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Abstract In recent years, spectral clustering has become
one of the most popular modern clustering algorithms. It is
simple to implement, can be solved efficiently by standard
linear algebra software, and very often outperforms tradi-
tional clustering algorithms such as the k-means algorithm.
On the first glance spectral clustering appears slightly mys-
terious, and it is not obvious to see why it works at all and
what it really does. The goal of this tutorial is to give some
intuition on those questions. We describe different graph
Laplacians and their basic properties, present the most com-
mon spectral clustering algorithms, and derive those algo-
rithms from scratch by several different approaches. Advan-
tages and disadvantages of the different spectral clustering
algorithms are discussed.

Keywords Spectral clustering · Graph Laplacian

1 Introduction

Clustering is one of the most widely used techniques for
exploratory data analysis, with applications ranging from
statistics, computer science, biology to social sciences or
psychology. In virtually every scientific field dealing with
empirical data, people attempt to get a first impression on
their data by trying to identify groups of “similar behav-
ior” in their data. In this article we would like to introduce
the reader to the family of spectral clustering algorithms.
Compared to the “traditional algorithms” such as k-means
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or single linkage, spectral clustering has many fundamen-
tal advantages. Results obtained by spectral clustering often
outperform the traditional approaches, spectral clustering is
very simple to implement and can be solved efficiently by
standard linear algebra methods.

This tutorial is set up as a self-contained introduction
to spectral clustering. We derive spectral clustering from
scratch and present different points of view to why spectral
clustering works. Apart from basic linear algebra, no par-
ticular mathematical background is required by the reader.
However, we do not attempt to give a concise review of the
whole literature on spectral clustering, which is impossible
due to the overwhelming amount of literature on this sub-
ject. The first two sections are devoted to a step-by-step
introduction to the mathematical objects used by spectral
clustering: similarity graphs in Sect. 2, and graph Lapla-
cians in Sect. 3. The spectral clustering algorithms them-
selves are presented in Sect. 4. The next three sections are
then devoted to explaining why those algorithms work. Each
section corresponds to one explanation: Sect. 5 describes a
graph partitioning approach, Sect. 6 a random walk perspec-
tive, and Sect. 7 a perturbation theory approach. In Sect. 8
we study some practical issues related to spectral clustering,
and discuss various extensions and literature related to spec-
tral clustering in Sect. 9.

2 Similarity graphs

Given a set of data points x1, . . . , xn and some notion of sim-
ilarity sij ≥ 0 between all pairs of data points xi and xj , the
intuitive goal of clustering is to divide the data points into
several groups such that points in the same group are similar
and points in different groups are dissimilar to each other. If
we do not have more information than similarities between
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data points, a nice way of representing the data is in form
of the similarity graph G = (V ,E). Each vertex vi in this
graph represents a data point xi . Two vertices are connected
if the similarity sij between the corresponding data points xi

and xj is positive or larger than a certain threshold, and the
edge is weighted by sij . The problem of clustering can now
be reformulated using the similarity graph: we want to find
a partition of the graph such that the edges between differ-
ent groups have very low weights (which means that points
in different clusters are dissimilar from each other) and the
edges within a group have high weights (which means that
points within the same cluster are similar to each other). To
be able to formalize this intuition we first want to introduce
some basic graph notation and briefly discuss the kind of
graphs we are going to study.

2.1 Graph notation

Let G = (V ,E) be an undirected graph with vertex set V =
{v1, . . . , vn}. In the following we assume that the graph G is
weighted, that is each edge between two vertices vi and vj

carries a non-negative weight wij ≥ 0. The weighted adja-
cency matrix of the graph is the matrix W = (wij )i,j=1,...,n.
If wij = 0 this means that the vertices vi and vj are not con-
nected by an edge. As G is undirected we require wij = wji .
The degree of a vertex vi ∈ V is defined as

di =
n∑

j=1

wij .

Note that, in fact, this sum only runs over all vertices adja-
cent to vi , as for all other vertices vj the weight wij is 0.
The degree matrix D is defined as the diagonal matrix with
the degrees d1, . . . , dn on the diagonal. Given a subset of
vertices A ⊂ V , we denote its complement V \ A by Ā. We
define the indicator vector 1A = (f1, . . . , fn)

′ ∈ R
n as the

vector with entries fi = 1 if vi ∈ A and fi = 0 otherwise.
For convenience we introduce the shorthand notation i ∈ A

for the set of indices {i|vi ∈ A}, in particular when dealing
with a sum like

∑
i∈A wij . For two not necessarily disjoint

sets A,B ⊂ V we define

W(A,B) :=
∑

i∈A,j∈B

wij .

We consider two different ways of measuring the “size” of a
subset A ⊂ V :

|A| := the number of vertices in A,

vol(A) :=
∑

i∈A

di.

Intuitively, |A| measures the size of A by its number of ver-
tices, while vol(A) measures the size of A by summing over

the weights of all edges attached to vertices in A. A subset
A ⊂ V of a graph is connected if any two vertices in A can
be joined by a path such that all intermediate points also lie
in A. A subset A is called a connected component if it is
connected and if there are no connections between vertices
in A and Ā. The nonempty sets A1, . . . ,Ak form a partition
of the graph if Ai ∩ Aj = ∅ and A1 ∪ · · · ∪ Ak = V .

2.2 Different similarity graphs

There are several popular constructions to transform a given
set x1, . . . , xn of data points with pairwise similarities sij
or pairwise distances dij into a graph. When constructing
similarity graphs the goal is to model the local neighborhood
relationships between the data points.

The ε-neighborhood graph Here we connect all points
whose pairwise distances are smaller than ε. As the dis-
tances between all connected points are roughly of the same
scale (at most ε), weighting the edges would not incorporate
more information about the data to the graph. Hence, the ε-
neighborhood graph is usually considered as an unweighted
graph.

k-nearest neighbor graphs Here the goal is to connect ver-
tex vi with vertex vj if vj is among the k-nearest neighbors
of vi . However, this definition leads to a directed graph, as
the neighborhood relationship is not symmetric. There are
two ways of making this graph undirected. The first way
is to simply ignore the directions of the edges, that is we
connect vi and vj with an undirected edge if vi is among
the k-nearest neighbors of vj or if vj is among the k-nearest
neighbors of vi . The resulting graph is what is usually called
the k-nearest neighbor graph. The second choice is to con-
nect vertices vi and vj if both vi is among the k-nearest
neighbors of vj and vj is among the k-nearest neighbors
of vi . The resulting graph is called the mutual k-nearest
neighbor graph. In both cases, after connecting the appro-
priate vertices we weight the edges by the similarity of their
endpoints.

The fully connected graph Here we simply connect all
points with positive similarity with each other, and we
weight all edges by sij . As the graph should represent
the local neighborhood relationships, this construction is
only useful if the similarity function itself models local
neighborhoods. An example for such a similarity func-
tion is the Gaussian similarity function s(xi, xj ) =
exp(−‖xi − xj‖2/(2σ 2)), where the parameter σ controls
the width of the neighborhoods. This parameter plays a sim-
ilar role as the parameter ε in case of the ε-neighborhood
graph.

All graphs mentioned above are regularly used in spec-
tral clustering. To our knowledge, theoretical results on the
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question how the choice of the similarity graph influences
the spectral clustering result do not exist. For a discussion
of the behavior of the different graphs we refer to Sect. 8.

3 Graph Laplacians and their basic properties

The main tools for spectral clustering are graph Laplacian
matrices. There exists a whole field dedicated to the study
of those matrices, called spectral graph theory (e.g., see
Chung 1997). In this section we want to define different
graph Laplacians and point out their most important prop-
erties. We will carefully distinguish between different vari-
ants of graph Laplacians. Note that in the literature there is
no unique convention which matrix exactly is called “graph
Laplacian”. Usually, every author just calls “his” matrix the
graph Laplacian. Hence, a lot of care is needed when reading
literature on graph Laplacians.

