular clustering method,
a particular number of objects, a particular cluster size, and a particular proximity
level. Each cluster must be evaluated by the laborious Monte Carlo method. The
“‘best-case’” method provides a second way of validating a cluster that is independent
of the clustering method. The idea is to establish conservative bounds on the prob-
abilities required in computing compactness and isolation indices. First select an
(n, N) graph under the random graph hypothesis and reserve the k-node subsets for
which the isolation index is ‘‘best,”” or minimum, among all k-node subsets. All
the best k-node subsets are assigned equal probability mass and all other k-node
subsets are assigned probability mass zero. The population of all such k-node
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subsets that can be achieved from random graphs is denoted B*. Similarly, popu-
lation E” is the set of k-node subsets of 7 nodes having the best, or largest, com-
pactness index in N-edge graphs selected under the random graph hypothesis. We
use the number of linking edges to measure isolation and the number of internal
edges to measure compactness. The bases for comparison are the isolation and
compactness measures for subsets in B* and E*. A measure of isolation for
cluster A with isolation index by is the probability that A is at least as isolated as
the most isolated cluster in a random graph.

P(B = b, | B", Hy)

Similarly, the compactness of cluster A with compactness index e, is the probability
of obtaining a cluster in a random graph that is more isolated than A.

P(E = e, | E*, Hp)

Exact expressions for these probabilities are not available, but in lieu of
Monte Carlo analysis, the following bounds can be used to define indices of
cluster validity for k-node clusters.

P(B<b|B", Hy) < (:)P(B = b|Hy)

PE=e|E" Hy =< (:)P{E = ¢| Hy)
The proof of the first bound follows from two facts. Elementary probability

theory shows that

P(B = bﬂB]HU) P(B < b|H,)
P(B" | Hp) = P(B" | Hp)

P(B=bh|B", Hy =

Since every threshold graph has at least one most isolated subset and there are
(}) k-node subsets,

P(B" |Ho) = 1/(})

The second bound can be established in the same way. The probabilities on the
right sides of these bounds are exactly those derived with internal indices.

The best-case isolation index, /,(A), and the best-case compactness index,
C(A), for the k-node cluster A with isolation b, (number of linking edges) and
compactness ¢, (number of internal edges) are given below. Both are functions
of dissimilarity level, N

kn—kn /n:2—kin—k

l[(A)=(")§( b )( N—=b )

k)i, (n};{Z)
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k2N fns2—ki2
( e ) ( N'=e )
n:2
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Plots of I,(A) and C;(A) as functions of N, the number of edges in the
random graph, define cluster profiles for cluster A. If /,(A) and C,(A) are ‘‘small’’
for a reasonably large range of values of N, cluster A is called valid. Since we
are dealing with bounds, the fact that these indices are not small does not mean
the cluster is not valid. These indices are conservative, so good clusters might be
missed. Two other indices are defined below that permit one to judge whether a
cluster is compact among all clusters as isolated as the given cluster and whether

a cluster is unusually isolated among all clusters having the same degree of compact-
ness as the given cluster.

cw=(3) 2,

I(A) = P(B = by | E = e4, Hy)
Cx(A) = P(E=e,|B = by, Hp)

Exact formulas for these indices can be derived from the hypergeometric
distribution by naming either internal edges or linking edges as ‘“‘defectives.”’

oy () (e )

LAY= 3+ =02
( N — by )

k:2\ ((n—k):2
con= § L)
s

A probability profile plots the four indices as functions of N. If criteria
1,(A) and C,(A) are both below a suitable level, say 0.05, for an appropriate
span of ranks, cluster A is called valid. A small C,(A) for a range of N indicates
that A is unusually compact among clusters as isolated as A for that range of N,
while I,(A) measures the isolation of A relative to clusters as compact as A. The
relative indices are weaker than the best-case indices. Judging a cluster “*valid"’
from a probability profile does not always imply that all objects in the cluster
have the same degree of isolation from other nodes in the graph or the same
degree of adhesion to other nodes in the cluster. For example, a cluster formed
as the union of two very compact clusters might itself be judged unusually compact
because of the individual clusters, not because of any homogeneity among all
nodes in the cluster. Note that these indices validate isolated clusters and do not
treat the case of mutual isolation or compactness among a set of clusters. Bailey
and Dubes (1982) provide several examples.
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Example 4.8

Single-link and complete-link proximity dendrograms for the 10 by 10 ordinal dissimilarity
matrix in Example 4.7 are drawn in Figure 4.17. These dendrograms should suggest candidates
for **valid”” clusters. Only internal criteria of validity can be used with clusters derived
from dendrograms. A “‘good’” cluster is both compact and isolated, which means that it
forms early in the dendrogram and is not absorbed into another cluster until late in the
dendrogram. Complete-link cluster {2, 3, 6} in Figure 4.17(b) appears to be a good candidate
for a valid cluster and will be examined in this example.

The probability profiles for complete-link cluster A = {2, 3, 6} are shown in Figure
4.18. We emphasize that these profiles treat the numbers of internal and linking edges as
external indices. The upper bound C,(A) is identically 1, which shows that this cluster is
not unusually compact. On a relative basis, C,(4) shows that A is also not unusually
compact for a cluster as isolated as A because C,(A) never falls below our agreed threshold
of 0.05. Cluster A is somewhat isolated because /,(A) is below 0.05 for ranks 14 through
22 and is unusually isolated for a cluster this compact because I,(A) is below 0.05 for
ranks 5 through 35. We conclude that A shows evidence of isolation but not of compactness
and is not a valid cluster.

6 4 1 9 7 105 8 2 3

5
10
(a)
6 2 3 19 710 4 5 8
T
10 }
20 b
30}
F Figure 4.17 Proximity dendrograms for
40 } dissimilarity matrix of Example 4.7: (a) sin-
gle-link proximity dendrogram; (b) complete-
A P link proximity dendrogram.

(b)
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Figure 4.18 Probability profiles for complete link cluster {2, 3, 6}.

This type of analysis for complete-link cluster {I, 9} in Figure 4.17(b) shows that
cluster {1, 9} is neither compact nor isolated; both C,({1, 9}) and 7,({1, 9}) are identically
1 for all ranks. The same is true for single-link cluster {1, 4, 9}.

Ling (1972, 1973a) has proposed an index of cluster validity for qualitative
data as the probability that the lifetime of a cluster exceeds the observed lifetime
under the random graph hypothesis. The lifetime, L(A), of cluster A is

LA)=c, — ¢

where ¢, is the rank at which A is absorbed into another cluster and c; is the
rank at which A is first defined. Valid clusters should ‘‘live’’ longer than randomly
chosen clusters. Ling provides the following expression for the probability that a
randomly chosen single-link cluster of size k has lifetime s, under the random
graph hypothesis; L is a random variable representing lifetime and n is the number
of objects being clustered.
2—c;—k(in—k
K~k (n oo " ))
PIL = 5| Hol = ~'r(l'::2--€‘|)
s

This expression can be derived by realizing that a cluster has lifetime s
only if the s edges inserted into the random graph after level ¢, are either internal
to or external to the cluster. The cluster is absorbed with the next linking edge.
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The Ling index for cluster A containing k objects is defined to be the probability
that a lifetime of a randomly selected cluster exceeds L(A), the observed lifetime
of A.

Ling index = P[L > L(A) | Hy]

Example 4.9

The Ling indices for all single-link clusters can be computed to search for a small index,
which indicates an unusually isolated cluster. Of course, the lifetime random variables for
all single-link clusters are not independent, so one must proceed with caution. Bailey and
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Figure 4.19 Dendrograms for random proximity matrix. (Source: Reproduced with
permission from Bailey and Dubes.)
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TABLE 4.9 Ling Indices for Single-Link Clusters

Cluster Birth Rank Lifetime Size Ling Index

1 1 6 2 0.196
2 2 3 2 0.441
3 3 | 2 0.761
4 -+ 1 3 0.664
5 5 1 5 0.522
6 6 B 6 0.054
7 7 2 3 0.428
8 8 1 2 0.750
9 9 6 5 0.023
10 10 1 7 0.427
11 11 1 8 0.413
12 12 3 9 0.076
13 15 7 14 0.111
14 22 7 15 0.303
15 29 — 16 —

(Source: Repreduced with permission from Bailey and Dubes.)

20

] C:,IO{ l . ] l K’f

o0

Figure 4.20 Profiles for best single-link cluster. (Source: Reproduced with permission
from Bailey and Dubes.)
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TABLE 4.10 Matula Indices for Complete-Link Clusters

Cluster Birth Rank Lifetime Size Matula Index

1 1 16 2 0.502
2 2 50 2 0.670
3 3 16 2 0.755
4 8 35 2 0.896
5 13 69 2 0.936
6 17 95 3 0.488
7 19 74 3 0.550
8 39 54 2 0.983
9 52 59 3 0.900
10 63 19 3 0.931
11 82 29 5 0.639
12 93 19 5 0.768
13 111 9 8 0.575
14 112 8 8 0.615
15 120 — 16 —

(Source: Reproduced. with permission from Bailey and Dubes.)

Dubes (1982) demonstrated this process with an ordinal dissimilarity matrix of size 16,
generated under the random graph hypothesis. Figure 4.19(a) shows the single-link dendro-
gram and Table 4.9 provides the Ling indices for all single-link clusters.

Cluster 9 is the most unusual single-link cluster according to the Ling index. One
might conclude that none of the clusters are valid because the minimum Ling index is as
large as 0.023. The validity of cluster 9 can also be assessed with the probability profiles
in Figure 4.20. The conservative indices C, and /, are always zero, correctly indicating
that the cluster is not valid. The relative criteria C, and /, suggest that cluster 9 is somewhat
unusual. This example demonstrates that it is easy to erroneously judge the validity of a
cluster.

Example 4.10

Matula (1977) proposed a lower bound on the asymptotic distribution for the size of the
largest complete subgraph in a random threshold graph that can be used to assess the
compactness of a complete-link cluster. A small value indicates an unusual cluster. Table
4.10 identifies all complete-link clusters in the 16-object random data set reported above.
The complete-link dendrogram is shown in Figure 4.19(b). None of the clusters have unusually
small values. Cluster 6 has the smallest value and the probability profiles for cluster 6 are
shown in Figure 4.21. The two conservative indices do not deviate from 0, while the
relative index C, suggests that cluster 6 is somewhat compact.

4.5.3 Relative Indices

The problem of deciding the relative merits of two clusters has not received
much attention and is not as important as the validation of individual clusters.
Comparing the probability profiles of the two clusters is one approach. For example,
if the data were perturbed in some way to test the stability of the cluster, the
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0.0if- ,/'

Figure 4.21 Profiles for complete-link cluster 6. (Source: Reproduced with permission
from Bailey and Dubes.)

probability profiles before and after the perturbation can be compared to assess
stability.

4.6 CLUSTERING TENDENCY

The term ‘‘clustering tendency’” refers to the problem of deciding whether data
exhibit a predisposition to cluster into natural groups without identifying the groups
themselves. Clustering algorithms will create clusters whether the data are naturally
clustered or purely random. We have seen that the problem of validating clusters
after the fact is very difficult. Therefore, a _Egﬁmawmmﬂuwmg
tendency should be an important part of clustering methodology (Section 3.5). It
would establish whether clusters exist and would prevent the inappropriate applica-
tion of clustering algorithms. A test for clustering tendency would also guard
against the embarrassment of applying elaborate clustering techniques and cluster
validity methodology to data in which the clusters can only be artifacts of the
clustering algorithm.

The problem of testing for clustering tendency can also be phrased as the
problem of testing for spatial randomness. The procedures discussed in this section
have been used to test for ‘‘complete spatial randomness’ in geology, biology,
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forestry, and geography (Diggle, 1983; Ripley, 1981). Almost all these applications
are to problems in two dimensions. Our treatment of the clustering tendency problem
characterizes data as samples of spatial point processes. A related problem is to
model data by fitting a spatial point process to a sample of patterns. For example,
Shapiro et al. (1985) fit a spatial point process to data taken from the blue cones
of the retina. Ogata and Tanemura (1984) fit a process to data from molecular
dynamics. Diggle (1983) fits models to data describing stands of trees and locations
of towns. It may eventually be possible to use such an analysis as an alternative
to cluster analysis. For example, one might fit a spatial point process to data by
estimating parameters and interpreting the parameters of the model instead of
interpreting the results of cluster analysis. Not enough is known about choosing
a class of models, about estimating parameters, and about testing for goodness
of fit to call such an approach practical at present. Almost all available theory
treats models in two dimensions and depends on the ability to see the data when
fitting a model. Knowledge of the sampling window is also necessary.

A test for clustering tendency is stated in terms of an internal criterion. No
category or other a priori information is brought into the analysis. The definition
of randomness and the type of clustering tendency test depend on the form of the
available data. The first four sections treat the situation when the patterns are
points in a d-dimensional space and ‘‘randomness’’ means ‘‘spatial randomness,’’
or the random position hypothesis (Section 4.1.1). Section 4.6.5 discusses random-
ness when the data occur as an ordinal proximity matrix.

4.6.1 Spatial Point Processes and Spatial Randomness

Consider a pattern matrix with n rows (patterns) and d columns (features)
in which proximity is measured by distance. A test for clustering tendency (Panayirci
and Dubes, 1983; Smith and Jain, 1984; Dubes and Zeng, 1987) examines the
spatial arrangement of the patterns and draws one of the following conclusions.

* The patterns are arranged randomly.
* The patterns are aggregated, or clustered, or exhibit mutual attraction.
* The patterns are regularly spaced, or exhibit mutual repulsion.

Our point of view is that random and regularly spaced patterns should not
be submitted to clustering algorithms; only data exhibiting the tendency to aggregate
should be examined with clustering algorithms. Figure 4.22 illustrates these three
types of data in a unit square. This section examines the definition of spatial
randomness and the role of the sampling window.

A test for clustering tendency will mean a statistical test of the random
position hypothesis, H; (Section 4.1.1). This hypothesis is equivalent to what
Diggle (1983) calls complete spatial randomness. Thus we are testing a hypothesis
of no structure, or that data come from a continuous uniform distribution over
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some set § in a d-dimensional space, called the sampling window. Smith and
Jain (1984) define the sampling window mathematically as the compact convex
support set for the underlying distribution. In applications, some convenient geomet-
ric definition is used, such as a d-dimensional cube or a d-dimensional sphere.
As we will see later, the sampling window plays a crucial role in establishing a
test of randomness.

The random position hypothesis can also be stated in terms of a d-dimensional
spatial Poisson process (Ripley, 1981; Diggle, 1983) restricted to sampling window
S. A spatial point process is an arrangement of patterns or points scattered about
a Euclidean space according to some probability model. The intensity, \, of a
process is the expected number of points per unit volume. We deal with processes
that are stationary, so the characteristics of the process do not vary with position
in the sampling window, and isotropic, so the process has no directionality.

A Poisson process is a particular type of spatial point process that scatters
patterns about in such a way that a random variable X denoting the number of
patterns in a region having volume V has a Poisson distribution with parameter
AV.

Me—w

PX = k|Hy) ==

ifk=0,1,2,. ..

In addition, the position of any one pattern is entirely independent of the positions
of other patterns but the patterns do not fall on top of one another. Diggle (1983)
and Cox and Isham (1980) provide details. Poisson processes are good models of
randomness, but the number of patterns in sampling window § is a random variable.
Binomial sampling means selecting a fixed number of points in a given region
uniformly; in other words, the process is Poisson, conditioned on the number of
points.

As discussed in Section 4.1.1, a test statistic T and a threshold ¢ are required
to test for randomness. A typical one-sided test of H, against an alternative of
aggregation has the form

Accept Hyit T = ¢

where threshold 7 is selected to achieve a specified probability, a, of rejecting H,,
when it is true. The two main difficulties in testing for clustering tendency are
the definition of sampling window and the dimensionality of the feature space. A
brief survey of approaches to the clustering tendency problem is provided in Section
4.6.3.

The concept of sampling window is fundamental to the notion of randomness.
Consider two-dimensional data generated uniformly inside a unit-diameter circle.
If the sampling window is taken to be this unit-diameter circle, we expect good
tests of randomness to view these data as random. What happens if the sampling
window is enlarged to a unit-radius circle? The data are no longer uniformly
distributed over this larger circle. Thus the same data can appear as random or
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Chap. 4

Figure 4.22 Random, clustered and regular data: (a) Poisson process (200 patterns);
(b) hardcore process (200 patterns, radius = 0.02); (c) cluster process (200 patterns,

= 4.0, o = 0.025); (d) cluster process (200 patterns, p = 16, o = 0.025).
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Figure4.23 Random data in inappropriate sampling windows: (a) data uniform over small subsquare
(100 patterns); (b) data uniform over two disjoint circles (50 patterns per cluster).
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nonrandom, depending on the sampling window assumed. Figure 4.23 shows ran-
dom data in sampling windows that make the data appear nonrandom.

A second difficulty in assuming an arbitrary sampling window without regard
to the data is that the statistical characteristics of the data are different near the
edges of the sampling window than in the center of the sampling window. For
example, the distribution of the distance between a pattern and its closest pattern
depends on how close the pattern is to the boundary of the sampling window.
This problem is of special concern in geography, where several techniques for
edge correction have been proposed (Griffith, 1983, 1985).

Knowledge about the shape and size of the sampling window is required in
virtually all tests of clustering tendency which have been proposed in the literature.
One way of avoiding the problem is to begin with a d-dimensional rectangle as a
sampling window and repeat it throughout the entire space, like a patchwork
quilt. This technique is called “‘periodic boundaries’’ and is equivalent to viewing
the sampling window as a torus. One must know something about the data to
select the basic rectangle.

The sampling window must be estimated from the data in many practical
situations, as explained by Smith (1982). If the sampling window is restricted to
be a hyper-rectangle aligned with the coordinate axes, then a minimum variance,
unbiased estimator of the sampling window exists under H,. When the sampling
window is an arbitrary convex set in two dimensions, the convex hull of the
uniform data is the maximum likelihood estimate of the window (Ripley and
Rasson, 1977). This introduces two difficulties. First, the complexity of algorithms
for finding convex hulls precludes their use in more than five dimensions. Second,
the distribution of the test statistics derived when the sampling window is known
must be modified because the convex hull depends on the data. Zeng and Dubes
(1984, 1985a,b), and Dubes and Zeng (1987) examine several tactics for dealing
with insufficient knowledge of the sampling window when statistics based on
interpattern distances were used to assess clustering tendency. The one showing
most promise defines the sampling window as the d-dimensional sphere centered
at the mean of the data that encloses half the patterns. This is a type of “‘sampling
frame’’ technique and is discussed in section 4.6.4.