In the following we always assume that G is an undi-
rected, weighted graph with weight matrix W , where wij =
wji ≥ 0. When using eigenvectors of a matrix, we will not
necessarily assume that they are normalized. For example,
the constant vector 1 and a multiple a1 for some a 
= 0 will
be considered as the same eigenvectors. Eigenvalues will al-
ways be ordered increasingly, respecting multiplicities. By
“the first k eigenvectors” we refer to the eigenvectors corre-
sponding to the k smallest eigenvalues.

3.1 The unnormalized graph Laplacian

The unnormalized graph Laplacian matrix is defined as

L = D − W.

An overview over many of its properties can be found in
Mohar (1991, 1997). The following proposition summarizes
the most important facts needed for spectral clustering.

Proposition 1 (Properties of L) The matrix L satisfies the
following properties:

(1) For every vector f ∈ R
n we have

f ′Lf = 1

2

n∑

i,j=1

wij (fi − fj )
2.

(2) L is symmetric and positive semi-definite.
(3) The smallest eigenvalue of L is 0, the corresponding

eigenvector is the constant one vector 1.
(4) L has n non-negative, real-valued eigenvalues 0 = λ1 ≤

λ2 ≤ · · · ≤ λn.

Proof Part (1) By the definition of di ,

f ′Lf = f ′Df − f ′Wf =
n∑

i=1

dif
2
i −

n∑

i,j=1

fifjwij

= 1

2

(
n∑

i=1

dif
2
i − 2

n∑

i,j=1

fifjwij +
n∑

j=1

djf
2
j

)

= 1

2

n∑

i,j=1

wij (fi − fj )
2.

Part (2) The symmetry of L follows directly from the
symmetry of W and D. The positive semi-definiteness is a
direct consequence of Part (1), which shows that f ′Lf ≥ 0
for all f ∈ R

n.
Part (3) Obvious.
Part (4) is a direct consequence of Parts (1)–(3). �

Note that the unnormalized graph Laplacian does not de-
pend on the diagonal elements of the adjacency matrix W .
Each adjacency matrix which coincides with W on all off-
diagonal positions leads to the same unnormalized graph
Laplacian L. In particular, self-edges in a graph do not
change the corresponding graph Laplacian.

The unnormalized graph Laplacian and its eigenvalues
and eigenvectors can be used to describe many properties of
graphs, see Mohar (1991, 1997). One example which will be
important for spectral clustering is the following:

Proposition 2 (Number of connected components and the
spectrum of L) Let G be an undirected graph with non-
negative weights. Then the multiplicity k of the eigen-
value 0 of L equals the number of connected components
A1, . . . ,Ak in the graph. The eigenspace of eigenvalue 0
is spanned by the indicator vectors 1A1 , . . . ,1Ak

of those
components.

Proof We start with the case k = 1, that is the graph is con-
nected. Assume that f is an eigenvector with eigenvalue 0.
Then we know that

0 = f ′Lf =
n∑

i,j=1

wij (fi − fj )
2.

As the weights wij are non-negative, this sum can only van-
ish if all terms wij (fi −fj )

2 vanish. Thus, if two vertices vi

and vj are connected (i.e., wij > 0), then fi needs to equal
fj . With this argument we can see that f needs to be con-
stant for all vertices which can be connected by a path in
the graph. Moreover, as all vertices of a connected compo-
nent in an undirected graph can be connected by a path, f

needs to be constant on the whole connected component.
In a graph consisting of only one connected component we
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thus only have the constant one vector 1 as eigenvector with
eigenvalue 0, which obviously is the indicator vector of the
connected component.

Now consider the case of k connected components. With-
out loss of generality we assume that the vertices are ordered
according to the connected components they belong to. In
this case, the adjacency matrix W has a block diagonal form,
and the same is true for the matrix L:

L =

⎛

⎜⎜⎝

L1

L2
. . .

Lk

⎞

⎟⎟⎠ .

Note that each of the blocks Li is a proper graph Laplacian
on its own, namely the Laplacian corresponding to the sub-
graph of the i-th connected component. As it is the case for
all block diagonal matrices, we know that the spectrum of
L is given by the union of the spectra of Li , and the cor-
responding eigenvectors of L are the eigenvectors of Li ,
filled with 0 at the positions of the other blocks. As each
Li is a graph Laplacian of a connected graph, we know that
every Li has eigenvalue 0 with multiplicity 1, and the cor-
responding eigenvector is the constant one vector on the i-
th connected component. Thus, the matrix L has as many
eigenvalues 0 as there are connected components, and the
corresponding eigenvectors are the indicator vectors of the
connected components. �

3.2 The normalized graph Laplacians

There are two matrices which are called normalized graph
Laplacians in the literature. Both matrices are closely related
to each other and are defined as

Lsym := D−1/2LD−1/2 = I − D−1/2WD−1/2,

Lrw := D−1L = I − D−1W.

We denote the first matrix by Lsym as it is a symmetric ma-
trix, and the second one by Lrw as it is closely related to a
random walk. In the following we summarize several prop-
erties of Lsym and Lrw, which can be found on the first
pages of the standard reference Chung (1997) for normal-
ized graph Laplacians.

Proposition 3 (Properties of Lsym and Lrw) The normalized
Laplacians satisfy the following properties:

(1) For every f ∈ R
n we have

f ′Lsymf = 1

2

n∑

i,j=1

wij

(
fi√
di

− fj√
dj

)2

.

(2) λ is an eigenvalue of Lrw with eigenvector u if and
only if λ is an eigenvalue of Lsym with eigenvector
w = D1/2u.

(3) λ is an eigenvalue of Lrw with eigenvector u if and
only if λ and u solve the generalized eigenproblem
Lu = λDu.

(4) 0 is an eigenvalue of Lrw with the constant one vector
1 as eigenvector. 0 is an eigenvalue of Lsym with eigen-
vector D1/21.

(5) Lsym and Lrw are positive semi-definite and have n non-
negative real-valued eigenvalues 0 = λ1 ≤ · · · ≤ λn.

Proof Part (1) can be proved similarly to Part (1) of Propo-
sition 1.

Part (2) can be seen immediately by multiplying the
eigenvalue equation Lsymw = λw with D−1/2 from the left
and substituting u = D−1/2w.

Part (3) follows directly by multiplying the eigenvalue
equation Lrwu = λu with D from the left.

Part (4) The first statement is obvious as Lrw1 = 0, the
second statement follows from (2).

Part (5) The statement about Lsym follows from (1), and
then the statement about Lrw follows from (2). �

As it is the case for the unnormalized graph Laplacian,
the multiplicity of the eigenvalue 0 of the normalized graph
Laplacian is related to the number of connected compo-
nents:

Proposition 4 (Number of connected components and spec-
tra of Lsym and Lrw) Let G be an undirected graph with
non-negative weights. Then the multiplicity k of the eigen-
value 0 of both Lrw and Lsym equals to the number of con-
nected components A1, . . . ,Ak in the graph. For Lrw, the
eigenspace of 0 is spanned by the indicator vectors 1Ai

of
those components. For Lsym, the eigenspace of 0 is spanned
by the vectors D1/21Ai

.

Proof The proof is analogous to the one of Proposition 2,
using Proposition 3. �

4 Spectral clustering algorithms

Now we would like to state the most common spectral clus-
tering algorithms. For references and the history of spec-
tral clustering we refer to Sect. 9. We assume that our data
consists of n “points” x1, . . . , xn which can be arbitrary ob-
jects. We measure their pairwise similarities sij = s(xi, xj )

by some similarity function which is symmetric and non-
negative, and we denote the corresponding similarity matrix
by S = (sij )i,j=1,...,n.
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Unnormalized spectral clustering

Input: Similarity matrix S ∈ R
n×n, number k of

clusters to construct.

• Construct a similarity graph by one of the

ways described in Sect. 2. Let W be its

weighted adjacency matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k eigenvectors u1, . . . ,uk

of L.

• Let U ∈ R
n×k be the matrix containing the

vectors u1, . . . , uk as columns.