4.6.2 Spatial Clustering and Regularity

The form of a test for clustering tendency depends on the alternative hypothesis
under consideration. An alternative hypothesis of clustering, or aggregation, is
needed when comparing the powers of statistics for testing clustering tendency
and for determining whether new statistics work better than existing ones. The
Neyman-Scott (1972) process has been used for these purposes. This process is
most easily defined by its generation mechanism. The parameters are the mean
cluster size, w, and the spread, o. The sampling window and the number of
patterns desired, n, are assumed to be given.
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ALGORITHM FOR NEYMAN-SCOTT PROCESS

Step 1. Select a cluster center at random (uniformly) over §.

Step 2. Select N, the number of patterns in the current cluster, as a sample
of a Poisson random variable with mean .

Step 3. Assign the d coordinates of each of the N, patterns relative to the
cluster center by selecting d samples from an N(O, o?) distribution. If a
pattern falls outside S, ignore it and select another point.

Repeat steps | to 3 until n patterns have been generated.

The Neyman—Scott process generates a random number of Gaussian clusters
of random size at random positions. The clusters may overlap because all cluster
centers are selected randomly but all clusters have the same spread. Appendix H
describes a mechanism for generating clustered data that is based on the Neyman—
Scott process but which controls the overlap among clusters.

When periodic boundaries are assumed, clusters can overlap the boundaries
of S. Some algorithms include the cluster centers as patterns. The covariance
structure here is as simple as possible to minimize the number of parameters.
This implementation generates exactly the number of patterns requested. Some
implementations obtain the number of patterns from a sample of a Poisson random
variable with parameter AV, where V is the volume of the sampling window.
Our algorithm assumes that n = AV. Each cluster is then filled in as indicated in
steps 2 and 3. Ripley (1977, 1981) suggests other models for clustering in two
dimensions. Figure 4.24 shows a few examples of Neyman—Scott process realiza-
tions in a unit hypercube in two dimensions, using a torus topology.

Alternative hypotheses of regularity are not as important as those of clustering
in the current context. Lattice regularity, in which a pattern is placed at each
vertex of a lattice defined over S, is the simplest model. The SSI (simple sequential
inhibition) process is a more reasonable model of regularity for our purposes.
Imagine each pattern to be surrounded by a small sphere and suppose that the
patterns are packed into the sampling window randomly but in such a way that
the spheres do not intersect. These spheres surrounding the patterns are called
“‘hard’” spheres. Some models of regularity allow *‘soft’’ spheres, or limited inter-
section among the spheres. The packing density, p, is the ratio of the space used
up by the hard spheres to the volume, V, of the sampling window.

_ LA[(r12)Y
Ty

The total volume consumed by the hard spheres is determined from L, the expected
number of patterns per unit volume, and r, the radius of the hard sphere surrounding
each pattern; A is the volume of a unit-radius sphere in d dimensions.

,n.dﬂ
A= T[(d/2) + 1]
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Figure 4.24 Realizations of Neyman-Scott cluster processes with periodic boundaries:
(a) cluster process (200 patterns, p = 20, o = 0.75); (b) cluster process (200 patterns,

p = 20, o = 0.025).
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The most direct way of generating a sample from this process is to place
patterns into the sampling window one at a time at random locations, each surrounded
by a hard sphere of radius r, ensuring that no two hard spheres overlap. Patterns
falling near enough the edge of the sampling window to cause the hard sphere to
overlap the edge can either be discarded or kept, but the equation for packing
density above will not be valid if hard spheres are allowed to extend outside the
sampling window. With periodic boundaries, part of the hard sphere for a pattern
at one edge of the sampling window can appear at the opposite side of the sampling
window. The process terminates when the required number of patterns have been
inserted or when § is “*full,”’ as indicated by the failure to find a place for a
pattern after a few thousand trials. Ripley (1977) discusses other ways of generating
SSI processes on a computer. The maximum packing density in two dimensions
has been shown to be about 0.9069 and is achieved by arranging circles in a
triangular lattice. The maximum packing density is not known for more than two
dimensions (Sloane, 1984). Kamel et al. (1979) derive near-neighbor distributions
for some hard-core models. Figure 4.25 provides an example of an SSI process
realization in a square under a torus topology.

The alternative hypotheses of clustering and regularity discussed here were
selected with Monte Carlo simulation in mind. Models for use in theoretical analysis
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Figure 4.25 Realization of a simple sequential inhibition process with periodic bound-
aries.
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would require that the likelihood function of the process be known. Cox and
Isham (1980), Ogata and Tanemura (1981, 1984), Diggle (1983), and others have
proposed models such as the Gibbs process as alternatives. The likelihood function
for the Gibbs process has the form

¢~ Zld( )]

ﬂx]" L .,K”): 7

where ¢ is a “‘potential’’ function, d(i, j) is the distance between x; and X;, the
sum is over all pairs of patterns, and Z is the “‘partition’’ function, or the integral
of the numerator with respect to each of the n pattern positions over the sampling
window.

Potential functions can be specified to provide models of aggregation and
models of regularity. For example, Ogata and Tanemura (1984) define potential
functions that create hard-core and soft-core regularity models. Two factors make
the Gibbs model very difficult to use in clustering tendency. First, the partition
function is notoriously difficult to determine analytically, even in very simple
situations. A number of approximations have been proposed over the years, espe-
cially in the literature of statistical mechanics. Second, sampling a Gibbs process
on a computer is not trivial and requires an iterative algorithm, such as the Metropolis
(Metropolis et al., 1953) algorithm. The difficulty with this approach is that one
never knows when to stop the iteration. The inability to reliably generate a sample
from a Gibbs process on a computer along with the intractability of the partition
function are the two main drawbacks to using the Gibbs process as a model in
an alternative hypothesis.

4.6.3 Tests for Spatial Randomness

Most of the tests for randomness reported in the literature have been derived
for applications in astronomy (Osmer, 1982), ecology (Hopkins, 1954), forestry
(Hines and Hines, 1979), and geography (Ripley, 1981), where the data are two-
dimensional and the sampling window is known. Some of these tests can be
extended to the d-dimensional data encountered in clustering tendency and are
surveyed in this section.

Tests for randomness can be characterized according to the type of information
used to make a decision. The five categories of tests reviewed briefly below are
based on scan statistics, quadrat analysis, second moment estimates, interpoint
distances, and graph structures. Section 4.6.4 treats tests based on near-neighber
information in somewhat more detail. We assume that the sampling window is
known. All of these tests are subject to the difficulties with sampling windows
described above.

Scan tests. Scan tests are based on the number of patterns in the most
populous subregion of the sampling window. An unusually large count would
indicate the presence of clustering. The theory for these tests can be developed
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only in one dimension (Naus, 1966a, 1982). One two-dimensional test has been
proposed (Conover et al., 1979). The span of the subregion must be fixed a
priori and is a critical parameter. Extensions to d-dimensions would require searching
an entire d-dimensional sampling window for the region with the most patterns,
which imposes a severe computational burden.

Quadrat analysis. Quadrat analysis partitions a rectangular sampling win-
dow into rectangles of equal size, called quadrats, and counts the number of
points falling in each quadrat (Grieg-Smith, 1964; Pielou, 1969; Mead, 1974;
Rogers, 1974). This set of counts will follow a Poisson distribution under random-
ness. A chi-square test is typically performed to test a hypothesis of randomness.
Quadrats of different sizes can be used to detect the spatial arrangement in the
data at more than one scale (Mead, 1974). The number of quadrats becomes
enormous even in a moderate number of dimensions, and most of them are empty,
so this method cannot easily be extended to more than two dimensions.

Second moment structure. Second moment structure refers to the covari-
ance function of the spatial point process. A test based on this structure estimates
the second moment of a spatial point process from the given data. Ripley (1977)
shows that the second moment structure of a process may be reduced to a function
K(1), which has come to be known as *‘Ripley’s K(7) function,’” having the following
properties: A is the intensity of the process.

1. The quantity N?K(7) is the expected number of ordered pairs of distinct points
less than distance ¢ apart when the first point is in a given set of unit area.

2. The quantity AK(r) is the expected number of additional points within a
distance ¢ of an arbitrary point in the process.

For example, the K(7) function for a Poisson process over the entire d-dimen-
sional feature space is

K(n) = Ar¢

where A is the volume of a sphere having unit radius, given in Section 4.6.2.
Diggle (1983) demonstrated how a plot of K(1) versus 1, where K (1) is the estimated
K(t) function, can be compared to the theoretical K(r) function for a Poisson
process to test the random position hypothesis, H, in two dimensions. The general
idea is to estimate upper and lower envelopes by Monte Carlo simulation under
H, to establish a confidence band around the theoretical K(7) function, as demon-
strated in Figure 4.26 for a Neyman—Scott process. If K(1) lies within this band
for a span of r values, H, is accepted. This test has been applied only in two
dimensions. The estimation of K(¢), and of other such summary functions, poses
a number of theoretical and practical problems. Other tests (Liebetrau, 1977) have
been proposed in the same spirit for two-dimensional data in rectangular sampling
windows.
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4—=4 Neyman-Scott with Rho=10, Mu=5, Sigma=0.2
B---HMin Fstimate among 100 Poisson trials
% -% Max Estimate among 100 Poisson trials
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Figure 4.26 Example of K(r) function for Neyman-Scott process.

Interpoint distances. Interpoint distances reflect structural relationship
among the patterns. One obvious test for randomness compares the observed distribu-
tion of interpattern distances to the theoretical distribution under the random position
hypothesis, H. The distribution of two points randomly chosen from a d-dimensional
hypersphere has been established by Hammersley (1950) and Alagar (1976), among
others. If an i.i.d. (independent and identically distributed) sample of interpattern
distances were available, a standard Kolmogorov—Smirnov statistic or a chi-square
statistic could lead to a test of H,. The set of all n(n — 1)/2 interpattern distances
is not an i.i.d. sample and the distribution of the sum of these distances is not
known under H,, so some scheme for sampling the distances must be adopted.
Ignoring the dependence leads to spurious rejections of the random position hy-
pothesis.

Cross (1980) studied tests for randomness based on a random sample of 50
interpattern distances from among the 4950 distances between 100 patterns and
assumed independence. A two-tailed K-S test was applied under various experimen-
tal conditions. These tests were found to be very sensitive to scaling. For example,
data randomly generated in hypercubes of dimension 2, 5, and 10 rather than in
hyperspheres were consistently labeled nonrandom. When random data in a hyper-
sphere were normalized to have zero mean and unit covariance matrix, the random
position hypothesis was again rejected repeatedly; the data appeared to be Gaussian,
not random. Cross (1980) concluded that the exact sampling window must be
known when using this scheme for subsampling distances to avoid spurious rejec-
tions of H,,.
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Another way of using interpoint distances is to observe only the “‘small”’
interpoint distances. Intuitively, a clustered process has an abundance of small
distances, a regular process has few small distances, and a random process is
somewhere between these extremes. Some reasonable tests based on this idea
have been proposed in two dimensions (Ripley and Silverman, 1978; Silverman
and Brown, 1978). One problem is to define a suitable threshold for “*small.”
Saunders and Funk (1977) extended a characterization of clustering (Strauss, 1975;
Kelly and Ripley, 1976) and derived the distribution of the number of small interpoint
distances under certain restrictions. These tests have not been extended to d dimen-
sions.

Structural graphs. Structural graphs, especially the minimum spanning
tree (MST), Delaunay tessellation and the relative neighborhood graph (see Appen-
dix G and Section 3.3.6) capture more ‘‘global’’ structure than the methods based
on small interpoint distances and nearest-neighbor distances discussed in Section
4.6.4. Defining a test statistic based on the distribution of edge lengths in these
graphs is a difficult problem. Hoffman and Jain (1983) found that the distribution
of edge lengths in the MST under the random position hypothesis, Ho, depends
on the number of patterns, number of dimensions, and the sampling window.

Smith and Jain (1984) proposed an MST-based test of Hy which avoids
direct computation of an edge-length distribution. The idea of this test comes
from multivariate extension of the Wald—Wolfowitz run test as proposed by Friedman
and Rafsky (1979), which tests whether two sets of high-dimensional patterns
arise from the same population. Smith and Jain (1984) modified this test for checking
randomness as follows.

ALGORITHM FOR MST-BASED TEST OF CLUSTERING TENDENCY

Step 1. Determine the convex region containing the n patterns {x;} being
tested for clustering tendency.

Step 2. Generate m points {y;} uniformly over a region that approximates
the convex region found in step 1.

Step 3. Pool {x;} and {y;} and find the MST of the m + n points.
Step 4. Determine T, the number of x-y joins in the MST.

Step 5. Reject Hy, in favor of a clustered alternative if 7 is “*small.” Reject
H, in favor of a regular alternative if T is *‘large.”

An *‘x-y join”" links a pattern in {x;} to a generated point in {y;} by an edge
in the MST of the pooled sample {x;, y;}. We usually set m to n, so the same
number of points as patterns are used to compute 7. Clustered data should show
a higher number of x-x and y-y joins, and thus a lower number of x-y joins, than
random data. The number of x-y joins under regularity should be larger than
under randomness. Friedman and Rafsky provide the following expressions for
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the expected value of T, the number of x-y joins, under H, and for the variance
of T, conditioned on C, the number of pairs of MST edges incident to the same
node.

2mn
m-+n

E(T |Ho) =

var (T|C,Hy) = 2mn [2mn—L+ C—-L+2
E(L—1) L (L —2){I.—3)
where L = m + n, the total number of nodes in the MST. The test statistic is

the following normalized version of T that has an approximate normal distribution
under Hy:

[LL — 1) — 4mn + 21]

, _ T—ET|Hy

- Gvar(T|C. Hy)

To test H, against clustering, reject Hy when
T < Z(a)

where Z(w) is the ath quantile of the standard normal distribution. For example,
Z(0.05) = —1.65 and Z(0.01) = —2.33. Smith and Jain (1984) obtained the size
and power of this MST-based test by Monte Carlo simulation. The test gave
significantly higher power against clustered alternatives than the Hopkins and Cox—
Lewis tests presented in Section 4.6.4. Unfortunately, tests based on the MST
have little power against regular alternatives.

Example 4.11

This example demonstrates the Friedman-Rafsky test on a data set called the *‘iris data’’
that is famous in the lore of cluster analysis. The data were popularized by Fisher (1936)
and consist of 150 patterns, each representing a flower, with four measurements taken on
each flower (petal length and width and sepal length and width). The 150 patterns contain
50 samples from each of three varieties (setosa, versicolor, and virginica). The MST-based
test was applied to the two-dimensional eigenvector projection of the four-dimensional
data both to ease the problem of finding the convex hull of the data and to enable the
actual MST to be drawn.

Figure 4.27(a) shows the eigenvector projection of the 150 patterns. The data are
clearly clustered. Figure 4.27(b) shows the pooled sample of 150 patterns and 150 points
generated randomly inside the convex hull of the 150 patterns. The MST of the pooled
sample is shown in Figure 4.27(c). The statistic T* is —6.13, so the critical level of the
test described above is less than 0.00001 and we reject the random position hypothesis.

4.6.4 Tests Based on Nearest-Neighbor Distances

Applications of tests for randomness in forestry and ecology require extensive
fieldwork. The ‘‘patterns’” are locations of trees or plants or eagle nests or towns.
Mapping out the exact locations of all objects on a coordinate system is difficult
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Figure 4.27 Example of MST-based statistic; (a) eigenvector projection of Iris data;
(b) pooled sample containing patterns and points generated inside the convex hull of
the patterns; (c) minimum spanning tree of the pooled sample.
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Figure 4.27 (continued)

in such cases, but measuring the distance from each object to the closest object
is relatively easy. Thus a number of tests for randomness have been based on
nearest-neighbor distances and are called distance methods. Most of these tests
use sampling origins, or points introduced artificially into the sampling window
such as the points {y;} in the MST-based test described above. These tests have
been extended to d dimensions (Cross, 1980; Panayirci and Dubes, 1983) and
are described in this section. Generally speaking, these methods provide quick
and easy tests of H, but may not be the most powerful tests,

Pattern-to-pattern nearest-neighbor distances. Consider first tests of the
random position hypothesis, Hq, based only on the distances from patterns to
their nearest neighbors. Can H,, be tested by comparing the NN (nearest neighbor)
distribution for the given data to that under H,? No analytical form for the NN
distribution under H,, exists because of the dependence among NN distances. Clark
and Evans (1954) ignored the dependence and used an incorrect distribution for
the sum of the NN distances under H,,.
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Another possibility is to compare the histogram of NN distances for the
patterns being examined to the NN distribution for a Poisson process, which is
known from theory. Let Uy be the distance from any point in the feature space to
the kth closest pattern. The random variable A\VU¢ can be shown to have a gamma
distribution with parameter k. A Kolmogorov—Smirnov test can be used to compare
the theoretical and observed distributions for some k. Cross (1980) noted that
such a test would have little power. For example, consider a cluster process in
which the points in each cluster are randomly distributed in a disk. The distribution
of NN distances in the cluster process would match that in a Poisson process;
only the intensity would be different. Other processes can be devised whose NN
distributions match that for a Poisson process but which are not random. The
sampling window cannot be assumed to be infinite in practical problems, so the
gamma distribution is only an approximation that holds for points close to the
center of the sampling window. We conclude that tests based entirely on NN
distributions are impractical without Monte Carlo analysis.

Sparse sampling. The difficulties cited above have led to the use of sampling
origins and sparse sampling. The objective here is to establish a test of the random
position hypothesis, Hy, that is simple and intuitive, whose size (and threshold)
can be derived from theory, which has good power against clustered alternatives,
and which does not respond to variations in factors like sampling window estimates.
Such a test does not require a Monte Carlo analysis to establish the threshold for
the test. Tests based on the Hopkins (1954) and Cox-Lewis (1976) statistics are
presented below which have some, but not all, of these properties. This approach
has been summarized by Diggle (1983) in two dimensions and extended to d
dimensions by Cross (1980), Cross and Jain (1982), and Panayirci and Dubes
(1983).