• For i = 1, . . . , n, let yi ∈ R
k be the vector cor-

responding to the i-th row of U.

• Cluster the points (yi)i=1,...,n in R
k with the

k-means algorithm into clusters C1, . . . ,Ck.

Output: Clusters A1, . . . ,Ak with

Ai = {j |yj ∈ Ci}.

There are two different versions of normalized spectral
clustering, depending which of the normalized graph Lapla-
cians is used. We describe both algorithms after two popular
papers, for more references and history see Sect. 9.

Normalized spectral clustering according to

Shi and Malik (2000)

Input: Similarity matrix S ∈ R
n×n, number k of

clusters to construct.

• Construct a similarity graph by one of the

ways described in Sect. 2. Let W be its

weighted adjacency matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k generalized eigenvec-

tors u1, . . . ,uk of the generalized eigenprob-

lem Lu = λDu.

• Let U ∈ R
n×k be the matrix containing the

vectors u1, . . . , uk as columns.

• For i = 1, . . . , n, let yi ∈ R
k be the vector cor-

responding to the i-th row of U.

• Cluster the points (yi)i=1,...,n in R
k with the

k-means algorithm into clusters C1, . . . ,Ck.

Output: Clusters A1, . . . ,Ak with

Ai = {j |yj ∈ Ci}.

Note that this algorithm uses the generalized eigenvec-
tors of L, which according to Proposition 3 correspond to
the eigenvectors of the matrix Lrw. So in fact, the algorithm
works with eigenvectors of the normalized Laplacian Lrw,
and hence is called normalized spectral clustering. The next
algorithm also uses a normalized Laplacian, but this time
the matrix Lsym instead of Lrw. As we will see, this algo-
rithm needs to introduce an additional row normalization
step which is not needed in the other algorithms. The rea-
sons will become clear in Sect. 7.

Normalized spectral clustering according to

Ng et al. (2002)

Input: Similarity matrix S ∈ R
n×n, number k of

clusters to construct.

• Construct a similarity graph by one of the

ways described in Sect. 2. Let W be its

weighted adjacency matrix.

• Compute the normalized Laplacian Lsym.

• Compute the first k eigenvectors u1, . . . ,uk

of Lsym.

• Let U ∈ R
n×k be the matrix containing the

vectors u1, . . . , uk as columns.

• Form the matrix T ∈ R
n×k from U by normal-

izing the rows to norm 1,

that is set tij = uij /(
∑

k u2
ik)

1/2.

• For i = 1, . . . , n, let yi ∈ R
k be the vector cor-

responding to the i-th row of T .

• Cluster the points (yi)i=1,...,n with the k-

means algorithm into clusters C1, . . . ,Ck.

Output: Clusters A1, . . . ,Ak with

Ai = {j |yj ∈ Ci}.

All three algorithms stated above look rather similar,
apart from the fact that they use three different graph Lapla-
cians. In all three algorithms, the main trick is to change
the representation of the abstract data points xi to points
yi ∈ R

k . It is due to the properties of the graph Lapla-
cians that this change of representation is useful. We will
see in the next sections that this change of representation
enhances the cluster-properties in the data, so that clusters
can be trivially detected in the new representation. In par-
ticular, the simple k-means clustering algorithm has no dif-
ficulties to detect the clusters in this new representation.
Readers not familiar with k-means can read up on this al-
gorithm in numerous text books, for example in Hastie et al.
(2001).

Before we dive into the theory of spectral clustering,
we would like to illustrate its principle on a very simple
toy example. This example will be used at several places
in this tutorial, and we chose it because it is so sim-
ple that the relevant quantities can easily be plotted. This
toy data set consists of a random sample of 200 points
x1, . . . , x200 ∈ R drawn according to a mixture of four Gaus-
sians. The first row of Fig. 1 shows the histogram of a sample
drawn from this distribution (the x-axis represents the one-
dimensional data space). As similarity function on this data
set we choose the Gaussian similarity function s(xi, xj ) =
exp(−|xi − xj |2/(2σ 2)) with σ = 1. As similarity graph
we consider both the fully connected graph and the 10-
nearest neighbor graph. In Fig. 1 we show the first eigen-
values and eigenvectors of the unnormalized Laplacian L

and the normalized Laplacian Lrw. That is, in the eigen-
value plot, we plot i vs. λi (for the moment ignore the
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Fig. 1 Toy example for spectral clustering where the data points have
been drawn from a mixture of four Gaussians on R. Left upper corner:
histogram of the data. First and second row: eigenvalues and eigenvec-
tors of Lrw and L based on the k-nearest neighbor graph. Third and

fourth row: eigenvalues and eigenvectors of Lrw and L based on the
fully connected graph. For all plots, we used the Gaussian kernel with
σ = 1 as similarity function. See text for more details

dashed line and the different shapes of the eigenvalues in
the plots for the unnormalized case; their meaning will be
discussed in Sect. 8.5). In the eigenvector plots of an eigen-
vector u = (u1, . . . , u200)

′ we plot xi vs. ui (note that in the
example chosen xi is simply a real number, hence we can
depict it on the x-axis). The first two rows of Fig. 1 show
the results based on the 10-nearest neighbor graph. We can
see that the first four eigenvalues are 0, and the correspond-
ing eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the 10-nearest
neighbor graph, in which case the eigenvectors are given as
in Propositions 2 and 4. The next two rows show the re-
sults for the fully connected graph. As the Gaussian simi-
larity function is always positive, this graph only consists
of one connected component. Thus, eigenvalue 0 has multi-

plicity 1, and the first eigenvector is the constant vector. The

following eigenvectors carry the information about the clus-

ters. For example in the unnormalized case (last row), if we

threshold the second eigenvector at 0, then the part below 0

corresponds to clusters 1 and 2, and the part above 0 to clus-

ters 3 and 4. Similarly, thresholding the third eigenvector

separates clusters 1 and 4 from clusters 2 and 3, and thresh-

olding the fourth eigenvector separates clusters 1 and 3 from

clusters 2 and 4. Altogether, the first four eigenvectors carry

all the information about the four clusters. In all the cases

illustrated in this figure, spectral clustering using k-means

on the first four eigenvectors easily detects the correct four

clusters.
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5 Graph cut point of view

The intuition of clustering is to separate points in differ-
ent groups according to their similarities. For data given in
form of a similarity graph, this problem can be restated as
follows: we want to find a partition of the graph such that
the edges between different groups have a very low weight
(which means that points in different clusters are dissimi-
lar from each other) and the edges within a group have high
weight (which means that points within the same cluster are
similar to each other). In this section we will see how spec-
tral clustering can be derived as an approximation to such
graph partitioning problems.

Given a similarity graph with adjacency matrix W , the
simplest and most direct way to construct a partition of the
graph is to solve the mincut problem. To define it, please
recall the notation W(A,B) := ∑

i∈A,j∈B wij and Ā for
the complement of A. For a given number k of subsets,
the mincut approach simply consists of choosing a partition
A1, . . . ,Ak which minimizes

cut(A1, . . . ,Ak) := 1

2

k∑

i=1

W(Ai, Āi).

Here we introduce the factor 1/2 for notational consistency,
otherwise we would count each edge twice in the cut. In
particular for k = 2, mincut is a relatively easy problem and
can be solved efficiently, see Stoer and Wagner (1997) and
the discussion therein. However, in practice it often does not
lead to satisfactory partitions. The problem is that in many
cases, the solution of mincut simply separates one individ-
ual vertex from the rest of the graph. Of course this is not
what we want to achieve in clustering, as clusters should be
reasonably large groups of points. One way to circumvent
this problem is to explicitly request that the sets A1, . . . ,Ak

are “reasonably large”. The two most common objective
functions to encode this are RatioCut (Hagen and Kahng
1992) and the normalized cut Ncut (Shi and Malik 2000).
In RatioCut, the size of a subset A of a graph is measured
by its number of vertices |A|, while in Ncut the size is mea-
sured by the weights of its edges vol(A). The definitions
are:

RatioCut(A1, . . . ,Ak) := 1

2

k∑

i=1

W(Ai, Āi)

|Ai |

=
k∑

i=1

cut(Ai, Āi)

|Ai | ,

Ncut(A1, . . . ,Ak) := 1

2

k∑

i=1

W(Ai, Āi)

vol(Ai)
=

k∑

i=1

cut(Ai, Āi)

vol(Ai)
.

Note that both objective functions take a small value if
the clusters Ai are not too small. In particular, the min-
imum of the function

∑k
i=1(1/|Ai |) is achieved if all

|Ai | coincide, and the minimum of
∑k

i=1(1/vol(Ai)) is
achieved if all vol(Ai) coincide. So what both objec-
tive functions try to achieve is that the clusters are “bal-
anced”, as measured by the number of vertices or edge
weights, respectively. Unfortunately, introducing balanc-
ing conditions makes the previously simple to solve min-
cut problem become NP hard, see Wagner and Wag-
ner (1993) for a discussion. Spectral clustering is a way
to solve relaxed versions of those problems. We will
see that relaxing Ncut leads to normalized spectral clus-
tering, while relaxing RatioCut leads to unnormalized
spectral clustering (see also the tutorial slides by Ding
2004).

5.1 Approximating RatioCut for k = 2

Let us start with the case of RatioCut and k = 2, because the
relaxation is easiest to understand in this setting. Our goal is
to solve the optimization problem

min
A⊂V

RatioCut(A, Ā). (1)

We first rewrite the problem in a more convenient form.
Given a subset A ⊂ V we define the vector f = (f1, . . . , fn)

′
∈ R

n with entries

fi =
{√

|Ā|/|A| if vi ∈ A,
−

√
|A|/|Ā| if vi ∈ Ā.

(2)

Now the RatioCut objective function can be conveniently
rewritten using the unnormalized graph Laplacian. This is
due to the following calculation:

f ′Lf = 1

2

n∑

i,j=1

wij (fi − fj )
2

= 1

2

∑

i∈A,j∈Ā

wij

(√
|Ā|
|A| +

√
|A|
|Ā|

)2

+ 1

2

∑

i∈Ā,j∈A

wij

(
−

√
|Ā|
|A| −

√
|A|
|Ā|

)2

= cut(A, Ā)

( |Ā|
|A| + |A|

|Ā| + 2

)

= cut(A, Ā)

( |A| + |Ā|
|A| + |A| + |Ā|

|Ā|
)

= |V | · RatioCut(A, Ā).
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Additionally, we have

n∑

i=1

fi =
∑

i∈A

√
|Ā|
|A| −

∑

i∈Ā

√
|A|
|Ā|

= |A|
√

|Ā|
|A| − |Ā|

√
|A|
|Ā| = 0.

In other words, the vector f as defined in (2) is orthogo-
nal to the constant one vector 1. Finally, note that f satisfies

‖f ‖2 =
n∑

i=1

f 2
i = |A| |Ā|

|A| + |Ā| |A|
|Ā| = |Ā| + |A| = n.

Altogether we can see that the problem of minimizing (1)
can be equivalently rewritten as

min
A⊂V

f ′Lf

subject to f ⊥ 1, fi defined as in (2), ‖f ‖ = √
n. (3)

This is a discrete optimization problem as the entries of
the solution vector f are only allowed to take two particular
values, and of course it is still NP hard. The most obvious
relaxation in this setting is to discard the discreteness condi-
tion and instead allow fi to take arbitrary values in R. This
leads to the relaxed optimization problem

min
f ∈Rn

f ′Lf subject to f ⊥ 1, ‖f ‖ = √
n. (4)

By the Rayleigh-Ritz theorem (e.g., see Sect. 5.5.2 of Lütke-
pohl 1997) it can be seen immediately that the solution of
this problem is given by the vector f which is the eigen-
vector corresponding to the second smallest eigenvalue of
L (recall that the smallest eigenvalue of L is 0 with eigen-
vector 1). So we can approximate a minimizer of RatioCut
by the second eigenvector of L. However, in order to obtain
a partition of the graph we need to re-transform the real-
valued solution vector f of the relaxed problem into a dis-
crete indicator vector. The simplest way to do this is to use
the sign of f as indicator function, that is to choose
{

vi ∈ A if fi ≥ 0,
vi ∈ Ā if fi < 0.

However, in particular in the case of k > 2 treated below,
this heuristic is too simple. What most spectral clustering
algorithms do instead is to consider the coordinates fi as
points in R and cluster them into two groups C, C̄ by the
k-means clustering algorithm. Then we carry over the re-
sulting clustering to the underlying data points, that is we
choose
{

vi ∈ A if fi ∈ C,
vi ∈ Ā if fi ∈ C̄.

This is exactly the unnormalized spectral clustering algo-
rithm for the case of k = 2.

5.2 Approximating RatioCut for arbitrary k

The relaxation of the RatioCut minimization problem in the
case of a general value k follows a similar principle as the
one above. Given a partition of V into k sets A1, . . . ,Ak , we
define k indicator vectors hj = (h1,j , . . . , hn,j )

′ by

hi,j =
{

1/
√|Aj | if vi ∈ Aj ,

0 otherwise

(i = 1, . . . , n; j = 1, . . . , k). (5)

Then we set the matrix H ∈ R
n×k as the matrix contain-

ing those k indicator vectors as columns. Observe that the
columns in H are orthonormal to each other, that is H ′H =
I . Similar to the calculations in the last section we can see
that

h′
iLhi = cut(Ai, Āi)

|Ai | .

Moreover, one can check that

h′
iLhi = (H ′LH)ii .

Combining those facts we get

RatioCut(A1, . . . ,Ak)

=
k∑

i=1

h′
iLhi =

k∑

i=1

(H ′LH)ii = Tr(H ′LH),

where Tr denotes the trace of a matrix. So the problem of
minimizing RatioCut(A1, . . . ,Ak) can be rewritten as

min
A1,...,Ak

Tr(H ′LH)

subject to H ′H = I, H defined as in (5).

Similar to above we now relax the problem by allowing the
entries of the matrix H to take arbitrary real values. Then
the relaxed problem becomes:

min
H∈Rn×k

Tr(H ′LH) subject to H ′H = I.

This is the standard form of a trace minimization problem,
and again a version of the Rayleigh-Ritz theorem (e.g., see
Sect. 5.2.2(6) of Lütkepohl 1997) tells us that the solution
is given by choosing H as the matrix which contains the
first k eigenvectors of L as columns. We can see that the
matrix H is in fact the matrix U used in the unnormalized
spectral clustering algorithm as described in Sect. 4. Again
we need to re-convert the real valued solution matrix to a
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discrete partition. As above, the standard way is to use the k-
means algorithms on the rows of U . This leads to the general
unnormalized spectral clustering algorithm as presented in
Sect. 4.

5.3 Approximating Ncut

Techniques very similar to the ones used for RatioCut can be
used to derive normalized spectral clustering as relaxation
of minimizing Ncut. In the case k = 2 we define the cluster
indicator vector f by

fi =
⎧
⎨

⎩

√
vol(Ā)
volA if vi ∈ A,

−
√

vol(A)

vol(Ā)
if vi ∈ Ā.

(6)

Similar to above one can check that (Df )′1 = 0, f ′Df =
vol(V ), and f ′Lf = vol(V )Ncut(A, Ā). Thus we can
rewrite the problem of minimizing Ncut by the equivalent
problem

min
A

f ′Lf

subject to f as in (6), Df ⊥ 1, f ′Df = vol(V ). (7)

Again we relax the problem by allowing f to take arbitrary
real values:

min
f ∈Rn

f ′Lf subject to Df ⊥ 1, f ′Df = vol(V ). (8)

Now we substitute g := D1/2f . After substitution, the prob-
lem is

min
g∈Rn

g′D−1/2LD−1/2g

subject to g ⊥ D1/21, ‖g‖2 = vol(V ). (9)

Observe that D−1/2LD−1/2 = Lsym, D1/21 is the first
eigenvector of Lsym, and vol(V ) is a constant. Hence, (9)
is in the form of the standard Rayleigh-Ritz theorem, and
its solution g is given by the second eigenvector of Lsym.
Re-substituting f = D−1/2g and using Proposition 3 we see
that f is the second eigenvector of Lrw, or equivalently the
generalized eigenvector of Lu = λDu.