Let {y;} be m sampling origins placed at random in the d-dimensional sampling
window and let {x;} be the n patterns, m << n. Let U; be the minimum distance
from y; to points in {x;}, j = 1, 2, . . . , m. Suppose that m of the patterns {x;}
are randomly chosen for marking and let {W;} be the distances from the marked
patterns to their nearest patterns as shown in Figure 4.28. The Hopkins statistic
in d dimensions is

g 2Uf
SUT+3IwW!

All sums are from 1 to m. This statistic compares the nearest-neighbor distribu-
tion of randomly selected locations to that for the randomly selected patterns. On
the average, distances from patterns to nearest patterns are smaller than distances
from sampling origins to nearest patterns when the patterns are clustered because
the sampling origins are selected uniformly. Thus values of H close to 1 suggest
aggregation. Similarly, values close to zero suggest repulsion, or regular spacing.
Values of 1/2 are expected under H, because near-neighbor distributions are the
same from patterns and from sampling origins when the patterns are generated
by a Poisson process.
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When the patterns are generated by a Poisson process with intensity X over
the entire d-dimensional feature space, which is another statement of the random
position hypothesis, and the near-neighbor distances are statistically independent,
H has a beta distribution with parameters (m, m), independent of A and d. The
beta distribution follows from the fact that each near-neighbor distance has an
exponential distribution and the sum of independent exponential distributions has
a gamma distribution. Thus each of the two sums in H has a gamma distribution,
if all near-neighbor distances are independent. Probability theory shows that when
independ 1t gamma distributions are arranged as in H, the ratio has a beta distribu-
tion. The density function for this distribution is given below.

zm—l(l _Z)m—-] )
where
1
Bon, = [ w11 =t~ = HTD
v I(m + k)

The fact that near-neighbor distributions are not the same at the edges of
the sampling window as they are in the center distorts the distribution of H. The
number of sampling origins, m, must be kept much smaller than the number of
patterns, n, so as not to void the assumption of independence among near-neighbor
distances. Zeng and Dubes (1985b) have extended H by measuring distance to
the kth, rather than the first, nearest neighbor, but the results were not dramatically
better than for first nearest-neighbor distances.

The Cox-Lewis (1976) statistic measures second-order information and is
more powerful in detecting regularity than the Hopkins test under some circum-
stances. It is also more tedious to compute and less intuitive than the Hopkins
statistic. The Cox-Lewis statistic is based on the ratio, R;, of two distances. The
first is U,, the distance from the ith sampling origin to its nearest pattern, say X;.
The second distance is from x| to its nearest pattern. Panayirci and Dubes (1983)
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Figure 4.28 Distances used in Hopkins Statistic.
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extended this to d dimensions. The ratio is normalized to have a uniform distribution
over the unit interval under H,. We test H by testing whether a set of independent
random variables {R;} are sampled from a uniform distribution. The average

1 m
. m 2‘ P
has an approximate normal distribution with mean value 0.5 and variance 12m
under randomness. Large positive values of R, measured on the scale of a standard-
ized normal distribution, suggest regularity and large negative values suggest aggre-
gation, or clustering. Values around zero correspond to randomness.

In fieldwork, as when the patterns are positions of trees or plants, the Cox-
Lewis statistic is easier to measure than the Hopkins statistic and was proposed
to simplify the gathering of data. In clustering tendency, the pattern matrix is
stored in a computer, so all near-neighbor distances are readily available. We
expect the Hopkins statistic to outperform the Cox-Lewis statistic. Our studies
have confirmed this in almost all cases, with the exception of some cases of
regular data.

Knowledge of the sampling window is very important in the successful applica-
tion of distance methods. Patterns near the edges of the sampling window have
different near-neighbor distributions than patterns in the center of the sampling
window. Griffith (1983, 1985) reviews some remedies for these edge effects in a
two-dimensional geographic context. One is to define a sampling frame, which is
a region congruent to but inside the sampling window. The region between the
sampling frame and the sampling window is called a buffer zone. Sampling origins
are positioned inside the sampling frame, but NN computations are made to patterns
inside the entire sampling window, including the buffer zone. The idea is to ensure
that near-neighbor distances from origins and patterns inside the sampling frame
are independent of location in the sampling frame. Figure 4.29 demonstrates a
sampling frame.

Zeng and Dubes (1984) demonstrated that the probability mass for the Cox-

Sampling Sampling

Frame Window

Buffer Zone

Figure 4.29 Example of sampling frame.
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Lewis statistic R under the random position hypothesis flattened appreciably using
a sampling frame when d > 6. The probability mass of R also shifted to the
right from what was expected from theory. Some evidence suggested that the
effect was caused more by dependence among distances between sampling origins
and nearest patterns, as they are crowded together in high dimensions, than by
edge effects. Dubes and Zeng (1987) demonstrated that these effects were evident
for hypercubical and hyperspherical sampling windows and that the Hopkins statistic
dominated the Cox-Lewis statistic in all tests of randomness against clustering.
Dubes and Zeng (1987) examined a percentile frame, which is a hypersphere
centered at the sample mean and covering 50% of the data. This sampling frame
seems to be robust to the actual sampling window.

4.6.5 Ordinal Data

When the data occur as an ordinal proximity matrix, the random graph
hypothesis serves as a null hypothesis, Hy, so all ordinal proximity matrices are
taken to be equally likely. Various properties of graphs can lead to tests for random-
ness. No general model for clustering or regularity with proximity data have been
adopted in the literature. Baker’s (1974) basal taxonomies in Figure 4.9, perturbed
by noise, can serve as an alternative hypothesis of structure for ordinal proximity
data. Fillenbaum and Rapoport (1971) and Rapoport and Fillenbaum (1972) propose
three statistics for use in tests of randomness.

Connectivity. Let V be the minimum number of edges needed to connect
a graph on n nodes, one per object. Fillenbaum and Rapoport applied an asymptotic
approximation to

P,,=P(V =v|Hy

based on a result of Erdos and Renyi (1960). Schultz and Hubert (1973) showed
that the asymptotic approximation was not accurate for small sample sizes. Ling
(1975) and Ling and Killough (1976) derived an exact equation for P, ,. Let
G(n, v) be the graph obtained by inserting v edges in the order dictated by the
ordinal proximity matrix being examined. If v" is the value observed for V in
G(n, v), the random graph hypothesis is rejected at size a« if

Pn‘”*>l_ﬂ

The intuitive idea is that clustered data will have graphs that become connected
only after all the edges between objects in the same cluster have been inserted.
Large values of V thus suggest clustering. See Dubes and Jain (1979) for an
example.

Node degrees and cycles. Rapoport and Fillenbaum suggested using the
distribution of node degrees in the observed graph G(n, v) with n and v fixed.
The distribution of the number of edges incident to any node is known under H,.
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The number of edges incident to randomly selected nodes in G(n, v) can thus be
compared to what is expected under Hy. Choosing a value of v presents a practical
difficulty. The number of cycles of order k in G(n, v) can also be used in place
of the node degree.

Number of components. A component of G(n, v) can be interpreted as a
maximal single-link cluster in G(n, v). The number of components in G(n, v) is
thus the number of clusters in a single-link dendrogram at level ». Ling and
Killough (1976) provide tables for E(n, v), the expected number of components
in an n-node graph having v edges under H,. If the number of components, or
single-link clusters, in G(n, v) is significantly higher or lower than E(n, v), one
has evidence of nonrandomness.

4.7 SUMMARY

Assessing the validity of a clustering structure is a statistical problem. By clustering
structure we mean either a hierarchy, a partition, or an individual cluster. A statistic
is chosen, a null hypothesis of randomness is adopted, and a baseline distribution,
or a distribution for the statistic under the null hypothesis, is derived. A threshold
for the statistic is then selected from the baseline distribution to assure that the
probability of rejecting the null hypothesis when it is true is not greater than a
predefined level, a. The random graph and random permutation hypotheses have
been widely adopted for ordinal data, while the random position hypothesis, corre-
sponding to a Poisson process, has been applied when the objects are described
by pattern matrices. One must pay close attention to the details and be sure that
all assumptions are appropriate if a theoretical null distribution for the statistic is
to be used. Otherwise, this distribution must be established with Monte Carlo
methods.

The distinction between external and internal indices of cluster validity has
often been blurred and confused in the literature. An external index evaluates a
clustering structure in terms of prior information, such as category labels which
have been assigned without reference to the pattern or proximity matrix. An internal
index, on the other hand, uses only the proximity matrix itself and information
from the cluster analysis. A relative criterion compares two statistics, clustering
methods, or characteristics.

The clustering tendency problem has not received a great deal of attention
but is certainly an important problem. One wants to believe that data are clustered
and is naturally biased toward believing the results of a cluster analysis. Testing
the data for randomness before actually clustering the data should help remove
this bias. A number of tests were cataloged and literature references were provided.

The validation of clustering structures is the most difficult and frustrating
part of cluster analysis. Without a strong effort in this direction, cluster analysis
will remain a black art accessible only to those true believers who have experience
and great courage.



Applications

Cluster analysis deals with automating a natural and commonly utilized human
activity of forming classes or groups of similar objects, irrespective of their origin.
Thus the objects to be clustered could be patients in a hospital, different brands
of a consumer product, students at a university, different species of plants, books
in a library, or pixels in a digital image. Cluster analysis has found applications
in such diverse disciplines as biology, psychology, archaeology, geology, market-
ing, information retrieval, and remote sensing. Some interesting applications of
clustering include clustering of orientations of fractures in a porphyry copper deposit
(Shanley and Mahtab, 1976), comparing the performance of investment portfolios
(Cohen et al., 1977), clustering of job analytic data (Zimmerman et al., 1982),
developing relatively homogeneous groups of industrial companies (Chen et al.,
1974), clustering of sculptures found in Indian temples of the seventh and eighth
centuries A.D. (Siromoney et al., 1985), clustering of collinear line segments in
digital images (Scher et al., 1982), cluster analysis for studying race mixture in
human populations (Rao, 1977), and clustering for automatic indexing and document
classification (Garland, 1983; Salton et al., 1975).

The use of clustering in computer science and engineering applications has
been relatively recent. Cluster analysis plays an important role in solving many
problems in pattern recognition and image processing. Cluster analysis is used
for feature selection (Jain and Dubes, 1978), in numerous applications involving
unsupervised learning [where it is difficult to assign a reliable category label to
the training patterns as in Sanderson and Wong (1980)], in grammatical inference
(Lu and Fu, 1978; Wang, 1984), speech and speaker recognition (Rabiner and
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Wilpon, 1979), work-load characterization (Agrawalaetal., 1976), image segmenta-
tion (Hoffman and Jain, 1987), and image registration (Stockman, 1980). Some
of these applications are summarized in the chapter by Dubes and Jain (1980). A
large number of papers have been written on the clustering of multispectral data
arising in remote sensing. The recently proposed technique of conceptual clustering
(Michalski and Stepp, 1983) is touted as being capable of aiding machine learning
and knowledge representation in artificial intelligence (Cheng and Fu, 1984). Be-
cause of our backgrounds, and because these applications have not been adequately
described elsewhere, we choose to discuss several examples from image processing.
Our discussion will focus mainly on the problem description and the results, but
not on the details of methodology. Applying clustering algorithms to a specific
problem domain and interpreting the results require a thorough familiarity with
the domain. Thus we first review some fundamentals of digital images and processing
techniques.

5.1 IMAGE PROCESSING

Digital image processing, or simply image processing, turns images or pictures
taken from a camera into usable data with the help of digital computers. The
input images can be obtained by a variety of sensors depending on the environment.
For example, multispectral scanners on Landsat satellites provide images (in several
electromagnetic bands) of the earth’s surface, x-ray sources give images of human
bodies, and laser scanners provide ‘‘range’ images in industrial environments.
Visible images have numerous applications, including optical character recognition.
A typical image processing application consists of three stages:

1. Image acquisition and digitization
2. Processing and quantitatively determining features in an image
3. Making decisions based on the available features

The phrases *‘picture processing,’’ ‘‘machine vision,’’ *‘computer vision,””
“scene analysis,”” and *‘image understanding’’ also refer to this activity of process-
ing and interpreting images using digital computers. Several textbooks cover the
fundamental issues in image processing (Rosenfeld and Kak, 1976; Gonzalez and
Wintz, 1977; Ballard and Brown, 1982).

Two main reasons for processing images with a computer are (1) to improve
image quality and facilitate human interpretation (we all remember seeing the
processed images of Saturn and Uranus on network television), and (2) to automati-
cally classify various ‘‘objects’” present in the image. For example, in remote
sensing, trained photointerpreters delineate homogeneous regions in satellite images
and classify them into various land-use categories such as forest, water, urban
area, and agricultural fields. The inherent noise and the variability present in
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Figure 5.1 (a) Binary image of character
A on a 10 x 10 grid; (b) representation of
binary image as a matrix of 0's and 1's. (a)
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these images and the large number of such images to be classified make image
processing techniques very suitable for this application (Hord, 1982). In many
instances the machine classification of remotely sensed images is more accurate
than manual photointerpretation.

The image of a scene that is to be interpreted or analyzed is acquired by
sensors. This ‘‘analog’ or continuous image is digitized and the light intensities
in the image are quantized to a finite number of gray levels which are entered
into a digital computer. A digital image is represented as a N X N matrix of
pixels or picture elements, [fi, NI, i, j = 1,2, ..., N. The intensity value
fii, j) takes one of G different gray values. For example, Figure 5.1 shows a
10 X 10 binary image of the character A and its representation as a binary image,
or matrix of 0’s and 1's. A value of 1 in this matrix indicates that the corresponding
pixel is a part of the object. The term ‘‘spatial resolution’” refers to the size of
the pixel and ranges from tens of meters in remote-sensing applications to microme-
ters in biomedical cell analysis. The digitized and quantized image is enhanced
to reduce noise degradation. Digital high-pass filters sharpen an image and low-
pass filters eliminate high-frequency noise. Gray-level histogram modification proce-
dures enhance an image. At the next stage, pixels with similar properties are
grouped to form regions or segments in an image. Regions are described by properties
like shape, area, texture, and color. Relationships among the various regions (such
as adjacency, left, right, and surround) are then used to recognize the objects
and interpret the scene. These stages are not necessarily independent and quite
often a feedback mechanism is employed to improve the results.

5.2 IMAGE SEGMENTATION BY CLUSTERING

Image segmentation is a very critical component of an image processing system
because errors at this stage influence feature extraction, classification, and interpreta-
tion. Image segmentation is also closely related to the clustering problem, so we
will discuss this topic in some detail. The problem of image segmentation can be
stated as follows: Partition a given image into regions or segments such that pixels
belonging to a region are more similar to each other than pixels belonging to
different regions. We also require that these regions be connected so a region
consists of contiguous or neighboring pixels. It is generally assumed that the



226 Applications Chap. 5

interior of the region has uniform intensities. What criterion of similarity should
be used in grouping pixels? How many segments are in the image? These questions
emphasize and illustrate the similarity between an image segmentation problem
and a typical clustering problem.

A large number of image segmentation techniques are available in the literature
(Fu and Mui, 1981). These techniques are based on one of the following three
approaches: (1) thresholding or clustering, (2) boundary detection, and (3) region
growing. We concentrate on the clustering approaches. The choice of a segmentation
technique is data dependent. Image segmentation has the same relationship to
image classification that unsupervised learning has to supervised learning in pattern
recognition. Image segmentation is a more difficult problem than image classifica-
tion. First, the number of classes is specified in advance in classification problems,
whereas in segmentation problems the number of classes is unknown. A segmenta-
tion algorithm must include some means for determining the appropriate or the
actual number of classes from the data. Second, the objects being classified in
classification problems are subimages. In segmentation problems, the objects to
be classified are individual pixels.

The simplest case of image segmentation either has a ‘‘dark’ object or
region on a ‘‘light’’ background, as in the image of a printed text on a white
paper, or a light object on a dark background. The pixels belonging to the dark
object can be isolated from the background pixels by a simple thresholding operation
on the intensity values. Pixels with intensity or gray values greater than a threshold
t belong to the object, whereas the remaining pixels belong to the background.
How should 7 be selected? A common technique detects peaks and valleys in the
gray-level histogram. A gray-level histogram of an image is a plot of the number
of pixels versus the gray level. Other global as well as local methods for segmentation
are also available (Weszka, 1978). Note the similarity of this procedure to one-
dimensional partitional clustering using density estimation or mode seeking (Section
3.3.5); each pixel is a pattern and the gray value is the only feature used to
group the pixels.

The concept of one-dimensional gray-level histogram can be extended to
several dimensions if we view each pixel as being represented by a d-dimensional
feature vector. The number of features needed depends on the complexity of the
image. The components of the feature vector may be gray values through different
filters, texture measures, and gradient magnitudes and directions. For example, if
a color image of the scene is available, the intensity at each pixel can be decomposed
into three primary colors (red, green, and blue), and each pixel can be viewed as
a point in this three-dimensional feature space (Ohlander et al., 1979). A clustering
method can group the pixels in the feature space into clusters. These clusters are
then mapped to the spatial domain to display the segmented image. The size of
an image in a typical industrial application is 256 pixels by 256 pixels (denoted
as 256 X 256), so the number of pixels to be clustered is quite large. To reduce
the computational burden only pixels in, say, every fourth row and column are
clustered. The remaining pixels are then assigned to the nearest cluster center.
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Because of the size of the pattern matrix and the need for a single partition,
partitional clustering algorithms are more popular for image segmentation than
hierarchical algorithms. Jain et al. (1980) have used hierarchical clustering to
segment muscle cell images.

The following sections illustrate the use of clustering in the segmentation
of textured images, range images, and multispectral images. Instead of presenting
a review of the vast literature available on segmentation using clustering, we
discuss three studies in detail.

5.3 SEGMENTATION OF TEXTURED IMAGES

Texture is a property of the spatial distribution of gray levels or the overall pattern
of gray-level changes in an image. When an image does not portray any particular
object or form, only certain aspects of the overall pattern of gray-level changes
in the image are perceived (Julesz, 1975). Quite often, a region in an image can
be distinguished from the others based on the differences in their textures. For
example, different land-use categories (orchard, residential, water, forest) in remote-
sensing applications have different textures. Note that two adjacent textured regions
in an image may not be separated by an edge or a sharp transition in gray levels.
Thus textural information is utilized in both image segmentation and classification
tasks.