For the case of finding k > 2 clusters, we define the indi-
cator vectors hj = (h1,j , . . . , hn,j )

′ by

hi,j =
{

1/
√

vol(Aj ) if vi ∈ Aj ,
0 otherwise

(i = 1, . . . , n; j = 1, . . . , k). (10)

Then we set the matrix H as the matrix containing those
k indicator vectors as columns. Observe that H ′H = I ,

h′
iDhi = 1, and h′

iLhi = cut(Ai, Āi)/vol(Ai). So we can
write the problem of minimizing Ncut as

min
A1,...,Ak

Tr(H ′LH) subject to H ′DH = I, H as in (10).

Relaxing the discreteness condition and substituting T =
D1/2H we obtain the relaxed problem

min
T ∈Rn×k

Tr(T ′D−1/2LD−1/2T ) subject to T ′T = I. (11)

Again this is the standard trace minimization problem which
is solved by the matrix T which contains the first k eigen-
vectors of Lsym as columns. Re-substituting H = D−1/2T

and using Proposition 3 we see that the solution H consists
of the first k eigenvectors of the matrix Lrw, or the first k

generalized eigenvectors of Lu = λDu. This yields the nor-
malized spectral clustering algorithm according to Shi and
Malik (2000).

5.4 Comments on the relaxation approach

There are several comments we should make about this
derivation of spectral clustering. Most importantly, there is
no guarantee whatsoever on the quality of the solution of
the relaxed problem compared to the exact solution. That is,
if A1, . . . ,Ak is the exact solution of minimizing RatioCut,
and B1, . . . ,Bk is the solution constructed by unnormalized
spectral clustering, then RatioCut(B1, . . . ,Bk) −
RatioCut(A1, . . . ,Ak) can be arbitrary large. An example
for the case k = 2 can be found in Guattery and Miller
(1998). Here the authors consider a very simple class of
graphs called “cockroach graphs”. Those graphs essentially
look like a ladder, with a few rimes removed, see Fig. 2.
Obviously, the ideal RatioCut just cuts the ladder by a
vertical cut such that A = {v1, . . . , vk, v2k+1, . . . , v3k} and
Ā = {vk+1, . . . , v2k, v3k+1, . . . , v4k}. This cut is perfectly
balanced with |A| = |Ā| = 2k and cut(A, Ā) = 2. How-
ever, by studying the properties of the second eigenvector of
the unnormalized graph Laplacian of cockroach graphs the
authors prove that unnormalized spectral clustering always
cuts horizontally through the ladder, constructing the sets
B = {v1, . . . , v2k} and B̄ = {v2k+1, . . . , v4k}. This also re-
sults in a balanced cut, but now we cut k edges instead of just
2. So RatioCut(A, Ā) = 2/k, while RatioCut(B, B̄) = 1.

Fig. 2 The cockroach graph from Guattery and Miller (1998)
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This means that compared to the optimal cut, the RatioCut
value obtained by spectral clustering is k/2 times worse,
that is a factor in the order of n. Several other papers inves-
tigate the quality of the clustering constructed by spectral
clustering, for example Spielman and Teng (1996) (for un-
normalized spectral clustering) and Kannan et al. (2004) (for
normalized spectral clustering). In general it is known that
efficient algorithms to approximate balanced graph cuts up
to a constant factor do not exist. To the contrary, this ap-
proximation problem can be NP hard itself (Bui and Jones
1992).

Of course, the relaxation we discussed above is not
unique. For example, a completely different relaxation
which leads to a semi-definite program is derived in Bie
and Cristianini (2006), and there might be many other use-
ful relaxations. The reason why the spectral relaxation is so
appealing is not that it leads to particularly good solutions.
Its popularity is mainly due to the fact that it results in a
standard linear algebra problem which is simple to solve.

6 Random walks point of view

Another line of argument to explain spectral clustering is
based on random walks on the similarity graph. A random
walk on a graph is a stochastic process which randomly
jumps from vertex to vertex. We will see below that spec-
tral clustering can be interpreted as trying to find a partition
of the graph such that the random walk stays long within
the same cluster and seldom jumps between clusters. In-
tuitively this makes sense, in particular together with the
graph cut explanation of the last section: a balanced par-
tition with a low cut will also have the property that the
random walk does not have many opportunities to jump be-
tween clusters. For background reading on random walks in
general we refer to Norris (1997) and Brémaud (1999), and
for random walks on graphs we recommend Aldous and Fill
(in preparation) and Lovász (1993). Formally, the transition
probability of jumping in one step from vertex vi to vertex
vj is proportional to the edge weight wij and is given by
pij := wij /di . The transition matrix P = (pij )i,j=1,...,n of
the random walk is thus defined by

P = D−1W.

If the graph is connected and non-bipartite, then the ran-
dom walk always possesses a unique stationary distribution
π = (π1, . . . , πn)

′, where πi = di/vol(V ). Obviously there
is a tight relationship between Lrw and P , as Lrw = I − P .
As a consequence, λ is an eigenvalue of Lrw with eigenvec-
tor u if and only if 1−λ is an eigenvalue of P with eigenvec-
tor u. It is well known that many properties of a graph can be
expressed in terms of the corresponding random walk transi-
tion matrix P , see Lovász (1993) for an overview. From this

point of view it does not come as a surprise that the largest
eigenvectors of P and the smallest eigenvectors of Lrw can
be used to describe cluster properties of the graph.

6.1 Random walks and Ncut

A formal equivalence between Ncut and transition probabil-
ities of the random walk has been observed in Meila and Shi
(2001).

Proposition 5 (Ncut via transition probabilities) Let G

be connected and non bi-partite. Assume that we run the
random walk (Xt )t∈N starting with X0 in the stationary
distribution π . For disjoint subsets A,B ⊂ V , denote by
P(B|A) := P(X1 ∈ B|X0 ∈ A). Then:

Ncut(A, Ā) = P(Ā|A) + P(A|Ā).

Proof First of all observe that

P(X0 ∈ A,X1 ∈ B)

=
∑

i∈A,j∈B

P (X0 = i,X1 = j) =
∑

i∈A,j∈B

πipij

=
∑

i∈A,j∈B

di

vol(V )

wij

di

= 1

vol(V )

∑

i∈A,j∈B

wij .

Using this we obtain

P(X1 ∈ B|X0 ∈ A) = P(X0 ∈ A,X1 ∈ B)

P (X0 ∈ A)

=
(

1

vol(V )

∑

i∈A,j∈B

wij

)(
vol(A)

vol(V )

)−1

=
∑

i∈A,j∈B wij

vol(A)
.

Now the proposition follows directly with the definition of
Ncut. �

This proposition leads to a nice interpretation of Ncut,
and hence of normalized spectral clustering. It tells us that
when minimizing Ncut, we actually look for a cut through
the graph such that a random walk seldom transitions from
A to Ā and vice versa.

6.2 The commute distance

A second connection between random walks and graph
Laplacians can be made via the commute distance on
the graph. The commute distance (also called resistance
distance) cij between two vertices vi and vj is the ex-
pected time it takes the random walk to travel from ver-
tex vi to vertex vj and back (Lovász 1993; Aldous and
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Fill in preparation). The commute distance has several nice
properties which make it particularly appealing for machine
learning. As opposed to the shortest path distance on a
graph, the commute distance between two vertices decreases
if there are many different short ways to get from vertex vi

to vertex vj . So instead of just looking for the one shortest
path, the commute distance looks at the set of short paths.
Points which are connected by a short path in the graph and
lie in the same high-density region of the graph are consid-
ered closer to each other than points which are connected by
a short path but lie in different high-density regions of the
graph. In this sense, the commute distance seems particu-
larly well-suited to be used for clustering purposes.