How do we define and measure textural information? Textural qualities are
typically expressed by adjectives such as coarse, streaked, sharp, irregular, fine,
cellular, rippled, and directional. Several statistical, structural, and modeling ap-
proaches to texture have been proposed in the literature which attempt to quantify
these textural adjectives. Some common approaches are based on image autocorrela-
tion, power spectrum, co-occurrence matrices, primitive placement rules, and Mar-
kov random fields (Ballard and Brown, 1982). Here we will discuss the textural
features derived from an implementation of the channel-filtering model of the
human visual system (Coggins, 1982; Coggins and Jain, 1985).

Neurological and psychophysical experiments support the hypothesis that
the analysis of a stimulus by the visual system might involve a set of quasi-
independent mechanisms, called channels, which could be conveniently modeled
as filters. Each channel responds to gray-level changes over regions of different
size or at different orientations, so each filtered image contains limited spectral
information from the original image. The shapes, sizes, locations, and number of
channels are based on psychophysical and neurological data and the size of the
image to be analyzed. Gray levels in each filtered image can be interpreted as
representing the spectral energy arising from small areas in the original image.
This interpretation motivates the definition of a texture energy feature which mea-
sures the spread of the gray-level frequency histogram of the filtered images.
Coggins (1982) has used this approach for texture classification and segmentation.

Spatial filtering transforms the texture segmentation problem into a decision
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problem in a feature space; corresponding to each pixel there is a feature vector
in which the number of features equals the number of channels used. We now
have to assess the structure of these n patterns in d-dimensional space, where n
is the number of pixels in the image and d is the number of texture features.
This assessment can be made by applying a partitional clustering algorithm. Several
other studies (Mitchell and Carlton, 1978; Schachter et al., 1978; Coleman and
Andrews, 1979; Davis and Mitiche, 1982) have used clustering in texture segmenta-
tion problems with texture features different from those used above. Note that
this pattern matrix representation of segmentation problem is independent of which
texture features are used.

Coggins (1982) used the CLUSTER (see Section 3.3.3) algorithm to organize
the pixels. CLUSTER was selected because it does not require the user to specify
parameters. CLUSTER partitions the data with the number of clusters going from
two to a user-specified bound (eight in this study). Each partitioning of the data
corresponds to a segmentation of the given image. CLUSTER provides several
statistics which can be used to qualitatively assess the validity of a clustering
(Section 3.3.3). One statistic, S;, which measures the ‘‘validity’’ of cluster k and
takes into account the compactness and the isolation of the cluster, is defined
below:

d
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where n;, = number of patterns in cluster k,
m{® = cluster center for cluster k, along feature j
d = the number of features,
xf;f’ = value of the jth feature for the ith pattern belonging to cluster k.

Large values of S suggest compact, well-isolated clusters. An acceptable clustering
is defined as one in which the value of S, exceeds a threshold for all clusters.
Coggins (1982) determined an empirical threshold of 1.70 for S, by tuning the
threshold in preliminary experiments to yield approximately the same number of
clusters as perceived by human subjects. Determining the null distribution of S
is an open research problem (see Chapter 4). The threshold value specifies that
for each cluster the minimum distance to another cluster center be greater than
1.70 times the average within-cluster distance. The clusterings that are accepted
by this criterion are ranked by the average value of S; over all clusters weighted
by the number of points in the clusters. Clusterings with high average S, values
are preferred.

Coggins’s segmentation experiments used 128 X 128 images. Segmenting
a 128 X 128 image by clustering requires the algorithm to process 16,384 patterns.
To reduce computational requirements, Coggins clustered only 64 pixels spaced
16 rows and 16 columns apart. This sampling assumes that the textured regions
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are not irregularly shaped or very small in area. Coggins used eight channels,
the four orientation channels and four spatial frequency channels with center frequen-
cies of 4, 8, 16, and 32 cycles per image width to compute texture features.
This results in a 64 X 8 pattern matrix for clustering. The resulting cluster centers
are used to define a minimum distance classifier (Duda and Hart, 1973) to classify
the remaining pixels. The classification results are displayed as a segmented image
in which gray levels denote the cluster labels assigned to each pixel.

Now we show clustering results for a texture segmentation problem. The
128 % 128 binary image shown in Figure 5.2 contains two artificially generated
textures. The left half of the image contains a regular texture in which the dots
are separated by three pixels from their horizontal and vertical neighbors. The
other texture is a random dot pattern in which the probability that each pixel is
black is independent of the other pixels and is approximately equal to 1/9. Segmented
images containing two, three, and four clusters are shown in Figure 5.3. Pixels
belonging to the same cluster have been assigned the same gray level. Remember
that the pixels have been clustered in an eight-dimensional space. The actual
gray levels in the segmented images have no significance other than to distinguish
the regions. The two-cluster segmentation shown in Figure 5.3(a) correctly identifies
the two textured regions present; over 98% of the pixels in the image are correctly
labeled. Segmented images with more than two clusters [Figure 5.3(b) and (c)]
subdivide the random texture region. The regular texture region is not split. Further,
none of the segments lie across the boundary between the textures. These results
indicate that the texture features used in the clustering are able to identify regions
of uniform textures.
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Figure 5.2 Dot texture composite. (Source: Reproduced with permission from Coggins
and Jain, 1985.)
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Which of the segmentation results is correct? The validity test defined earlier
is summarized in Table 5.1, which shows that only the two-cluster solution is
accepted. Note the high value of Sy for cluster 1, which corresponds to the regular
texture. Since the cluster corresponding to the regular texture is always compact
and well isolated, the regular texture is never subdivided in the segmented images.

(a)

(b)

Figure 5.3 Segmentation of dot texture of Figure 5.2: (a) two-cluster solution;
(b) three-cluster solution; (c) four-cluster solution. (Source: Reproduced with permission
from Coggins and Jain, 1985.)
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(c)
Figure 5.3 (continued)

Coggins (1982), Coggins and Jain (1985), and Jain (1985) report on several
other texture segmentation experiments using this approach. These results demon-
strate that clustering methods are useful for identifying textured regions in digital
images.

TABLE 5.1 Evaluation of Clusterings
on Dot Textures

Two-cluster solution

k ny Sk
I 32 6.93
2 32 2.31

Average value of 5, = 4.62°
Three-cluster solution

k ny Sg

1 32 6.17
2 19 1.41
3 13 1.24

Average value of S, = 3.76
Four-cluster solution

k ny Sg

1 32 6.08
2 20 1.48
3 8 1.15
4 4 2.20

Average value of §; = 3.78

8 Accepted segmentation. (Source: Reproduced with
permission from Coggins and Jain, 1985.)
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5.4 SEGMENTATION OF RANGE IMAGES

One of the important and challenging problems in image processing and computer
vision is the recognition of three-dimensional objects. Three-dimensional object
recognition is inherently more difficult than two-dimensional recognition because
we usually have access to only a single two-dimensional view of the three-dimen-
sional object. This loss of depth information leads to ambiguous interpretations.
For example, the recognition of printed characters on a page or flat machine
parts placed on a conveyor belt is, in general, easier than the identification and
location of obstacles present along a robot’s path as it navigates around a factory
floor.

Several types of constraints have been utilized in computer vision research
to determine the depth from a single reflectance image, where the pixel value is
proportional to the intensity of light reflected from the corresponding location on
object’s surface. Monocular cues such as shape from shading, shape from texture,
and shape from motion are intuitively appealing but difficult to implement (Barrow
and Tenenbaum, 1978). For example, the basis for shape from shading is that
the reflectance equation provides one constraint on the surface orientation and
another constraint is provided by the heuristic requirements that the surfaces of
the scene are smooth. The density gradient of texture primitives provides slant,
slope, and range information about the surface in the image. Light stripping is a
relatively simple monocular method where the coordinates of object surface in
three dimensions are determined by calculating the intersection of the ‘‘line of
sight’” with a plane sheet of projected light. A popular binocular method obtains
depth or range information of a point using triangulation given its image point in
each of two views. The difficulty with this stereo-based technique is in deriving
the correspondence between image points in the two images. Several of these
techniques are reviewed in the book by Ballard and Brown (1982).

Laser rangefinders provide depth values directly; we call the output of such
sensors range images. For example, time-of-flight rangefinders measure the elapsed
time between emitting a laser beam and detecting its reflected energy from an
object surface. The gray values in a range image correspond to depth directly
rather than to reflected light. Lighter gray values in a region of a range image
indicate that it is closer to the sensor or the viewer. Laser rangefinders are gaining
popularity in the computer vision community. Ideally, one would like to use both
the range image and the traditional reflectance images for scene interpretation.

How do we utilize range images to analyze a given scene? One approach
that appears promising can be summarized as follows (Ittner and Jain, 1985; Hoffman
and Jain, 1987). We can easily derive the orientation (surface normal) at each
point of the visible surfaces of an object from the depth values available in the
range images. The three-dimensional coordinates and surface normal information
are used to segment the range image into *‘surface patches.”” A partitional clustering
algorithm is used for segmentation. The next stage classifies these patches as
planar, convex, or concave based on a statistical test for trend, curvature values,



Sec. 5.4 Segmentation of Range Images 233

and eigenvalue analysis. Compatible patches can be merged to produce reasonable
faces of the object. The final stage matches objects in the scene to their stored
models. Since the objects in this approach are described in terms of the surface
patches, the stored models are also in terms of the surface representation.

Here we report only on the application of clustering to the segmentation
problem. The results on classification of surface patches and modeling are reported
elsewhere (Hoffman and Jain, 1987). As we discussed earlier, clustering has long
been used to segment intensity images and seems a reasonable method to segment
range data. The objective is to use the clustering so that points on different faces
of the object are put in different clusters.

5.4.1 Features for Clustering

An important issue in any clustering application is that of deciding what
features should be used to establish similarity between pixels. Some candidate
features at a pixel are the spatial coordinates x, y, the range or depth value, z,
the surface normal, the coefficients for the best-fitting quadric surface, and curvature
measures. In our clustering experiments we used the coordinate features x and y,
the depth value z, and the estimated surface normal vector resulting in six-dimen-
sional pattern vectors. The unit normal vector represents the orientation of a surface
at a pixel and is estimated by finding the best-fitting plane (by linear least-squares
method) over a small neighborhood of the pixel.

Each one of the six features plays a distinct and important role in segmentation.
The x and y features help to provide connected segments. The depth value z is
important in the detection of “‘jump’’ edges, and the normal vector is needed to
detect ‘‘crease’’ edges since the vector (x, y, z) does not experience abrupt changes
over such a boundary. Jump edges in range images are formed where depth values
are discontinuous. Crease edges correspond to points over which surface normals
are discontinuous. Since we do not wish inequalities of scaling to give undue
precedence to some feature(s) over the others, we preprocess the data so that
each feature has unit variance.

5.4.2 Clustering Results

We have applied a number of different clustering techniques to segment
range images for comparative evaluation, including MST-based approaches which
cut inconsistent edges (Section 3.3.6), the mutual nearest-neighbor clustering algo-
rithm (Section 3.3.7), single-link and complete-link hierarchical clustering methods
(Section 3.2), and several square-error clustering algorithms. We have had the
most success with the CLUSTER algorithm (Section 3.3.3).

Figure 5.4 shows the segmentation of a synthetic range image. For ease in
display, the maximum number of clusters in the CLUSTER program has been
set to 12. Each cluster has a unique gray level. Due to the memory and time
requirements of CLUSTER only 1000 pixels of the 128 X 128 range images



(a)

(b)

Figure 5.4 (a) Synthetic range image: (b) segmentation of range image into five clusters.
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were clustered. The remaining pixels were assigned to the cluster with the closest
center.

The results of these experiments on segmentation are reasonable. The cluster-
ing approach segmented the distinct object faces quite well. In some cases clusters
are not connected in the image. This happens when the normal vectors of two
faces on an object in an image are very similar. We found that it is important to
direct the clustering algorithm to generate more clusters than the number of faces
actually present in the object. For example, if there are three distinct faces in the
object, a clustering with 6 to 10 clusters usually provided the best segmentation.
Individual object faces were broken up during segmentation, but in general, each
of the clusters contained points of a single face. The merging procedure described
in Hoffman and Jain (1987) rectifies this problem.

5.5 SEGMENTATION OF MULTISPECTRAL IMAGES

Clustering techniques have been very popular in remote-sensing applications (Naren-
dra and Goldberg, 1977; Goldberg and Shlien, 1978; Bryant, 1979; Ince, 1981;
Wharton, 1983; Gowda, 1984). Multispectral scanners on LANDSAT satellites
sense the reflected energy from the earth’s surface in several different bands, or
wavelengths of the electromagnetic spectrum (Hord, 1982). A pixel in these multi-
spectral images represents the smallest area on earth’s surface that can be identified
or distinguished from the neighboring areas. The pixel size and the number of
bands varies depending on the scanner; LANDSAT 4 has seven bands with a
pixel size (resolution) of 28.5 meters X 28.5 meters. The wavelengths of these
bands ranges from 0.45 to 2.35 pm. The wavelength interval associated with
each band is tuned to a particular ground cover category. For example, the green
band in the visible portion of the electromagnetic spectrum (0.52 to 0.6 pm) is
useful for identifying areas of shallow water, such as shoals, and reefs, whereas
the red band (0.63 to 0.69 wm) emphasizes urban areas (Hord, 1982).

LANDSAT images have been used for land-use planning, identifying locations
of mineral deposits, studying weather pattern, forest inventory, and estimating
crop yield. Pattern recognition and clustering techniques are particularly useful in
remote sensing to classify or group pixels. In many applications of remote sensing,
the a priori labels (ground truth) on the pixels are not available, and therefore
clustering techniques are needed to group pixels based on the observed reflectance
in various bands of the multispectral scanner. This is referred to as clustering of
pixels in the spectral domain. Thus all the pixels in the image that represent
water bodies should have similar spectral characteristics which will be different
from pixels representing, say, urban areas. Spatial information about the pixels
is also utilized in the clustering. For example, neighboring pixels in a two-dimen-
sional image are more likely to belong to the same cluster than pixels that are
farther apart. Similarly, contextual clues such as ‘‘a pixel surrounded by urban
areas should not be labeled as forest’’ are also incorporated either in the grouping
algorithm or in the postprocessing stage.
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We present an example to demonstrate that clustering algorithms can identify
clusters in multispectral images which correspond to land-use categories. The data
for this example are taken from a seven-band LANDSAT image, acquired on
October 18, 1982, of Fredrick Township, Crawford County, located in mid-Michi-
gan. Band 6, or the thermal band, was not used, so the clustering was done in
six dimensions. A 256 X 256 image was extracted for clustering. Figure 5.5
shows the band 3 image of this area. Based on the Geographical Information
System (GIS) maintained by the Department of Natural Resources, State of Michi-
gan, there are four major land-use categories present in this image: urban area
and bareland, water, coniferous forest (needlelike, dense trees), and deciduous
lorest and shrub (green vegetation cover). This GIS information was obtained
from a manual air photo interpretation done in 1978. These four major land-use
categories can be detected in Figure 5.5, although they are better seen in pseudocolor
images. One of the goals of remote sensing is to update the GIS with the help of
LANDSAT images.

A square-error clustering program was used to segment this LANDSAT

Figure 5.5 256 x 256 LANDSAT band 3 image of Fredrick Township, Michigan.
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Figure 5.6 Clustering of multispectral LANDSAT image shown in Figure 5.5.

image. This clustering program is part of the image analysis software package on
an ERDAS (Earth Resources Data Analysis System) microcomputer system. The
four-cluster solution is shown in Figure 5.6. Four different gray levels are used
to show the four clusters of pixels. Clusters match quite well with the land-use
categories obtained from the GIS data base. Note that the clustering was done in
six dimensions and no spatial information was used. Square-error clustering tech-
niques have been very popular in remote-sensing applications. NASA Goddard
Space Flight Center has implemented the ISODATA clustering algorithm on its
Massively Parallel Processor (MPP) to be used for remote-sensing applications
(see Section 3.3.2).

5.6 IMAGE REGISTRATION

Image registration deals with the problem of matching two images of the same
scene taken under different conditions. In other words, given a reference or a
prototype image (often called a template) of an object, locate the position and
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orientation of this object in a larger image. The general image registration problem
involves geometrical (rotation, translation, and scale) and sensor (infrared, radar,
and visible band) variations. A transformation function must be determined so
that the coordinates of a point in one of the images can be found from the coordinates
of the same point in the other image. Image registration is a difficult problem,
but it has numerous important applications, such as detecting ecological and environ-
mental changes based on comparing several images of the same area, combining
information derived from different sensors, and object detection. Here we will
concentrate on the problem of object detection.

The simplest approach to object detection is template matching or correlation
(Li and Dubes, 1985). Given a template or a prototype of an object, which is
really a small image w(x, y) of size M X M, the problem is to locate it in a
given image flx, y) of size N X N, N > M. We place the template at different
locations in the image and measure the similarity between the template and the
image as follows:

R(m,n) = >, > fix,y) wix —m,y = n)

Note that f{x, y) and w(x, y) represent the gray values at location (x, y) in the
image and the template, respectively. The maximum value of R(m, n) indicates
the position where w(x, y) best matches flx, y). Often, the similarity measure
R(m, n) is normalized by average image and template intensities. Sequential and
hierarchical search techniques are employed to reduce the computation time of
matching (Ballard and Brown, 1982). Instead of computing the correlation between
the template and the image based on gray values, matching can be performed
using image and model (object) structures such as edge features and invariant
moments.

We describe a technique for object detection via image registration which
is a hybrid of template matching and structural analysis (Stockman, 1980). Template
matching is tolerant to noise but expensive to compute. Structural techniques recog-
nize objects as a synthesis of parts and are relatively efficient to compute, but
are sensitive to imperfect or noisy data. The object detection technique of Stockman
(1980) estimates the global transformation needed to map the features derived
from the given image to similar features in object model. Following are the two
main steps of this matching procedure.

1. Let (f;, f,,) be a pair of image and model features. Compute the transformation
parameter vector a such that the transformation 7, maps f; to f,,. Represent
this vector a in the parameter space. We are assuming that all features of
the same type correspond. For example, straight lines in the image correspond
to straight lines in the object model.

2. All possible transformations between the image and the model are now repre-
sented as clusters in the a-space. Find the best transformation by identifying
the densest cluster.
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Note that each point in a-space represents evidence of a local match. Clusters
in a-space represent possible global matches.