Remarkably, the commute distance on a graph can be
computed with the help of the generalized inverse (also
called pseudo-inverse or Moore-Penrose inverse) L† of
the graph Laplacian L. In the following we denote ei =
(0, . . . ,0,1,0, . . . ,0)′ as the i-th unit vector. To define the
generalized inverse of L, recall that by Proposition 1 the
matrix L can be decomposed as L = U�U ′ where U is
the matrix containing all eigenvectors as columns and � the
diagonal matrix with the eigenvalues λ1, . . . , λn on the di-
agonal. As at least one of the eigenvalues is 0, the matrix L

is not invertible. Instead, we define its generalized inverse
as L† := U�†U ′ where the matrix �† is the diagonal ma-
trix with diagonal entries 1/λi if λi 
= 0 and 0 if λi = 0.
The entries of L† can be computed as l

†
ij = ∑n

k=2
1
λk

uikujk .

The matrix L† is positive semi-definite and symmetric. For
further properties of L† see Gutman and Xiao (2004).

Proposition 6 (Commute distance) Let G = (V ,E) a con-
nected, undirected graph. Denote by cij the commute dis-
tance between vertex vi and vertex vj , and by L† =
(l

†
ij )i,j=1,...,n the generalized inverse of L. Then we have:

cij = vol(V )(l
†
ii − 2l

†
ij + l

†
jj )

= vol(V )(ei − ej )
′L†(ei − ej ).

This result has been published by Klein and Randic
(1993), where it has been proved by methods of electrical
network theory. For a proof using first step analysis for ran-
dom walks see Fouss et al. (2006). There also exist other
ways to express the commute distance with the help of graph
Laplacians. For example a method in terms of eigenvectors
of the normalized Laplacian Lsym can be found as Corol-
lary 3.2 in Lovász (1993), and a method computing the com-
mute distance with the help of determinants of certain sub-
matrices of L can be found in Bapat et al. (2003).

Proposition 6 has an important consequence. It shows
that

√
cij can be considered as a Euclidean distance func-

tion on the vertices of the graph. This means that we can
construct an embedding which maps the vertices vi of the

graph on points zi ∈ R
n such that the Euclidean distances

between the points zi coincide with the commute distances
on the graph. This works as follows. As the matrix L† is pos-
itive semi-definite and symmetric, it induces an inner prod-
uct on R

n (or to be more formal, it induces an inner product
on the subspace of R

n which is perpendicular to the vector
1). Now choose zi as the point in R

n corresponding to the
i-th row of the matrix U(�†)1/2. Then, by Proposition 6 and
by the construction of L† we have that 〈zi, zj 〉 = e′

iL
†ej and

cij = vol(V )‖zi − zj‖2.
The embedding used in unnormalized spectral clustering

is related to the commute time embedding, but not identi-
cal. In spectral clustering, we map the vertices of the graph
on the rows yi of the matrix U , while the commute time
embedding maps the vertices on the rows zi of the matrix
(�†)1/2U . That is, compared to the entries of yi , the en-
tries of zi are additionally scaled by the inverse eigenval-
ues of L. Moreover, in spectral clustering we only take the
first k columns of the matrix, while the commute time em-
bedding takes all columns. Several authors now try to jus-
tify why yi and zi are not so different after all and state a
bit hand-waiving that the fact that spectral clustering con-
structs clusters based on the Euclidean distances between
the yi can be interpreted as building clusters of the vertices
in the graph based on the commute distance. However, note
that both approaches can differ considerably. For example,
in the optimal case where the graph consists of k discon-
nected components, the first k eigenvalues of L are 0 accord-
ing to Proposition 2, and the first k columns of U consist of
the cluster indicator vectors. However, the first k columns
of the matrix (�†)1/2U consist of zeros only, as the first k

diagonal elements of �† are 0. In this case, the information
contained in the first k columns of U is completely ignored
in the matrix (�†)1/2U , and all the non-zero elements of the
matrix (�†)1/2U which can be found in columns k + 1 to n

are not taken into account in spectral clustering, which dis-
cards all those columns. On the other hand, those problems
do not occur if the underlying graph is connected. In this
case, the only eigenvector with eigenvalue 0 is the constant
one vector, which can be ignored in both cases. The eigen-
vectors corresponding to small eigenvalues λi of L are then
stressed in the matrix (�†)1/2U as they are multiplied by
λ

†
i = 1/λi . In such a situation, it might be true that the com-

mute time embedding and the spectral embedding do similar
things.

All in all, it seems that the commute time distance can be
a helpful intuition, but without making further assumptions
there is only a rather loose relation between spectral clus-
tering and the commute distance. It might be possible that
those relations can be tightened, for example if the similar-
ity function is strictly positive definite. However, we have
not yet seen a precise mathematical statement about this.
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7 Perturbation theory point of view

Perturbation theory studies the question of how eigenvalues
and eigenvectors of a matrix A change if we add a small
perturbation H , that is we consider the perturbed matrix
Ã := A + H . Most perturbation theorems state that a cer-
tain distance between eigenvalues or eigenvectors of A and
Ã is bounded by a constant times a norm of H . The constant
usually depends on which eigenvalue we are looking at, and
how far this eigenvalue is separated from the rest of the spec-
trum (for a formal statement see below). The justification of
spectral clustering is then the following: Let us first consider
the “ideal case” where the between-cluster similarity is ex-
actly 0. We have seen in Sect. 3 that then the first k eigen-
vectors of L or Lrw are the indicator vectors of the clusters.
In this case, the points yi ∈ R

k constructed in the spectral
clustering algorithms have the form (0, . . . ,0,1,0, . . . ,0)′
where the position of the 1 indicates the connected compo-
nent this point belongs to. In particular, all yi belonging to
the same connected component coincide. The k-means algo-
rithm will trivially find the correct partition by placing a cen-
ter point on each of the points (0, . . . ,0,1,0, . . . ,0)′ ∈ R

k .
In a “nearly ideal case” where we still have distinct clus-
ters, but the between-cluster similarity is not exactly 0, we
consider the Laplacian matrices to be perturbed versions of
the ones of the ideal case. Perturbation theory then tells us
that the eigenvectors will be very close to the ideal indi-
cator vectors. The points yi might not completely coincide
with (0, . . . ,0,1,0, . . . ,0)′, but do so up to some small er-
ror term. Hence, if the perturbations are not too large, then
k-means algorithm will still separate the groups from each
other.

7.1 The formal perturbation argument

The formal basis for the perturbation approach to spectral
clustering is the Davis-Kahan theorem from matrix per-
turbation theory. This theorem bounds the difference be-
tween eigenspaces of symmetric matrices under perturba-
tions. We state those results for completeness, but for back-
ground reading we refer to Sect. V of Stewart and Sun
(1990) and Sect. VII.3 of Bhatia (1997). In perturbation the-
ory, distances between subspaces are usually measured us-
ing “canonical angles” (also called “principal angles”). To
define principal angles, let V1 and V2 be two p-dimensional
subspaces of R

d , and V1 and V2 two matrices such that their
columns form orthonormal systems for V1 and V2, respec-
tively. Then the cosines cos�i of the principal angles �i

are the singular values of V ′
1V2. For p = 1, the so defined

canonical angles coincide with the normal definition of an
angle. Canonical angles can also be defined if V1 and V2 do
not have the same dimension, see Sect. V of Stewart and
Sun (1990), Sect. VII.3 of Bhatia (1997), or Sect. 12.4.3 of

Golub and Van Loan (1996). The matrix sin�(V1,V2) will
denote the diagonal matrix with the sine of the canonical
angles on the diagonal.

Theorem 7 (Davis-Kahan) Let A,H ∈ R
n×n be symmetric

matrices, and let ‖ · ‖ be the Frobenius norm or the two-
norm for matrices, respectively. Consider Ã := A + H as a
perturbed version of A. Let S1 ⊂ R be an interval. Denote
by σS1(A) the set of eigenvalues of A which are contained
in S1, and by V1 the eigenspace corresponding to all those
eigenvalues (more formally, V1 is the image of the spectral
projection induced by σS1(A)). Denote by σS1(Ã) and Ṽ1 the
analogous quantities for Ã. Define the distance between S1

and the spectrum of A outside of S1 as

δ = min{|λ − s|;λ eigenvalue of A,λ 
∈ S1, s ∈ S1}.
Then the distance d(V1, Ṽ1) := ‖ sin�(V1, Ṽ1)‖ between
the two subspaces V1 and Ṽ1 is bounded by

d(V1, Ṽ1) ≤ ‖H‖
δ

.

For a discussion and proofs of this theorem see for ex-
ample Sect. V.3 of Stewart and Sun (1990). Let us try to
decrypt this theorem, for simplicity in the case of the unnor-
malized Laplacian (for the normalized Laplacian it works
analogously). The matrix A will correspond to the graph
Laplacian L in the ideal case where the graph has k con-
nected components. The matrix Ã corresponds to a per-
turbed case, where due to noise the k components in the
graph are no longer completely disconnected, but they are
only connected by few edges with low weight. We denote
the corresponding graph Laplacian of this case by L̃. For
spectral clustering we need to consider the first k eigen-
values and eigenvectors of L̃. Denote the eigenvalues of
L by λ1, . . . , λn and the ones of the perturbed Laplacian
L̃ by λ̃1, . . . , λ̃n. Choosing the interval S1 is now the cru-
cial point. We want to choose it such that both the first
k eigenvalues of L̃ and the first k eigenvalues of L are
contained in S1. This is easier the smaller the perturbation
H = L − L̃ and the larger the eigengap |λk − λk+1| is. If
we manage to find such a set, then the Davis-Kahan theo-
rem tells us that the eigenspaces corresponding to the first
k eigenvalues of the ideal matrix L and the first k eigen-
values of the perturbed matrix L̃ are very close to each
other, that is their distance is bounded by ‖H‖/δ. Then,
as the eigenvectors in the ideal case are piecewise con-
stant on the connected components, the same will approx-
imately be true in the perturbed case. How good “approx-
imately” is depends on the norm of the perturbation ‖H‖
and the distance δ between S1 and the (k + 1)st eigenvector
of L. If the set S1 has been chosen as the interval [0, λk],
then δ coincides with the spectral gap |λk+1 − λk|. We can
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see from the theorem that the larger this eigengap is, the
closer the eigenvectors of the ideal case and the perturbed
case are, and hence the better spectral clustering works. Be-
low we will see that the size of the eigengap can also be
used in a different context as a quality criterion for spectral
clustering, namely when choosing the number k of clusters
to construct.

If the perturbation H is too large or the eigengap is too
small, we might not find a set S1 such that both the first k

eigenvalues of L and L̃ are contained in S1. In this case,
we need to make a compromise by choosing the set S1 to
contain the first k eigenvalues of L, but maybe a few more
or less eigenvalues of L̃. The statement of the theorem then
becomes weaker in the sense that either we do not compare
the eigenspaces corresponding to the first k eigenvectors of
L and L̃, but the eigenspaces corresponding to the first k

eigenvectors of L and the first k̃ eigenvectors of L̃ (where k̃

is the number of eigenvalues of L̃ contained in S1). Or, it can
happen that δ becomes so small that the bound on the dis-
tance between d(V1, Ṽ1) blows up so much that it becomes
useless.

7.2 Comments about the perturbation approach

A bit of caution is needed when using perturbation theory ar-
guments to justify clustering algorithms based on eigenvec-
tors of matrices. In general, any block diagonal symmetric
matrix has the property that there exists a basis of eigenvec-
tors which are zero outside the individual blocks and real-
valued within the blocks. For example, based on this argu-
ment several authors use the eigenvectors of the similarity
matrix S or adjacency matrix W to discover clusters. How-
ever, being block diagonal in the ideal case of completely
separated clusters can be considered as a necessary condi-
tion for a successful use of eigenvectors, but not a sufficient
one. At least two more properties should be satisfied:

First, we need to make sure that the order of the eigenval-
ues and eigenvectors is meaningful. In case of the Laplacians
this is always true, as we know that any connected compo-
nent possesses exactly one eigenvector which has eigenvalue
0. Hence, if the graph has k connected components and we
take the first k eigenvectors of the Laplacian, then we know
that we have exactly one eigenvector per component. How-
ever, this might not be the case for other matrices such as S

or W . For example, it could be the case that the two largest
eigenvalues of a block diagonal similarity matrix S come
from the same block. In such a situation, if we take the first
k eigenvectors of S, some blocks will be represented sev-
eral times, while there are other blocks which we will miss
completely (unless we take certain precautions). This is the
reason why using the eigenvectors of S or W for clustering
should be discouraged.

The second property is that in the ideal case, the entries
of the eigenvectors on the components should be “safely

bounded away” from 0. Assume that an eigenvector on the
first connected component has an entry u1,i > 0 at position
i. In the ideal case, the fact that this entry is non-zero in-
dicates that the corresponding point i belongs to the first
cluster. The other way round, if a point j does not belong to
cluster 1, then in the ideal case it should be the case that
u1,j = 0. Now consider the same situation, but with per-
turbed data. The perturbed eigenvector ũ will usually not
have any non-zero component any more; but if the noise is
not too large, then perturbation theory tells us that the en-
tries ũ1,i and ũ1,j are still “close” to their original values
u1,i and u1,j . So both entries ũ1,i and ũ1,j will take some
small values, say ε1 and ε2. In practice, if those values are
very small it is unclear how we should interpret this situa-
tion. Either we believe that small entries in ũ indicate that
the points do not belong to the first cluster (which then mis-
classifies the first data point i), or we think that the entries
already indicate class membership and classify both points
to the first cluster (which misclassifies point j ).

For both matrices L and Lrw, the eigenvectors in the ideal
situation are indicator vectors, so the second problem de-
scribed above cannot occur. However, this is not true for the
matrix Lsym, which is used in the normalized spectral clus-
tering algorithm of Ng et al. (2002). Even in the ideal case,
the eigenvectors of this matrix are given as D1/21Ai

. If the
degrees of the vertices differ a lot, and in particular if there
are vertices which have a very low degree, the correspond-
ing entries in the eigenvectors are very small. To counteract
the problem described above, the row-normalization step in
the algorithm of Ng et al. (2002) comes into play. In the ideal
case, the matrix U in the algorithm has exactly one non-zero
entry per row. After row-normalization, the matrix T in the
algorithm of Ng et al. (2002) then consists of the cluster indi-
cator vectors. Note however, that this might not always work
out correctly in practice. Assume that we have ũi,1 = ε1 and
ũi,2 = ε2. If we now normalize the i-th row of U , both ε1

and ε2 will be multiplied by the factor of 1/

√
ε2

1 + ε2
2 and

become rather large. We now run into a similar problem as
described above: both points are likely to be classified into
the same cluster, even though they belong to different clus-
ters. This argument shows that spectral clustering using the
matrix Lsym can be problematic if the eigenvectors contain
particularly small entries. On the other hand, note that such
small entries in the eigenvectors only occur if some of the
vertices have a particularly low degrees (as the eigenvec-
tors of Lsym are given by D1/21Ai

). One could argue that in
such a case, the data point should be considered an outlier
anyway, and then it does not really matter in which cluster
the point will end up.

To summarize, the conclusion is that both unnormalized
spectral clustering and normalized spectral clustering with
Lrw are well justified by the perturbation theory approach.
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Normalized spectral clustering with Lsym can also be jus-
tified by perturbation theory, but it should be treated with
more care if the graph contains vertices with very low de-
grees.