Stockman uses three types of features for registration: straight-edge elements,
points of sharp curvature, and points of angular intersection. Model edges are
constructed by human beings and image edges whose lengths are assumed to be
accurate are obtained by computer. Only rotation and translation will be allowed,
soa = (0, Ax, Ay). Figure 5.7 shows this procedure for a simple example (Stockman,
1980). First an edge AB in the image is rotated to get an edge A’B’ which is
parallel to a model edge CD. The translational part (Ax, Ay) of a is constrained
because the lengths of corresponding edge structures are forced to agree. Out of
a total possible 4 X 4 = 16 edge elements pairings in Figure 5.7, six are eliminated

&
.- /g A‘ 1o 1
8 8 4
Byy 3 D,
C ¢
6 - \ e4 ™ c
) 0. Dy
4 4 4 2
/'B' B
2 21
A, Ca
° L L] L) L § c L} LJ
o 2 4 66 8 10 © 2 4 6 B 10
(a) (b)
i3 A; B cy Dy 6  Ax &Y
1 1 3.0,2.0 6.0,64.0 1.7,6.4  2.3,10.0 0.82 1.1 2.8
1 2 3.0,2.0 6.0,4.0 5.3,5.0 1.8, 5.0 2.55 8.9 5.0
1 4 3.0,2.0 6.0,4.0 5.1,1.5 5.8, 5.0 0.79 4.4 -2.0 |se
2 3 9.0,10.0 9.0,4.0  3.7,11.2 8.0, 7.0  0.79 4.4 -2.2 |
3 1 4.0,8.0 7.0,10.0 1.7,6.4  2.3,10.0  0.82 4.8 =-2.0 |
3 2 4.0,8.0 7.0,10.0 5.3,5.0 1.8,5.0 2.55 13.1 9.4
3 4 4.0,8.0 7.0,10.0 S5.1,1.5  5.8,5.0 0.79 7.9 -7.0
4 1 5.5,4.5 3.0,7.0 1.7,6.4  2.3,10.0 5.33 -5.2 8.3
4 2 5.5,4.5 3.0,7.0 5.3,5.0  1.8,5.0 0.79 4.6 -2.1 [
4 4 5.54.5 3.0,7.0 5.1,1.5  5.8,5.0 5.30 -1.7 3.6

(c)

Figure 5.7 Examples of global registration via clustering of local evidence. Edges in
(a) need to be rotated /4 and then translated (4.5, —2.0) to register with edges of (b)
10 points are in the cluster space (c) forming a cluster at (8 = 0.79, Ax = 4.5,

Ay = —2.0). (Source: Reproduced with permission from Stockman, 1980.)
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due to length inconsistency. The three-dimensional parameter space a has 10 points
and there is a “‘strong’’ cluster of size 4 which gives the correct match. In real-
world matching problems the parameter space will have hundreds of points. This
necessitates the use of a clustering algorithm.

This registration procedure has been successfully applied to several industrial
and satellite images (Stockman, 1980). The main computational burden lies in
image feature extraction. The clustering procedure used is fairly simple and looks
for peaks in the quantized parameter space obtained by inserting each of the (0,
Ax, Ay) values into bins. A similar technique, called the Hough transform, is
popular in image processing to detect lines or other shapes in a given image
(Ballard and Brown, 1982). Stockman has recently extended this matching scheme
to determine the ‘‘pose’” of a three-dimensional object from multiple views (Stock-
man and Esteva, 1985). Clustering is now accepted as a powerful technique for
object recognition in computer vision.

5.7 SUMMARY

Clustering techniques were first developed in biology and zoology to group similar
animals and plants to construct taxonomies. The need to organize vast amounts
of data into ‘‘meaningful’’ groups, clusters, categories, partitions, or classes in
several scientific disciplines has made clustering a valuable tool in data analysis.
A variety of entities or objects have been clustered, including mental diseases,
land-use patterns, rock samples, fingerprints, training methods, stars, consumers,
prose, and images. In several of these applications it is not extremely important
to identify the exact number of clusters or the correct membership of each pattern
into a cluster. Often it is enough to group the objects in a reliable and parsimonious
manner so that the underlying physical, biological, or evolutionary process can
be understood or learned. Learning is a central issue in artificial intelligence (Al),
and it is not surprising that Al researchers have recently adopted clustering as a
form of ‘‘learning from observation,”” which is another term for unsupervised
learning mentioned in Appendix A.

This does not mean that clustering techniques can automatically be applied
to data without human intervention. The methodology for applying clustering meth-
ods is discussed in Section 3.5. The choice of features or measurements, similarity
measure, and grouping technique requires familiarity with the subject area in which
data arise. Most important, the clusters are best interpreted by an expert in the
subject area. Various validity tests presented in Chapter 4 are merely tools at the
disposal of an expert. Naive users of clustering can often generate incorrect interpre-
tation or description of data.



Pattern Recognition

Pattern recognition refers to the classification or description of objects or patterns.
The patterns themselves can range from characters in an image of printed text to
biological waveforms, such as EKG or EEG waveforms. The recognition problems
are to automatically identify the individual characters and to label the waveforms
according to category, such as normal or abnormal. The design of such recognition
systems requires that a set of training patterns, which are patterns with extrinsic
pattern-class labels, be available. The main philosophical difference between pattern
recognition and cluster analysis is the role of pattern class labels. These labels
are crucial to the formation of decision rules in pattern recognition, but are only
used to verify the results of cluster analysis. In other words, pattern recognition
requires extrinsic information, while cluster analysis uses only the data themselves.
Commercial pattern recognition systems are available for optical character recogni-
tion (OCR), speech recognition, speaker identification, fingerprint recognition,
and automated cytology.

There are essentially two basic paradigms to classify a pattern into one of
K different categories or pattern classes. The first is a geometric or statistical
approach. A pattern is represented in terms of  features or measurements taken
on a single object. If the choice of features is good, pattern vectors belonging to
different categories will occupy different regions of this pattern space. Given training
patterns from each pattern class, the objective is to establish decision boundaries
in the feature space that separate patterns belonging to different classes.

In statistical pattern recognition, the features are assumed to have a probability
density function conditioned on the pattern class. Thus a pattern vector x belonging
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to class w; is viewed as an observation drawn randomly from the class-conditionai
density p(x | w),j=1,. .., K Well-known concepts from statistical decision
theory (Ferguson, 1967) and discriminant analysis (Lachenbruch and Goldstein,
1979) are utilized to establish decision boundaries between the pattern classes. If
the class-conditional densities are known, the optimal decision rule is based on
Bayes’ decision theory (Duda and Hart, 1973). However, the class-conditional
densities are never known in practice so various strategies are utilized to design
a classifier based on the nature of information available about the class-conditional
densities. If the forms of the class-conditional densities are known, we have a
parametric decision problem. Otherwise, we must either estimate the density function
or use some nonparametric decision rule, like the k-nearest-neighbor rule. Figure
A.l describes a hierarchy of problems in statistical pattern recognition.

The density functions are estimated from training samples. So another dichot-
omy in the theory of statistical pattern recognition is between supervised learning
(labeled training samples) and unsupervised learning (unlabeled training samples).
The label on each training pattern represents the category to which that pattern
belongs. Other dichotomies that appear in statistical pattern recognition are shown
in the tree structure of Figure A.1. The classification problems get more difficult
as one traverses the tree from top to bottom and left to right. Cluster analysis
essentially deals with the unsupervised learning mode, when the number of pattern
classes is unknown, and it tries to find natural groupings in the data.

Many factors need to be considered in the design of a statistical pattern
recognition system. The performance of the recognition system critically depends

PRIOR
INFORMATION
dE:i: ti:';n Supervised Unsupervised
theory Learning Learning

Parametric | Non- Categories Categories
Parametric Known Unknown

“Optimal"”’ “Plug-in" Density Geometric Mixture Cluster

rules rules estimation rules resolving analysis

Figure A.1 Breakdown of problems in statistical pattern recognition.
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on the choices made (Devijver and Kittler, 1982; Duda and Hart, 1973). Some
of the issues encountered are listed below.

1.

One-shot versus hierarchical (tree) classifier. In the one-shot classification
scheme, the distinction between all classes is made in one stage. This may
not be the most appropriate scheme, especially if the number of pattern
classes is large. An alternative classification structure is a binary tree, where
the most obvious discriminations are done first, postponing the more subtle
distinctions to a later stage. This increases the processing speed since the
average number of features per node is much smaller than the total number
of features (Mui and Fu, 1980).

Parametric versus nonparametric classification. Most of the popular para-
metric techniques for classifying patterns are optimal if the class-conditional
densities happen to be Gaussian. Even though statistics based on Gaussian
distributions are robust, it is wise to consider nonparametric techniques,
which are not always based directly on the pattern class distributions. Examples
are near-neighbor classifiers and polynomial decision surfaces (Duda and
Hart, 1973).

Dimensionality and sample-size relationship. The well-known phenomenon
of the curse of dimensionality cautions a system designer to use a limited
number of features for a given sample size. It is recommended that the
number of training samples per class be at least 5 to 10 times the number
of features (Jain and Chandrasekaran, 1982).

Feature selection. For computational reasons and cost considerations, one
often faces the problem of deciding which of the available features are good
for classification (Jain and Dubes, 1978). It has been shown that the problem
of determining an optimal subset of features of size m from the d available
features requires an exhaustive search over all possible subsets of size m.
Branch-and-bound techniques have been proposed to avoid exhaustive search
(Narendra and Fukunaga, 1977).

Error estimation. The available samples must be partitioned into training
and test sets. The classifier is designed using the training set and evaluated
on the samples belonging to the test set. Depending on the number of samples
available, the error rate is estimated using either the hold-out method or
the leave-one-out method. How should the available data be partitioned to
optimize performance on future patterns? Devijver and Kittler (1982) and
Toussaint (1974) investigate several aspects of this problem.

The second main paradigm for pattern recognition is called the structural

or syntactic approach (Fu, 1974, 1982; Gonzalez and Thomason, 1978). In many
recognition problems involving complex patterns, the number of features required
to establish a reasonable decision boundary is very large. It is more appropriate
to view such patterns as being composed of simple subpatterns. A subpattern
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itself could be built from simpler parts with grammatical techniques. Primitives
are the simplest subpatterns to recognize and the given complex pattern is represented
in terms of the interrelationships among these primitives. Figure A.2 gives a simple
example to illustrate this approach. The boundaries of two types of chromosomes
(submedian and telocentric) can be constructed from the five primitive curves or
terminals shown in Figure A.2. Production rules determine the order of placement
or concatenation of the primitives to form the pattern. Each pattern class has a
unique set of production rules. The nonterminals describe partial or intermediate
descriptions of the patterns in terms of the primitives.

The main advantage of the structural approach over the statistical approach
is that, in addition to classification, it provides a description of the pattern. It
specifies how the given pattern can be constructed from primitives. This paradigm
has been used in situations where the patterns have a definite structure which can

Chromosome Grammars

Terminal Symbola: /\-lu\./ : < 3 \\._,_,_,.../'
a b c d

e

Non-terminal Symbols: S ! Start aymbol D: Right Part
Al Arm pair E: Left Part
B: Bottom F: Arm
C: Side

Pattern Classes:

Submedian Telocentric

Productionsa:

5 — AA (Submedian )
5 — BA (Telocentric)
A — CA|AC|FDIEF

E — Fc

0 — ¢cF

B —s bBIBb e

c — bCIiCb|bld

F — bF|Fbla

Figure A.2 Example of syntactic pattern recognition.
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be captured in terms of a set of rules, as with EKG waveforms, textured images,
and shape analysis of contours.

Syntactic pattern recognition draws an analogy between the structure of pat-
terns and the syntax of a language. The patterns belonging to a category are
viewed as sentences belonging to a language. The sentences are generated according
to a grammar and the primitives are viewed as the alphabet of the language. For
example, one can define a grammar for abnormal EKG waveforms and one for
normal EKG waveforms in terms of the P-Q-R-S complex of simple wave shapes.
A given waveform is classified as normal or abnormal based on which one of the
two grammars can correctly parse the pattern (Stockman et al., 1976). A large
set of complex patterns can be described by using a small number of primitives
and grammatical rules. Again, the grammar for each pattern class must be inferred
from training samples.

Syntactic pattern recognition has a great deal of intuitive appeal. However,
implementation of this approach leads to many difficulties, such as segmenting
noisy patterns to detect the primitives, and inferring grammars. Although the statisti-
cal approach also has problems in classifying noisy and complex patterns, it is
well understood and relies on firmly established elements of statistical decision
theory (Jain, 1987). Perhaps this is why most commercial recognition systems
utilize the statistical approach.



Distributions

This appendix provides background about two distributions that appear regularly
in cluster analysis: the Gaussian, or normal, distribution, and the hypergeometric
distribution.

B.1 THE GAUSSIAN DISTRIBUTION

The crucial link between multivariate statistics and normalization is in the mathemati-
cal model. The wide applicability of Gaussian or normal models in statistics and
in cluster analysis is due to two reasons. First, the mathematical properties of
Gaussian distributions are well understood. Quite often these models are justified
by invoking the central limit theorem. Second, many applications summarize the
knowledge about the data in the form of a mean vector and a covariance matrix.
If the density function of the data is expected to be unimodal, the Gaussian density
function is a useful and simplifying assumption. We begin with d random variables
in a column vector representing the d features, or measurements, taken on each
object.

Xy
x=|%
Xa
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If the random variables have a d-dimensional Gaussian (normal) distribution,
their joint density function is

fixys X o - s x0) = [RAZ P exp [-(112)x — )T Z7 (x — p))

where 3 is the d X d covariance matrix, |X| is its determinant, p is the d-vector
of expected values, and x is a (column) d-vector containing variables {x,, x,,
., xz}. The mean vector, p, and symmetric covariance matrix, ., are sufficient
to define a Gaussian distribution. Thus a multivariate Gaussian density is specified
by d + d(d + 1)/2 parameters. These parameters must be estimated by sample
covariances and sample means to fit a Gaussian distribution to a set of patterns.
Care must be taken to distinguish sample moments, such as the sample
means, sample variances, and sample covariance matrix defined in Section 2.3,
from population moments, which are parameters of mathematical models describing
the data. To be specific, let E denote the expectation operator with respect to an
underlying probability model. The population mean for random variable X; is
p; = E(X,). The (population) covariance between X; and X; is

o = E[X; — p)X; — p)] where i # j
Similarly, the (i, i), or diagonal, element of 2, is

o2 = o2 = E[(X; — w)*] fori=1,...,d

which is the (population) variance for X;. The (population) covariance can be
written as

@ = PyT ey

where p;; is the (population) correlation coefficient between X; and X;. Random
variables X; and X; are both linearly and statistically independent if o; = 0. Note
that o;; = o;; and p; = pj;. Features are pictured as random variables and each
pattern is a ‘‘realization’’ of these random variables. The population moments
are estimated by the sample moments. Evaluating the quality of estimates is a
statistical problem.

If statistical theory based on this model is to be employed in the interpretation
of the results, the goodness of the Gaussian fit to a set of patterns must be investigated.
A number of tests for determining the multivariate normality of a given data set
are available (Lesaffre, 1983; Smith and Jain, 1985) but the task of testing for
multivariate normality is very difficult. Ball (1965) pointed out several traps for
the careless user of Gaussian models.

One of the concepts that is embedded in the Gaussian model but applies to
all kinds of data is the ellipsoid of concentration (Cramer, 1945). Consider the
simple case when d = 2 and p = 0, the zero vector. The population covariance
matrix can be written as follows.

2={ of 00'102]

P02 03
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(b)

Two pictures of a two-dimensional Gaussian density: (a) Gaussian density

Figure B.1

function; (b) Ellipses of constant density.
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The joint density function for two Gaussian random variables is
fixy, xp) = [An’aio3(l — p)] ™ exp [—q(x, x)]

The quadratic form in the exponent is

2 2
q(xy, x9) = [2(1 — p2)1—|[(;_|) = 2px x5 + (x_z) ]

1 a0, 032

The equation g(x;, x,) = K, where K is a constant, forms an ellipse of
constant density in the (x;, x,) plane. Varying K produces a family of concentric
ellipses. The ellipse defined by K = 2 is called the ellipse of concentration. A
uniform distribution defined over this ellipse will have the same first- and second-
order moments as the Gaussian distribution.

Figure B. 1 shows two different representations of a bivariate Gaussian density.
The first is the three-dimensional picture of the density function. The second is a
series of ellipses. Samples drawn from a multivariate normal population tend to
fall in a single cloud or cluster.

The quadratic form (x — |.I.)T > (x — p) is the squared Mahalanobis
distance from x to p that is discussed in Section 2.2. Setting the Mahalanobis
distance to a constant produces an ellipsoid in d dimensions. The principle axes
of the hyperellipsoid are given by the eigenvectors of the covariance matrix. Eigen-
values determine the lengths of segments of the axes inside the hyperellipsoid.
For the special case when p = 0, the axes of the ellipsoid are the coordinate
axes. When the distribution of the d random variables is singular (this will be
the case if one or more of the variables is a linear combination of other variables),
its probability mass lies in a subspace of the d-dimensional pattern space. The
rank of 2 equals the dimensionality of the subspace.

B.2 THE HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution is an appropriate model for the isolation and com-
pactness indices used to evaluate individual clusters in Section 4.5. It is also
used in Section 2.3 to establish a measure of proximity between two binary vectors.
This section defines the hypergeometric distribution in generic terms.

Suppose that we have a population of M objects and D of them are *“*defective.”
This terminology comes from quality control applications where one is sampling
a lot of manufactured parts to estimate the number of substandard parts. We will
interpret ‘‘defective’” as a special object designation. For example, if the objects
are edges inserted into a graph at random, the defectives could be the edges
linking a subset of nodes to the rest of the graph.

Suppose that r objects are selected without replacement from the population
of M objects containing D defectives and the order of the sample is immaterial.
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If the sample of size r is taken randomly, all (¥) samples are equally likely,
where (¥) is the binomial coefficient or

(M) _ M!
r rl(M—r)!

Let random variable X denote the number of defectives in the sample of
size r. The D defectives can be sampled in (2) ways and the M — D nondefectives
can be sampled in (¥-7) ways, when the sample contains exactly x defectives.

The hypergeometric distribution provides the probability that exactly x objects in
the sample are defective when the sampling is random.

By=r
&)
The variable x in this probability lies in the following range.

max {0, r — M + D} = x=min{D, r}

Prob (X = x) =

For example, suppose that a population of five objects, labeled 1, 2, 3, 4,
and 5, has three defectives, taken to be objects 1, 2, and 3. If two objects are
sampled, the 10 possible results of sampling without replacement when the order
of the sample is ignored are shown in Figure B.2. The number of defectives in
the sample can be 0, 1, or 2. The probabilities can be determined either from the
formula above or by counting the samples in Figure B.2 and are

1/10 ifx=0
Prob (X = x) = {6/10 ifx=1
3/10 ifx=2

Computing hypergeometric probabilities is not a trivial task except when
the values of M, D, and r are small, as in this example. For example, the individual
factorials making up the binomial coefficients cannot be computed individually
and combined because of numerical accuracy and overflow. The recursive formula
given below is one approach. If the values of D, M, and r are fixed, the probability
of exactly x defectives can be written as

(D= X)r—%)
x+1)M—-D—r+x+1)

Prob (X = x + 1) = Prob (X = x)
The value of the random variable X must always lie in the range given above.
The cumulative distribution function
H(a) = Prob (X = a)

is particularly tedious to compute, but is needed in the proximity measure defined
in Section 2.2.3. Ling and Pratt (1984) provide an extensive empirical study of
three approximations based on the binomial distribution and 12 approximations
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based on the Gaussian distribution. The Peizer approximation was found to be
superior to other normal approximations. Binomial approximations were not recom-
mended because the tails of the binomial distribution are almost as difficult to
compute as the tails of the hypergeometric distribution being approximated. Li
(1984) provides a two-level pipeline design for the recursive computation of H(a)
that can be implemented in hardware.



Linear Algebra

This appendix briefly reviews some facts from linear algebra used in Chapter 2.
Several standard texts can be consulted for details, such as Green and Carroll
(1976). If R is a real, symmetric, positive-definite matrix having rank d, such as
the sample covariance matrix defined in Eq. (2.3), then the determinant equation

|R - A9 =0

where $ is a unit matrix of order d and \ is a scalar, has d positive, real solutions
for A\, counting a solution of multiplicity k as k solutions. These solutions, or

eigenvalues of R, are labeled \;, N, . . . , A, in arbitrary order. An eigenvector
corresponding to A; is a d-vector (column matrix) ¢; which satisfies
(gt o B.,‘.g’)c': =0
0 ifi#j
T it —
“5 {1 ifi=j

This implies that
TR — \F)c; =0, i=1,2% o od
from which the following standard expansion is obtained:
GrRCE = Ag

Here Ap = diag (\;, . . . , Ay) is a diagonal matrix of order d. The rows
of € form a set of eigenvectors of R.
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Cr=1Ic, ¢ -+ ¢

Since 6 is an orthogonal matrix, its inverse is its transpose, so both % and the
inverse of % can be expressed in terms of the eigenvectors and eigenvalues.

6x' =6x
R1 = GFAZ g

The trace of R, written tr (R), and the determinant of %, written |%/, can
be expressed as follows:

d d
t@)= =2 N
i=1 i=1 (C.2)

m=§m

If the linear transformation defined by €4 is applied to each pattern in the
normalized pattern matrix &, the n X d matrix & in Eq. (C.3) is obtained.

B = ACk (C.3)

where
BT =1y, y2 - ¥ and Yi = €gx;

The rows of 6 are eigenvectors of R.

The transformation in Eq. (C.3) simply rotates the axes of the pattern space.
Since y; = c}x;, the scalar y; is the portion of x; in the direction of ¢;. Thus the
new coordinate system ‘‘lines up’” with the eigenvectors of 9. If the patterns in
9 are pictured as an ellipsoidal swarm of points in the pattern space, the axes of
the rotated pattern space can be selected parallel to the axes of the ellipsoid. The
rigid rotation does not change Euclidean distances between patterns. This interpreta-
tion of Eq. (C.3) follows from the fact that &, computed from & by Eq. (2.3),
is a covariance matrix, so (1/n) T is the covariance matrix in the rotated coordi-
nates. Applying Egs. (C.3) and (C.1) proves Eq. (C.4).

(U/n)BTRB = € REE = Ag (C.4)

Thus the eigenvalues are sample variances in the rotated space and indicate
the amount of spread along each axis. The features are uncorrelated in the rotated
space because A is a diagonal matrix. The rows of €y can be interchanged in
d! ways, so d! different rotations can be defined having the diagonal property in
Eq. (C.4), assuming distinct eigenvalues. The invariance of length and distance
is shown below.

%;%R =¥
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so that
YiY: = X[ CRerx; = XIx;
and
(i — ¥ — ¥) = (% — %) (x; — x)

The transformation in Eq. (C.3) replaces the original features with new,
uncorrelated features that are linear functions of the original features. This transfor-
mation is also the first step in a linear projection to a lower-dimensional space
that minimizes square-error (see Section 2.4).

Example C.1

Two pattern matrices containing raw data are given below as s4; and ;. This example
demonstrates normalization and the dangers of summarizing data with a correlation matrix.
The patterns are shown in Figure C.1.

ﬂ,_[zx/i 2 0 -2 -2V2 -2 0 2]T
=

0 2 2V2 2 0 =2 =2V2 =2
£.=00000|2—1—2T
2[—2—10[20000]

The sample means for both features in 9| are zero and the sample variances are 4.
For example, for the first feature of o7,

m=(/8)2V2+2+0-2-2V2-2+0+2)=0
S=(1/8)8+4+0+4+8+4+0+4)=4

Applying Eq. (2.2) simply scales both features and produces the following normalized
pattern matrices:

5&_\/51 0 -1 -V2 -1 g 17"

x [01\/2’ I 0 -1 -V2 —1]
.~ 0 000012 -1 -21"

Ste = 0‘9[—2 -1 01 200 0 0]

The correlation matrices, Eq. (2.3), are

R, = (1/8)ATHA, = [{; ?]

R = (119)A3A, = {l 0]
0 1

Since both correlation matrices are the same, one might expect the two sets of
patterns to resemble one another. Figure C.1 shows that the two sets of patterns are not at
all alike, except that both exhibit the same type of circular symmetry. Thus first and
second moments do not necessarily characterize data. We normally picture the patterns as
a hyperellipsoidal swarm of patterns, but as Ball (1965) has pointed out, such a description

is not always applicable and can be misleading.
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Feature 2
A
D
o o
Feature 1
o o
1]
(a)
Feature 2
A
q
q
Feature 1
o)
(b)

Figure C.1 Two sets of two-dimensional patterns.

Example C.2

This example demonstrates the effect of Eq. (C.3), which rotates the swarm of patterns so
as to uncorrelate the features. We begin with the following matrix of eight patterns:

ﬂt=I232]234T
I 1 2 22 3.3 4

The sample means are m; = m, = 9/4. Applying the normalization of Eq. (2.1)
produces the following pattern matrix. The patterns are shown in Figure C.2.
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Translated
Feature 2 feature 2
A Rotated A Rotated
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feature 2
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o
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o o
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Figure C.2 Original and rotated patterns in two dimensions.
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The covariance matrix is
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The eigenvalues of % are values of A satisfying

(15/16) — A 11/16
11/16 (15/16) — A

or
3202 — 60N+ 13=0

The two solutions, which are eigenvalues of %, are A\, = 13/8 and A, = 1/4. There
are four sets of eigenvectors corresponding to these eigenvalues that differ in the directions
of the axes. We choose directions represented by the following transformation [Eq. (C.3)]:

[::;] = (1/V2) [_: :] [i:;] fori=1,...,8

-5 -3 1—1—3:37]T

ay = } F
B = Aby (1;2\/2)[ 0 8 -5 & B9 60

Figure C.2(a) shows that this equation defines a rigid rotation of the translated pattern
space. Note that the spread of the patterns in the direction of the first rotated feature is
much greater than that for the second rotated feature. Recall that A, = 13/8 and \, = 1/4
are sample variances along the new axes. Applying Eq. (2.2) to the rotated patterns changes
the ellipsoidal swarm of patterns to the spherical swarm in Figure C.2(b). The sample
means, after translation, are m; = 0, and m, = 0, while the sample variances, after rotation,
are s = 13/8 and 53 = 1/4. The normalization is

] _y‘.f_m}
Y=

.fj
where % = [y;]. The normalized patterns shown in Figure C.2(b) are

_ ,]_[—1.39 —0.83 028 —-028 —0.83 0.28 0.83 1.94
== 0 14 141 o 141 141 0 0 ]



Scatter Matrices

Scatter matrices play an important role in discriminant analysis and in cluster
analysis and are defined in this appendix. The objects under consideration are
described by d-dimensional patterns and are assumed to have been separated into
K clusters or into K categories. The (unnormalized) patterns in the kth group, n,
in number, are denoted by the (column) vectors

[xT(k), . x:(k)]T
where
* _ * k * kT
X,—”" =0 - X
The mean of the ith feature for the kth group is

i
m® = (lny) 3, x;®
j=1

The vector of feature means for the kth group is m®:
m® = [mf mp . mPT

The pooled mean, m, is the grand mean vector for all patterns.

K K
m = (I/n) > n;m® where n = > n,
k=1 k=1

The normalization of Eq. (2.1) can be applied by subtracting the grand mean
from all patterns.
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k) — ™ k) _
x| X; m

Then the scatter matrix, &, for the pooled sample is defined as

i

g = Z > ()T

k=1 j=1

The scatter matrix for the kth group is defined as

i
k) — 2 (x}‘{k] _ m”")(x}”“ — m™T
i=1

The within-group scatter matrix, &y, is defined as the sum of the group scatter
matrices.

K
— Z EFU(]
k=1

Finally, the between-group scatter matrix, ¥, is defined as the scatter matrix for
the group means.

M

K
= z > (m® — m)(m E nm®m®T — ymm”
k=1j=1 k=

The form of the first equation for ¥ is similar to the equation for & above.
The three scatter matrices are related in a straightforward manner, as can
be seen by writing

x0 = m® — m) + (x;® — m»)

Forming the product x{® x{¥T, summing over  and j, and realizing that the cross-
products on the right sum to zero, show that

SD=E)DB+-(,PW

Thus the total scatter in the data is divided into the between-group scatter and
within-group scatter. This relationship is useful for defining projection algorithms
(Section 2.4.3) and clustering algorithms (Section 3.3.1).



Factor Analysis

The goals of factor analysis (Harman, 1967) are to create a model for a set of
objects containing fewer and more pertinent features than did the original representa-
tion. A good model in factor analysis reproduces the correlation matrix well,
especially the variances. Some ‘‘underlying”’ or “‘fundamental’’ factors are being
sought from which the correlation matrix for the observed data can be reproduced.
A great deal of effort has been devoted to minimizing the number of factors
involved. The factor analytic solution discussed here is called the principal compo-
nent solution and is closely related to the eigenvector projection described in
Section 2.4.1.

The normalization of Eq. (2.2) is assumed and the factor analysis model
belongs to the class of models having the following form:

X; = ¥F; fori=1,...,n (E.1)

Here x7 is the representation provided by this model for the d-dimensional pattern,
x;, representing the ith object; F; is the m-vector of factors which defines x7;
# = [hy] is a d X m matrix of factor loadings which establishes the factor
analysis. The factors themselves cannot be observed. The problem is to estimate
the elements of 7.

To simplify the problem of defining 3, the sample variances of all factors
are assumed to be unity, the sample means are assumed to be zero, and the
sample covariances between factors are assumed to be zero. These assumptions
do not concern random variables representing the features but are imposed on the
sample moments themselves. Specifically, writing
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Fi=[Fy Fp +++ Fil"

as the factor vector corresponding to pattern X;, the assumptions are
n
(I/n) X, F;;=0 forj=1,...,m
i=1

0 ifj#Ek

17 FyFy =
( ")f; it ik [1 lf_]=k

The sample moments provided by the model are given below for j from 1 to d.

n
m;= (1/n) Z x5=0
i=1

()2 = (1/n) X, x)* = 2, hj
i=1 k=1

m

n

o o .0 __

Fip = (1/n) 'zl XijXip = kzl hjkkpk
i= =

All solutions to the problem of factor analysis try to select the 7€ matrix in
such a way that these moments match the moments computed in the (normalized)
pattern space. These goals are

D=1, F=1, v.orw ol
Fip=Tjp—rp =0 forj,p=1,...,d wherej#p

The scalars {fj.,,} are called residual correlations and measure the goodness
of the factors. The variance (.'fj’)2 is also called the communality of the jth feature,
and the sum over all m factors is called the toral communality of the model. The
contribution of the kth factor to the total communality can then be identified as

d
V=2 hi
j=1

The strategy of the ‘‘component analysis’’ or *‘principal factor’ approach
to selecting the J€ matrix can be outlined as follows. First, try to select the matrix
J€ to maximize V, the contribution of the first factor to the total communality,
under the constraint that all residual correlations are 0. This leads to the first
column of #. Then select the remaining elements of € to maximize V,, subject
to the same constraint. The second column of € is obtained in this step. Repeating
this procedure results in the d X m matrix € which is to be used in Eq. (E.1).

%F - %TAUZ

m
Here AL? = diag (\}2, A\Y2, . . ., A\Y?) is a diagonal matrix and the m X d
matrix #,, is the matrix of eigenvectors in Eq. (2.4).
The number, m, of factors can be no larger than the rank of . Since
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Vi= N fork=1,...,mwhen # = ¥, the contribution of each factor to
the total communality can be obtained directly from the eigenvalues of R. The
cumulative sum of eigenvalues, when compared to d, provides a running account
of the degree to which the total communality is being reproduced.

A factor analysis resolves each pattern into factors that may or may not
have any interpretation in the original problem. The values of the factors themselves
for each pattern cannot be computed because x; # x; and m < d; even if x; = X;
were assumed, 9 in Eq. (E.1) is not a square matrix and does not have an inverse.
Thus the factor analytic point of view is quite different from the linear projection
point of view presented in Section 2.4. This difference is evident when the positions
of 9 in Egs. (2.4) and (E.1) are compared. However, if the rank of % is d, then
the d X d matrix

He=1Ic, ¢ - cJAR?
has inverse
gf;l — AEIQCQE
Thus the ith factor vector can be written as
F; = %r'x;

Since the ordering A\; = A, = +++ = N, was assumed, the factors decrease
in importance from top to bottom in the vector of factors. Choosing the first m
factors only provides a projection of the original patterns into an m-dimensional
space. Since

FIF; = x]€pAR "6rx; = TR~ 'x;

lengths of patterns and distances between patterns are different in the two spaces.
However, the correlation matrix in the new space is the unit matrix.

n
(I/n) >, FFT = ¥z R(HzHT =9 (E.2)
i=1
Comparing Eq. (E.2) to Eq. (2.5) exhibits the effect of including Ag? in
the transformation. Another item to note is that when d = m, Eq. (E.2) can be
written as

R = Hp(Hp)T (E.3)

The factor loadings in ¥ are correlations between the given features and
the factors. The factors can sometimes be named by determining which features
influence the factors most strongly, the ideal being bipolar factor loadings, or
entries of #(; which are either 0 or 1.

The correlation matrix can be expressed in the form of Eq. (E.3) with nonsingu-
lar matrices other than #,. In particular, a matrix having all zeros below the
main diagonal can be defined that satisfies Eq. (E.3) and such a matrix defines
another transformation with the property of Eq. (E.2).
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If the residual correlations are to be made zero and the correlation matrix
9% is employed, the number of factors must be ¢ and no reduction in the number
of features can be achieved. However, the rank of % can be reduced by replacing
the 1's on the main diagonal of % with estimates of communalities. Reducing
the rank of & reduces the number of factors necessary to make all residual correla-
tions zero. A great deal of effort in factor analysis is directed at estimating communal-
ities to use on the diagonals in %R.



_F

Multivariate
Analysis
of Variance

The basic problem in multivariate analysis of variance (MANOVA) is to decide
whether means of group populations differ significantly. Groups are formed from
information incidental to the data, such as category labels. The group covariance
matrices are assumed to be the same. MANOVA is a well-known statistical technique
which is used in the design of experiments, where, for example, the response or
outcome of K treatments on agricultural plots is studied. The test statistic for
testing the null hypothesis that all group means are the same is based on
A = |F5l/|Fw|, where Fp is the between-group scatter matrix and %y is the within-
group scatter matrix defined in Appendix D. Various approximations to the distribu-
tion of A are possible, such as the Rao approximation, in which a test statistic
having an F-distribution is formed. The assumption of equal covariance matrices
can be checked with the Box test (Cooley and Lohnes, 1971).

In the context of discriminant analysis, the following hypothesis-testing prob-
lem can be studied. The objects are represented by d-dimensional patterns. Suppose
that the ¢ most significant, or largest, eigenvalues of S S are accepted. How
well can the K groups be discriminated when the objects are projected to a space
defined by the remaining m — 1 eigenvectors, where m = min (K — 1, d)?

The null hypothesis is that there is no significant difference among groups.
However, the groups must be specified before the data are observed. For example,
if the groups correspond to different treatments of a disease, the patients must be
labeled according to treatment. This is an important point to remember when
attempting to validate the results of clustering algorithms using MANOVA. When
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the group labels are cluster labels imposed after the patterns have been separated
into clusters, the following distributions are not valid. The test statistics is

_l_
T,=—(n-— %{ — 1) log (A)
where

m
A= T a+g!
J=rt1
It can be shown that under the null hypothesis, T, has an approximate chi-
squared distribution with (d — 1)(K — t — 1) degrees of freedom. Since a small
value of A, indicates good separation according to group and 0 < A, < 1, large
values of T, reflect significant discrimination. The form of the test is:

Reject the null hypothesis if T, > «

where a is the level of significance (Chapter 4).

Even though the distribution of T, is unknown when the groups are formed
by cluster analysis, the linear projection defined by discriminant analysis based
on clusters provides an excellent two-dimensional projection of the patterns. When
K = 3, the two-dimensional projection defined by the two largest eigenvalues of
S Sy, or ; and {,, will provide the smallest increase in scatter ratio among all
other two-dimensional projections, as can be seen from Eq. (2.7). This projection
is the first two rows of Eq. (2.6).



Groph' Theory

This brief appendix lists some definitions from graph theory that are used in cluster-
ing. Most books on discrete mathematics have sections on graph theory (Korfhage,
1974).

G.1 DEFINITIONS

A graph is a mathematical structure that has a multitude of applications in cluster
analysis. This appendix covers undirected, finite graphs. We begin with a finite
set of vertices, or nodes, V = {v;} which usually represent the objects being
clustered. A set of edges E = {e;} records the interactions between pairs of vertices.
The vertices and edges are related by a function f that maps edges into unordered
pairs of vertices. That is, f assigns each edge in E to an element of the product
set VX V. A graph G is the triple G = <V, E, f>.

The graph G defined above is an undirected graph because the pairs of
vertices are unordered. In other words, this type of graph is a symmetric, nonreflex-
ive, binary relation on the set of vertices. Vertices are written on paper as dots
and edges are denoted by lines connecting the dots, as in Figure G.1. Directed
graphs have arrows on the edges indicating an ordering of the vertices. We assume
that there are no *‘self-loops,”” so the two vertices to which f assigns an edge are
distinct. Multiple edges are also disallowed, so f assigns each edge to a distinct
pair of vertices. The word ‘‘graph’ will thus refer to an undirected graph with
no self-loops or multiple edges.
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Vertex

Edge
97 ‘l

A Graph with Multiple Edges

€2
> Q
Eg -

—e
V3 ©5 vy A Graph with a Self-Loop
e is incident to v and v,
fleg) = (va, vyl
> <

A Graph with 5 Vertices and
6 Edges

A Directed Graph

Vi ey V2

Vi ey V2
v
Vg es 5
es ./0
€g
€g Vs
Va

Va
A Connected Subgraph A Two-Component Subgraph
V4 Vo
Vs Va G
vy €5 vy

Not a Subgraph
A Three-Component Subgraph

Figure G.1 Examples of graph definitions.

Some applications require that labels, or weights, be assigned to the vertices
and/or to the edges. For example, the vertices could represent points in the plane
and an edge could link two vertices if the points are closer than some threshold
distance. The nodes could be labeled according to object and the edges could be
labeled by the distance between patterns representing the objects.

If edge e is mapped into vertices (v, v») by f(e) = (v, v,), edge ¢ is said
to be incident to vertices v, and v,. In general, some vertex pairs will not be
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assigned an edge and some vertices will not have any incident edges. Definitions
of several terms from graph theory are listed below.

Graph H = <V', E', f'> is a subgraph of graph G = <V, E, f> if V' is
a subset of V, E' is a subset of E, and f’ is the function f with its domain
restricted to E’. Thus a subgraph is a subset of the nodes and edges of the original
graph that contains no edges or vertices that are not in the original graph. A path
in graph G between vertices v, and v, is an alternating sequence of vertices and
edges:

Vievaez Uy 1€y—1 Uy

containing no repeated edges and no repeated vertices and for which edge ¢; is

incident to vertices v; and v;, for i = 1, . . . , n. Examples are in Figure G.2.
vy Va
Vs
V3 Va

Reference Graph

v v v
1 2 V4 2 ® .
> VE . Vg 5
®
v v
Vi Vg V3 Vg 3 4
Some Subgraphs That Are Paths
vy Vo

Vi Vo
Vs
v v
Vs Va 3 4
Not a Path (Repeated Vertex)

Not a Path in the
Reference Graph

v v
vy V2 .1 2 Vi vy
® v ®
Vg 5 Vg
@
V3 Va V3 Va V3 Vg
Cycles in the Reference Graph Not a Cycle

Figure G.2 Properties of graphs.



Sec. G.1 Definitions 269

A graph is connected if a path exists between any two vertices in the graph.
A component is a maximal piece of a connected graph. The word ‘‘maximal’’
means ‘‘as many nodes as possible,”” so a component is not a proper subgraph
of another connected graph. A graph G is complete if an edge is assigned to
every possible pair of nodes. A complete graph on n nodes contains exactly
n(n — 1)/2 edges. A maximal complete subgraph of G is a complete subgraph of
G that is not a proper subgraph of any other complete subgraph of G. That is, H
is a maximal complete subgraph of G if an edge is incident to every pair of

A Graph with 8 Edges on 7 Vertices
Containing 2 Components

D &

Complete Graph

on 4 Vertices Complete Graph

on 5 Vertices

SN

Reference Graph Maximal Complete Subgraphs

Bg K

() &

2

N

(not complete) (not a subgraph)

Graphs which are not Maximal Complete Subgraphs

Figure G.3 More examples of graphs.
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vertices in H but no additional vertices of G can be added to H without destroying
the completeness. The name cligue is used for a maximal complete subgraph.
Figure G.3 provides examples.

G.2 TREES

A cycle is the same as a path except that vertices v, and v, are the same vertex.
A tree is a connected graph with no cycles. If a subgraph has m vertices, it is

2 1 2 1 2
4 ( 3 4 ( 3 4
5 5 5

1

Reference Graph Two Spanning Trees
1 7. 1 @ 2
[ ]
@ K‘t
5 5
(contains a cycle) (no edge incident to 4)

Some Subgraphs That Are Not Spanning Trees

4 6.7 5

Reference Graph

Two MST’s With Weight 5.3

Figure G.4 Spanning tree examples.
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easy to prove that a tree containing these vertices has exactly m — 1 edges. A
spanning tree is a tree containing all vertices of the graph. When the edges in a
graph are weighted by dissimilarities on an interval or ratio scale, the weight of
a tree is the sum of the edge weights in the tree. A minimum spanning tree
(MST) of G is a tree having minimal weight among all other spanning trees of
G. As demonstrated in Figure G.4, a graph can have more than one MST. MSTs
of complete graphs are especially important in cluster analysis.

A number of algorithms have been proposed for identifying an MST. Prim’s
(1957) algorithm is generally taken to be the best computationally, but the “‘naive’
algorithm is easier to apply with pencil and paper. That is, rank order the edge

[
[V }

— .
—

A XN
NN
N Z

1 F /1 XV
TN X L

X
AN
M X

Figure G.5 Random threshold and rank graphs.
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weights and insert edges in order of dissimilarity, shortest first, until a tree is
formed, being careful not to form any cycles.

G.3 RANDOM GRAPHS

An (n, N) threshold graph is defined as a graph on n labeled nodes containing N
unlabeled edges. The adjective ‘‘random’’ is sometimes used to indicate that the
edges have been inserted at random. A rank graph is a threshold graph in which
the edges are labeled. There are (*4?) distinct (n, N) threshold graphs and (2)N!
is the number of (n, N) rank graphs.

The notation (}') indicates the number of ways in which k objects can be
sampled from a population of m objects when sampling is done without replacement
and ordering of the sample is ignored. The special notation n : 2 indicates n
objects sampled two at a time so that

:n(n— 1)
2

Figure G.5 shows all (4, 3) threshold graphs and all rank graphs for a particular
random threshold graph.

An (n, N) random threshold graph can be generated by inserting N edges
in a graph with n labeled nodes in such a way that as each edge is inserted, all
unfilled positions are equally likely. The edges themselves are not labeled. Multiple
edges between two nodes are not allowed and an edge cannot have the same
node at both ends, so self-loops are not allowed.

n:?2



Algorithm
for Generating Clustered Data

The algorithm presented in this appendix generates samples from a spatial point
process that is a2 modification of the Neyman—Scott (1972) process in which spheri-
cally shaped Gaussian clusters are located randomly in the sampling window.
The algorithm ensures that the clusters do not overlap more than a specified amount,
provides for a minimum number of points per cluster, and permits the exact number
of clusters to be specified. The parameters of the algorithm are:

n: number of patterns, or points, to be generated
d: dimensionality of space

o: cluster spread

Nmin: Minimum number of points per cluster

I,: overlap index

c: number of clusters (n,,;,c = n)

The objective is to create a set of n patterns in a d-dimensional sampling
window, taken here to be the unit hypercube, arranged into ¢ clusters with at
least n,;, patterns per cluster. Points in individual clusters are independent samples
from d-dimensional Gaussian distributions centered at a randomly chosen cluster
center and having covariance matrix:

a9, where % is a d X d unit matrix
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The overlap between clusters i and j, O(i, j), is defined as the Bayes error
in the following hypothesis-testing problem that classifies a d-vector, X, according
to

H;: X is distributed as N(p;, o>9)
Hj: X is distributed as N(p;, 0>%)

where p; and p; are the true centers of two clusters. Prior probabilities for the
two hypotheses are defined in terms of the relative number of patterns in the two
clusters. The Bayes rule for this problem is well known (Duda and Hart, 1973).
Letting n; denote the number of patterns in cluster i and letting N; and N; denote
the numbers of patterns from clusters / and j misclassified by the Bayes rule, the
overlap between the two clusters is defined as
. NitN;
oa, j) =

n; +n;

The overlap varies from 0 to |, with 0 meaning well-separated clusters and
1 meaning coincident clusters. The overlap parameter /, specifies the maximum
allowable overlap between any pair of clusters and is not allowed to exceed /,,.
The algorithm itself is outlined below.

ALGORITHM FOR GENERATING CLUSTERED DATA

Step 1. Establish cluster sizes {n;, n,, . . . , n.} for which
S m=n and n=ng, for all k
k=1

This is accomplished by setting n; to np;, for all k, then selecting clusters
at random and incrementing their size by 1 until the sums of the cluster
sizes is n.

Repeat steps 2 to 5 for i from 1 to c.
Step 2. Generate cluster center p; at random in the sampling window (unit
hypercube).
Step 3. Scatter n; patterns around p; according to a N(;, o>%) distribution.
Reject patterns falling outside the sampling window. Continue until n; patterns
have been generated inside the sampling window.
Step 4. If any of the overlaps O(i, i — 1), O(Gi, i — 2), . . ., O, 1)
exceeds [, repeat steps 2 and 3.
Step 5. If 50 repetitions do not succeed in generating a new cluster center,
increase /, to the smallest overlap encountered in the 50 repetitions and
repeat steps 2 to 4.
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and a priori structure, 148
criteria for, 161
unusualness of, 143
validation by bootstrapping, 159
validity of, 146
Clustering tendency, 201-222
in clustering methodology, 136
CM-reachable method, 192
Communality, 261
Compact cluster, 192
Compactness index of cluster:
best-case, 194
external, 191
internal, 192
Compactness of cluster:
in cluster validity, 188-89
definition, 189
and within-cluster scatter matrix, 95
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Comparative analysis, 137
Comparison of algorithms in image
segmentation, 233
Complete graph, 269
Complete-link algorithm:
agglomerative, 61
from graph theory, 60
Hubert’s, 63
Johnson's, 72
by matrix updating, 79
Complete-link cluster:
as clique, 64
visual assessment, 75
Complete-link clustering:
comparative analysis, 138
and complete subgraphs, 62
in range image segmentation, 233
Complete-link hierarchy and relative
criteria, 161
Complete-link method:
characterization, 65
difference from single-link, 74
graph theory algorithms, 70
matrix updating, 72
Complete spatial randomness, 201
Complexity of K-means algorithms,
100
Component densities, 117
Computer sampling, 155, 156, 159
Computer vision, 224
Computational complexity, 3
Conceptual clustering, 92, 224
Concordant pairs, 153, 154, 167
Confidence bounds in Monte Carlo
sampling, 157
Confidence intervals:
in bootstrapping, 160
in Monte Carlo analysis, 157
Connected graph, 269
Connectivity test for randomness, 221
Contingency table:
for external indices of partitional
adequacy, 172
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Contingency table (cont.)
for indicator functions, 173
for matching coefficients, 16
Continuous feature, 12
Continuous proximity index, 12
Convergence, clustering algorithm, 99
Conversion:
between data scales, 14
between pattern and proximity ma-
trices, 11
Convex hull, 207
Cophenetic correlation coefficient, 166
CPCC, 166
cophenetic matrix:
of basal taxonomies, 170
with external index, 166
with Goodman-Kruskal vy statistic,
153
and imposed structure, 66
and tied proximities, 68
and ultrametric inequality, 84
Cophenetic proximity:
and CPCC, 166
definition, 67
and global fit of hierarchy, 167
and ultrametric inequality, 69
Corrected statistic, for chance, 175
Correlation between sequences, 155
Correlation, point serial, 148
Correlation coefficient:
rank, 153
sample, 16
Correlation matrix, sample, 25
Covariance function, spatial point pro-
cess, 212
Covariance matrix:
in Gaussian density, 247
in rotated coordinates, 253
sample, 25
Cox-Lewis statistic, 219
Criterion, compared to index, 161
critical region:
in hypothesis testing, 146-47
in Monte Carlo analysis, 158

General Index

Crossover:

and centroid methods, 84

and monotonicity in dendrograms,

83

and nonmonotone clustering, 81
Crude Monte Carlo estimate, 155
Cutting a dendrogram, 59
Cycles in testing for randomness, 221

D

DATAL:
with CLUSTER program, 110
complete-link dendrogram for, 74
description of, 29
eigenvector projection for, 31
with FORGY program, 103
single-link dendrogram of, 74
DATA2:
with CLUSTER program, 110
complete-link dendrogram of, 77
description of, 30
eigenvector projection for, 30
with FORGY program, 106
with Sammon nonlinear projection,
40
single-link dendrogram of, 76
DATABOX (See 80X data)
Data collection, 136
Data representation, 7-54
Data type and index of cluster validity,
162
Data type and scale, 8-14
Davies-Bouldin index, 185
DB statistic, 186
Decision theory, 147
Degree of quantization, 12
DeLaunay tessellation, 214
DeLaunay triangulation, 125
Dendrogram:
crossovers and monotonicity, 83
cutting, 65
proximity, 62, 66



General Index

and recovered structure, 65

threshold, 62

visual impact of, 89
Density estimation, 118
Diameter method, 65
Diameter of subgraph, 86
Dichotomous data, 17
Digital image, 225
Dimensionality, 145
Dimensionality, intrinsic (see intrinsic

dimensionality)

Dimensionality and sample size, 243
Directed tree, 123
Dirichlet tessellation, 125
Discrete proximity index, 12
Discrete feature, 12
Discriminant analysis:

and category labels, 1

and hypothesis testing, 264

and pattern recognition, 242

and projection, 34
Discriminant surface, 57
Disjoint clustering, 72
Dissimilarity, 14

as proximity index, 11

from discordant pairs, 153-54, 167
Distance methods, tests for random-

ness, 217

Distribution:

by bootstrapping, 159

Gaussian, 246

Hypergeometric, 249

null, 146

two points in hypersphere, 213
Divide and conquer, 3
Divisive algorithm, 57
Dynamic programming, 91

E

Edge connectivity, 86
Edge correction to sampling window,
207

Edge detection, 233
Edge effects on Cox-Lewis statistic,
221
Eigenvalue:
of covariance matrix, 26
and number of features, 27
in range image segmentation, 233
of sample covariance matrix, 252
Eigenvector:
as basis vector, 34
of covariance matrix, 26, 249
of sample covariance matrix, 252
with scatter matrices, 95
Eigenvector projection, 26
Eigenvector transformation, 27
80X data:
description, 8
discriminant analysis, 36
eigenvector projection, 28
examples of internal and external
indices, 162
factor analysis, 28
first two principal components, 28
listing, 10
Sammon’s nonlinear projection, 39
Elbow rule in MDSCAL, 51
Ellipse of concentration, 249
Embedding problem, 48
Entropy, 45
ERDAS system, 237
Error estimation, 243
Estimation by bootstrapping, 159
Euclidean distance, 15
Exclusive classification, 56
Exploratory data analysis, 4, 135
External criterion:
for comparing hierarchical cluster-
ings, 170
for validating clustering structures,
161
External index:
in clustering methodology, 137
for comparing two partitions, 174
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External index (cont.)
for estimating number of clusters,
177
for global fit of hierarchies, 166
of partitional adequacy, 172
for validity of individual clusters,
189-92
External measures of validity in com-
parative analysis, 140
Extrinsic classification, 56

F

F-distribution, 264
F-ratio, 102-3
Factor analysis, 260-63
Factor loading, 260, 262
Feature, 8
Feature average, 24
Feature selection, 243
Feature types, 12
Feature variance, 24
Features, uncorrelated, 26
Forcing pass, 97
FORGY program:
example, 103-108
explanation, 101
method, 97
Fowlkes and Mallows statistic, 174
Frame method for nonlinear projection,
40
Fractal dimensionality, 43
Friedman-Rafsky test, 215
Fuzzy clustering, 130
and exclusive classification, 56
and partitional clustering, 94
Fuzzy sets, 131

G

Gabriel graph, 123-24
Gamma (I') statistic (See Hubert’s I’
statistic)

General Index

Gamma (vy) statistic (See Goodman-
Kruskal vy statistic)
Gaussian cluster, 208
Gaussian density function, 247
Gaussian distribution, 246
Geographic variation, 153
Geometric interpretation, arithmetic
averaging methods, 80
Geometric structures, 120
Geometrical pattern recognition, 241
Gestalt principle, 121
Gibbs process, 211
Global clustering criterion, 90-92
Global fit for hierarchies, 165
Global minimum in MDSCAL, 52
Global structure, 41
and MDSCAL, 51
Globular cluster, 95
Globular structure, 129
Goodman-Kruskal gamma () statistic,
153
example, 154
and monotone transformation, 155
percentage points under random
graph hypothesis, 167
and validity of hierarchy, 166
Grade of membership, 131
Gradient descent procedure, 40
in MDSCAL, 50
in maximum likelihood estimation,
118
Graph, 266
Graph theory:
and hierarchical clustering, 86
and partitional clustering, 120
Group average method, 80

H

Hamming distance, 15, 92
Hard-core models, 211
Hard spheres, 208
Heterogeneity function, 17



General Index

Hierarchies, 160
Hierarchical clustering, 58-88
and sequence of nested partitions,
59
Hierarchical clustering algorithms,
definition, 86
Hierarchical partition, 57
Hierarchical structure:
perfect, 68
true, 69
and ultrametricity, 68
Hierarchical tree classifier, 243
Hill-climbing, 91
Hill-climbing pass, 97
Histogram:
in density estimation, 119
of edge lengths in MST
gray-level, 225
with Hubert’s I statistic, 149-50
of Hubert’s I" for 80X data, 163
of nearest-neighbor distances, 218
shift in, from random label to ran-
dom position hypotheses, 165
Hopkins statistic, 218
Hough transform, 240
Hubert’s algorithm:
for complete-link clustering, 63
for single-link clustering, 63
Hubert’s gamma (I') statistic, 148
in comparative analysis, 140
and degree of linear correspondence,
149
80X data, example, 151
external criterion, example, 162
internal criterion, example, 162
modification for relative index, 186
normalized, 148
in partitional adequacy, 174
with stopping rule, 185
and validity of hierarchy, 166
Hypergeometric distribution, 249
and external indices of cluster valid-
ity, 189-90

3an

and external indices of partitional
adequacy, 175
and permutation statistic, 23
and probability profiles, 195
Hypergeometric probability:
computing, 250
Peizer approximation to, 251
Hypersphere, distribution of distances
in, 44
Hypothesis:
alternative, 146, 148
null, 144-47
null, for Hubert’s gamma (I') statis-
tic, 149
random graph, 144-45, 149
random label, 144-45, 149
random position, 144-45
randomness, 144
and internal index of partitional
adequacy, 179
testing, 144

ICICLE package, 134
Identifiable mixture, 117
Image classification, 226
Image processing, 224
Image registration, 237
Image segmentation and clustering,
225
Inconsistent edges, 121
in range image segmentation, 233
and structure graphs, 128
and sparse clusters, 123
Index:
of cluster validity, 160-65
compared to criterion, 161
for comparing partitions, 172
of partitional adequacy, 174
of proximity, 11
of structure, 147
Indicator function, 173
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INDSCAL program, 53
Information measure for contingency
table, 20
Initial partition:
in iterative partitional clustering, 96
recovery from, 98
in square-error clustering, 97
Intensity of spatial point process, 212
Internal edges:
in best-case indices, 194
as compactness index, 189-90
Internal index:
in clustering methodology, 137
for clusters, 192
for global fit of hierarchies, 166
of partitional adequacy, 177
as relative index of partitional ade-
quacy, 178
Interpoint distance:
in intrinsic dimensionality, 45
and test for randomness, 213
Interval estimator, 157
Interval scale, 13
Intrinsic character of data, 160
Intrinsic classification, 56
Intrinsic dimensionality, 42-46
Bennett's method, 44
in clustering methodology, 136
estimation from near-neighbor infor-
mation, 46
global approach, 44
local approach, 45
Trunk’s method, 46
ISODATA:
description, 98
fuzzy, 132
and nearest-neighbor computation,
3
parallel computation, 101
in remote sensing, 237
Isolated cluster, 192
Isolation index, 189-90
best case, 194
Isolation of cluster, 188-90

General Index

ISPAHAN, 135
Iterative partitional clustering algo-
rithm, 96

J

Jaccard coefficient, 17

for binary vectors, 21
Jaccard statistic, 174
Joins, 214
Journal of classification, 4

K

Karhunen-Loeve projection, 26
Kendal’s 7 statistic, 167
Kernel function, 120
K-MEANS algorithm in comparative
analysis, 140
K-means method, implementation, 134
K-means pass, 97, 109
Knee:
in curve of average error, 179
with eigenvector projection, 27
significant, in relative index of valid-
ity, 187
Kolmogorov-Smirnov statistic, 213
Kruskal’s stress, 47

L

LANDSAT image, 235

Lattice regularity, 208

Level, critical, 146

Level function, 66

Level of significance in Monte Carlo
analysis, 158

Level of test of hypothesis, 146

Lifetime of cluster, 197-98

Light stripping, 232

Likelihood function, 211
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Linear algebra, 252-57
Linear dimensionality, 43
Linear projection, 25-36
Ling index, 198
Linking edge:
in best-case index, 194
as isolation index, 189-90
Local clustering criterion, 90
Local minimum, effect of initial parti-
tion, 97
Local minimum in MDSCAL, 52

M

Machine vision, 224
McQueen’s K-means method, 97
Mahalanobis distance:
definition, 16
in Gaussian distribution, 249
in square-error clustering, 93
Manhattan distance, 15
Mantel statistic, 148, 153
MANOVA (see Multivariate Analysis
of Variance)
Matching coefficient, 16
Matrix updating algorithm, 79
complete-link, 72
effect of ties, 78
example, 73
and monotonicity, 79
single-link, 72
Matula index, 200
Maximal complete subgraph, 269
Maximal subgraph, 64
Maximizing scatter, 34
Maximum method, 65
MDSCAL:
algorithm, 47
and hierarchical clustering, 52
interpreting configurations, 51
naming axes, 52
program, 50
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and Sammon’s nonlinear projection,
39
Measurement space, 2
Median method, 80
Metropolis algorithm, 212
MH—Modified Hubert's I" statistic,
187
Minimum mean-square-error pro-
jection, 31
Minimum method, 65
Minimum spanning tree:
in clustering tendency, 214
definition, 271
and DeLaunay triangulation, 125
and Gestalt principle, 121
and single-link clustering, 70
and triangulation, 41
and unfolding data, 45
Minimum variance method, 80
Minimum variance partition, 93
Minkowski metric, 14, 15, 47
Missing data, 19
Mixture decomposition, 117
Mixture density, 117
Mode-seeking, 117-18
Mode separation, 120
Moment of inertia, 25
Monothetic clustering algorithm, 58
Monotone methods and ultrametricity,
83
Monotone regression, 50
Monotonicity:
and crossovers in dendrogram, 83
and matrix updating, 79
in SAHN algorithms, 84
with SAHN methods, 80
and ultrametricity, 70
and updating formula, 84
Monte Carlo analysis, 155-59
of baseline distribution for square-
error, 178
in clustering methodology, 137
of CPCC, 166
with Hubert’s I' statistic, 150, 153
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Monte Carlo Analysis (cont.)
in hypothesis testing, 145
with test of cluster validity, 161
in test for nonrandom structure, 162
in tests for randomness, 215, 218
Monte Carlo estimate, crude, 155, 157
Monte Carlo sampling, 155-56, 158
Monte Carlo studies:
in comparative analysis, 139
with DB statistic, 186
of external indices of partitional ade-
quacy, 176
with MH statistic, 187
of stress distribution, 51
Monte Carlo tests of cluster analysis,
140
Monte Carlo trials, 156, 159
MST (See Minimum spanning tree)
MST-based clustering in image seg-
mentation, 233
Multiband imagery data, 40
Multidimensional scaling, 46-53
in clustering methodology, 136
Multivariate analysis of variance, 264
Multivariate normality, 247
Mutual nearest neighbor clustering in
image segmentation, 233
Mutual neighborhood clustering algo-
rithm, 129
Mutual neighborhood value, 129

N

Naming axes in MDSCAL, 52
Near-neighbor distribution:
to estimate intrinsic dimensionality,
46
for hard-core models, 210
and sampling window, 219
Nearest-neighbor clustering algo-
rithms, 128
Nearest-neighbor decision rule, 3

General Index

Nearest-neighbor density estimation,
118
Nearest neighbor distance, 129
pattern-to-pattern, 217
and tests for randomness, 215
Nearest neighbor and missing data, 19
Nearest-neighbor rule in pattern recog-
nition, 242
Nearest-neighbor, shared, 129
Nearest-neighbor method, pattern den-
sity, 120
Neighborhood depth, 129
Neighborhood size, 129
Nested partition, 58
Neyman-Scott process, 207
Node coloring, 71
Node coloring and complete-link clus-
tering, 72
Node connectivity, 86
Node degree, 86
and test for randomness, 221
Nominal data type, 16
Nominal scale, 12
Nonlinear projection, 3742
Nonparametric maximum likelihood
estimation, 160
Nonrandom structure, test for, 162
Normal distribution, sampling, 159
Normality of Hubert’s I" statistic, 153
Normalization of data, 23-25
Null distribution, Hubert’s I" statistic,
175
Null population, 80X data, 164
Number of clusterings, 90
Number of clusters:
from clustering algorithms, 138
from DB statistic, 186
from knee in square-error curve, 105
from MH statistic, 187
Number of components in graph, 272
Number of features and intrinsic di-
mensionality, 43
Numerical taxonomy, 167
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0

Object detection via image registration,
238
Ordination, 47
Orthogonal matrix, 253
Outlier:
in comparative analysis, 138
in FORGY program, 101
in hierarchical clustering, 81
in MDSCAL program, 51
in partitional clustering, 98
Overlap of clusters, 274
Overlapping classification, 56
Overlapping clusters and fuzzy cluster-
ing, 131

P

Packing density, 208
Pair group method, 79
Parallel processing and partitional clus-
tering, 101
Parametric classification, 243
Partition, 58
Partition function for Gibbs process,
211
Partition ranks, 168
Partitional classification, 57
Partitional clustering, 89—133
Forgy’s method, 97
fuzzy algorithm, 133
and image segmentation, 226-27
iterative algorithm, 96
McQueen’s K-means method, 97
of textured image, 227
Partitional clustering method, iterative,
96
Partitional clustering problem, state-
ment, 90
Parzen window, 118, 120
Pattern, 8
Pattern matrix, 8

315

Pattern recognition, 24145
Pattern space, 8
Perceived similarity, 11
Percentile frame, 221
Perceptual grouping, 41
Perfect cluster, 190
Perfect hierarchical structure, 68
and ultrametric inequality, 83
Periodic boundaries, 207-208
Permutation:
and random label hypothesis, 144—
45
with Hubert’s I" statistic, 148-50
Permutation statistic, 22
Pixel, 225
Point serial correlation, 148
Point serial correlation coefficient, 186
Poisson process:
in clustering tendency, 219
nearest-neighbor distribution, 218
in quadrat analysis, 212
and random position hypothesis, 145
as spatial point process, 203
Poisson random variable, sampling,
159
Population correlation coefficient, 247
Population moments, 247
Positive-definite matrix and proximity
index, 17
Potential function, 211
Power of test of hypothesis, 146-48
Prim’s algorithm, 271
Principal component:
in factor analysis, 260
projection, 26
significance from bootstrapping, 160
Probabilistic index of similarity, 20
Probability density estimate, 118
Probability profile, 195-96
Processing time for partitional cluster-
ing, 101
Product moment correlation coeffi-
cient, 166
Projection algorithm, 25
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Projection by discriminant analysis, 35
Projection pursuit algorithm, 42
Proximity, cophenetic (see cophenetic
proximity)

Proximity dendrogram, 62, 66
Proximity graph, 66
Proximity index, 14-23

binary, 12

continuous, 12

discrete, 12

dissimilarity, 11

matching coefficient, 16

and missing data, 19

nominal type, 16

ratio type, 14

similarity, 11
Proximity matrix, 11

ordinal, 145

rank order, 145

symmetry, 11
Proximity ranks, 168
Pseudorandom samples, 159

Q

Q-mode clustering, 9

Quadrat analysis, 212
Qualitative scale, 12
Quantitative scale, 12
Questionnaire data, 17, 20, 23

R

r-chain, 87
r-connected subgraph, 87
R-mode clustering, 9
Radius of subgraph, 87
Rand statistic, 174
in comparative analysis, 140
corrected for chance, 175-77
Random graph, 272
and cluster validity, 194

General Index

Random graph hypothesis:
and cluster lifetime, 197
with external indices of cluster valid-
ity, 189
and global fit of hierarchy, 167
with MDSCAL, 51
and internal indices of cluster valid-
ity, 192-94
in testing hypothesis, 14445, 149
Random label hypothesis:
with Hubert’s I" statistic, 151-53
and internal index of cluster validity,
163
in testing hypothesis, 14445, 149
Random position hypothesis:
and 80X data, 164
and spatial point process, 202-203
and testing hypothesis, 14445
Random threshold graph, 272
Random variable, 144
Rank, between-group scatter matrix,
36
Rank correlation, 166—67
Rank graph, 272
Rank order proximity matrix and vy sta-
tistic, 153
Ratio scale, 13
Reference population:
for random graph hypothesis, 145
and validity of hierarchy, 166
Region of influence, 123
Regression lines, fit from bootstrap-
ping, 160
Regularity and spatial clustering, 207
Regularly spaced patterns, 202
Relative criteria, 161
Relative error in Monte Carlo analysis,
157
Relative index:
and best-case index, 195
for clusters, 200
for global fit of hierarchy, 170
for partitional adequacy, 183-88
Relative neighbor, 124
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Relative neighbor graph:
and clustering tendency, 214
definition, 123-24
and partitions, 91
Remote-sensing, 117, 119, 223-25,
227
resampling, 159
residual correlations, 261
reversal, 84, 86
Ripley’s K(t) function, 212

S

S clustering package, 134
S-statistic, 23
SAHN clustering algorithms, 57
and graph theory, 87
monotonicity, 84
table of coefficients, 80
updating formula, 79
Sammon’s nonlinear projection, 38
Sample correlation coefficient, 16, 148
Sample covariance matrix, 16, 252
Sample space, 144
Sampling frame, 207
Sampling origin, 217-18
Sampling window:
in clustering tendency, 220
and internal index of partitional ade-
quacy, 178
in regular spatial point process, 208
shape and size, 207
and spatial point processes, 2023
Scale:
interval, 13
nominal, 12
ordinal, 153
ratio, 13
quantitative, 153
Scaling by range, 24
Scaling of features, 24
Scan tests for randomness, 211
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Scatter:
between-group, 35
geometrical interpretation, 34
maximizing, 34
within-group, 35
Scatter matrix:
decomposition, 94
definitions, 258-59
in partitional clustering, 94
Scatter ratio, 35
asymptotic Gaussian distribution
for, 182
Scene analysis, 224
Seed points, 97
in FORGY, 101
Segmentation, multispectral images,
235
Segmentation, range images, 232
Sensitivity, hierarchical structure, 79
Shape of cluster, 2-3
Shape from shading, 232
Shepard diagram, 48
Similarity, 11, 14
Simple matching coefficient, 17
between binary vectors, 20
distribution of, 20
Simple sequential inhibition, 208
simulated annealing, 39
single-link cluster as connected sub-
graph, 64
Single-link clustering
chaining, 65
and connected subgraphs, 62
in range image segmentation, 233
Single-link dendrogram, cophenetic
matrix, 68
Single-link hierarchy and relative crite-
ria, 161
Single-link method:
agglomerative algorithm, 61
characterization, 65
difference from complete-link, 74
divisive algorithm, 70
graph theory algorithms, 60
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Single-link method (cont.)
Hubert’s algorithm, 63
matrix updating algorithm, 72
MST-based algorithm, 70
Size, test of hypothesis, 14647
Sorted matrix approach, 74
Sparse sampling, 218
Spatial filtering, 227
Spatial pattern, 158
Spatial point process, 202-203
estimating density function for, 160
in estimating intrinsic dimensional-
ity, 46
generating clustered data, 273
and spatial randomness, 202
Spatial randomness, 201-2
Square-error, for cluster, 93
Square-error clustering:
criteria, 92
of LANDSAT images, 236
methods, 96
objectives, 93
programs, 101
updating the partition, 97
Square-error, decomposition by fea-
tures, 102
Square-error criterion, basis vectors,
33
Square-error and Ward’s method, 81—
82
SSI process, 208
Stability, 137
Star cluster, 2
Statistic:
corrected for chance, 175
Cox-Lewis, 219
description, 144
Fowlkes and Mallows, 174
Goodman-Kruskal vy, 153
Hopkins, 218
Hubert’s I', 148
Jaccard, 174, 176-77
Kendall’s 7, 167
Rand, 174

General Index

in test of hypothesis, 145

threshold for, 147

Wilks’s lambda, 35, 158
Statistical decision theory, 242
Statistical packages, 134
Statistical pattern recognition, 241
Steepest descent method, 94
Stimulus-response data, 52
Stirling number, 91
Stopping rule, 184-85
Stored data approach, 74
Stored matrix approach, 74
Stopping criterion in multidimensional

scaling, 50

Stress:

for curve, 48

in MDSCAL, 47

in Sammon’ projection, 38
Structure:

a priori, 148

chained, 141

clustering, 146, 148

imposed, 134

nonrandom, 146, 158

test for, 162

visual perception of, 37
Structural graphs, 214
Subgraph:

(k,r)-bonded, 87

(k-r)-connected, 87

r-connected, 87

definition, 268
Sup distance, 15
Supervised learning, 242
Syntactic pattern recognition, 129,

243

T

Taxi cab distance, 15

Taxonomy, 170

Template matching, 23, 238

Test for nonrandom structure, 162
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Test for randomness:
categories of, 211
with ordinal data, 221
and scaling, 213
Test for spatial randomness, 211
Test for splitting a cluster, 179
Test of hypothesis, 145
using Hubert’s I" statistic, 149
Textural qualities, 227
Texture, 227
Texture segmentation, 229-31
Three-dimensional object recognition,
232
Threshold:
on attribute values, 4
to define ‘‘large,”’ 148
in Monte Carlo analysis, 158
for stress in MDSCAL, 51
in test for nonrandom structure, 162
in test of hypothesis, 146
Threshold dendrogram, 62
example, 168
level function for, 66
Threshold graph, 60, 272
in hierarchical clustering, 62-64
and node coloring, 71
with ties, 77
Ties in proximity, 76
with ambiguity in dendrograms, 81
seriousness of, 78
Topological dimensionality, 42
Torus topology, 208, 210
Total scatter matrix, 94
Trace and square-error criterion, 94
Tree, 270
Triangle inequality, 14
and random graph hypothesis, 145
Triangulation, 41
Delaunay, 125
reference point approach to, 41
and Sammon’s projection, 41
second nearest-neighbor approach
to, 41
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True number of clusters, estimating,
177

U

Ultrametric cophenetic matrix and
monotonicity, 83
Ultrametric inequality, 69
and cophenetic matrix, 84
geometric interpretation, 69
and perfect hierarchical structure,
83
and ties in proximity, 76
Ultrametric matrix, 166
Ultrametricity, 68
and monotonicity, 70
in physics, 69
Unbiased estimate in Monte Carlo sam-
pling, 156
Unfolding data, 44
Unimodal clusters, 119
Unsupervised learning:
and intrinsic classification, 56
in statistical pattern recognition,
242
and mixture decomposition, 117
Unweighted centroid clustering
method, 80
Unweighted method, 79
UPGMA clustering method, 80
and CPCC, 167
UPGMC clustering method, 80
and monotonicity, 85

A

Valid cluster, 188, 192
at level N, 190
Validating clustering algorithms with
MANOVA, 264
Validity of clusters, 188-201
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Validity of hierarchical structures,
165-72

Validity of partitional structures, 172—
88

Variance retained in projection, 27

Visual perception and clustering, 8

Volume of sphere, 208

Voronoi diagram, 125

w

Wald-Wolfowitz run test, 214
Ward’s method, 80-83
and partitional clustering, 92
Weighted average clustering method,
80

General Index

Weighted centroid clustering method,
80

WPGMA clustering method, 80

WPGMC clustering method, 80
and monotonicity, 85

Wilks’s lambda statistic, 35, 158

Within-cluster scatter matrix, 94

Within-cluster sum of squares, 93

Within-cluster variation, 93-94

Within-cluster scatter matrix, 259

Within-group similarities, 4

Z

z-score and inconsistent edges, 121
Zahn’s clustering algorithm, 121