8 Practical details

In this section we will briefly discuss some of the issues
which come up when actually implementing spectral clus-
tering. There are several choices to be made and parameters
to be set. However, the discussion in this section is mainly
meant to raise awareness about the general problems which
can occur. For thorough studies on the behavior of spectral
clustering for various real world tasks we refer to the litera-
ture.

8.1 Constructing the similarity graph

Constructing the similarity graph for spectral clustering is
not a trivial task, and little is known on theoretical implica-
tions of the various constructions.

8.1.1 The similarity function itself

Before we can even think about constructing a similarity
graph, we need to define a similarity function on the data. As
we are going to construct a neighborhood graph later on, we
need to make sure that the local neighborhoods induced by
this similarity function are “meaningful”. This means that
we need to be sure that points which are considered to be
“very similar” by the similarity function are also closely re-
lated in the application the data comes from. For example,
when constructing a similarity function between text doc-
uments it makes sense to check whether documents with
a high similarity score indeed belong to the same text cat-
egory. The global “long-range” behavior of the similarity
function is not so important for spectral clustering—it does
not really matter whether two data points have similarity
score 0.01 or 0.001, say, as we will not connect those two
points in the similarity graph anyway. In the common case
where the data points live in the Euclidean space R

d , a rea-
sonable default candidate is the Gaussian similarity func-
tion s(xi, xj ) = exp(−‖xi − xj‖2/(2σ 2)) (but of course we
need to choose the parameter σ here, see below). Ultimately,
the choice of the similarity function depends on the do-
main the data comes from, and no general advice can be
given.

8.1.2 Which type of similarity graph

The next choice one has to make concerns the type of the
graph one wants to use, such as the k-nearest neighbor or the

ε-neighborhood graph. Let us illustrate the behavior of the
different graphs using the toy example presented in Fig. 3.
As underlying distribution we choose a distribution on R

2

with three clusters: two “moons” and a Gaussian. The den-
sity of the bottom moon is chosen to be larger than the one
of the top moon. The upper left panel in Fig. 3 shows a sam-
ple drawn from this distribution. The next three panels show
the different similarity graphs on this sample.

In the ε-neighborhood graph, we can see that it is difficult
to choose a useful parameter ε. With ε = 0.3 as in the fig-
ure, the points on the middle moon are already very tightly
connected, while the points in the Gaussian are barely con-
nected. This problem always occurs if we have data “on dif-
ferent scales”, that is the distances between data points are
different in different regions of the space.

The k-nearest neighbor graph, on the other hand, can con-
nect points “on different scales”. We can see that points in
the low-density Gaussian are connected with points in the
high-density moon. This is a general property of k-nearest
neighbor graphs which can be very useful. We can also
see that the k-nearest neighbor graph can break into several
disconnected components if there are high density regions
which are reasonably far away from each other. This is the
case for the two moons in this example.

The mutual k-nearest neighbor graph has the property
that it tends to connect points within regions of constant den-
sity, but does not connect regions of different densities with
each other. So the mutual k-nearest neighbor graph can be
considered as being “in between” the ε-neighborhood graph
and the k-nearest neighbor graph. It is able to act on dif-
ferent scales, but does not mix those scales with each other.
Hence, the mutual k-nearest neighbor graph seems partic-
ularly well-suited if we want to detect clusters of different
densities.

The fully connected graph is very often used in con-
nection with the Gaussian similarity function s(xi, xj ) =
exp(−‖xi −xj‖2/(2σ 2)). Here the parameter σ plays a sim-
ilar role as the parameter ε in the ε-neighborhood graph.
Points in local neighborhoods are connected with relatively
high weights, while edges between far away points have pos-
itive, but negligible weights. However, the resulting similar-
ity matrix is not a sparse matrix.

As a general recommendation we suggest to work with
the k-nearest neighbor graph as the first choice. It is simple
to work with, results in a sparse adjacency matrix W , and
in our experience is less vulnerable to unsuitable choices of
parameters than the other graphs.

8.1.3 The parameters of the similarity graph

Once one has decided for the type of the similarity graph,
one has to choose its connectivity parameter k or ε, re-
spectively. Unfortunately, barely any theoretical results are
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known to guide us in this task. In general, if the similarity
graph contains more connected components than the number
of clusters we ask the algorithm to detect, then spectral clus-
tering will trivially return connected components as clus-
ters. Unless one is perfectly sure that those connected com-
ponents are the correct clusters, one should make sure that
the similarity graph is connected, or only consists of “few”
connected components and very few or no isolated vertices.
There are many theoretical results on how connectivity of
random graphs can be achieved, but all those results only
hold in the limit for the sample size n → ∞. For example, it
is known that for n data points drawn i.i.d. from some under-
lying density with a connected support in R

d , the k-nearest
neighbor graph and the mutual k-nearest neighbor graph will
be connected if we choose k on the order of log(n) (e.g.,
Brito et al. 1997). Similar arguments show that the para-
meter ε in the ε-neighborhood graph has to be chosen as
(log(n)/n)d to guarantee connectivity in the limit (Penrose
1999). While being of theoretical interest, all those results
do not really help us for choosing k on a finite sample.

Now let us give some rules of thumb. When working with
the k-nearest neighbor graph, then the connectivity parame-
ter should be chosen such that the resulting graph is con-
nected, or at least has significantly fewer connected compo-
nents than clusters we want to detect. For small or medium-
sized graphs this can be tried out “by foot”. For very large
graphs, a first approximation could be to choose k in the or-

der of log(n), as suggested by the asymptotic connectivity
results.

For the mutual k-nearest neighbor graph, we have to ad-
mit that we are a bit lost for rules of thumb. The advantage of
the mutual k-nearest neighbor graph compared to the stan-
dard k-nearest neighbor graph is that it tends not to connect
areas of different density. While this can be good if there are
clear clusters induced by separate high-density areas, this
can hurt in less obvious situations as disconnected parts in
the graph will always be chosen to be clusters by spectral
clustering. Very generally, one can observe that the mutual
k-nearest neighbor graph has much fewer edges than the
standard k-nearest neighbor graph for the same parameter k.
This suggests to choose k significantly larger for the mutual
k-nearest neighbor graph than one would do for the standard
k-nearest neighbor graph. However, to take advantage of the
property that the mutual k-nearest neighbor graph does not
connect regions of different density, it would be necessary
to allow for several “meaningful” disconnected parts of the
graph. Unfortunately, we do not know of any general heuris-
tic to choose the parameter k such that this can be achieved.

For the ε-neighborhood graph, we suggest to choose ε

such that the resulting graph is safely connected. To deter-
mine the smallest value of ε where the graph is connected is
very simple: one has to choose ε as the length of the longest
edge in a minimal spanning tree of the fully connected graph
on the data points. The latter can be determined easily by any
minimal spanning tree algorithm. However, note that when

Fig. 3 Different similarity
graphs, see text for details
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the data contains outliers this heuristic will choose ε so large
that even the outliers are connected to the rest of the data. A
similar effect happens when the data contains several tight
clusters which are very far apart from each other. In both
cases, ε will be chosen too large to reflect the scale of the
most important part of the data.

Finally, if one uses a fully connected graph together with
a similarity function which can be scaled itself, for example
the Gaussian similarity function, then the scale of the simi-
larity function should be chosen such that the resulting graph
has similar properties as a corresponding k-nearest neighbor
or ε-neighborhood graph would have. One needs to make
sure that for most data points the set of neighbors with a
similarity significantly larger than 0 is “not too small and not
too large”. In particular, for the Gaussian similarity function
several rules of thumb are frequently used. For example, one
can choose σ in the order of the mean distance of a point
to its k-th nearest neighbor, where k is chosen similarly as
above (e.g., k ∼ log(n) + 1 ). Another way is to determine ε

by the minimal spanning tree heuristic described above, and
then choose σ = ε. But note that all those rules of thumb are
very ad hoc, and depending on the given data at hand and
its distribution of inter-point distances they might not work
at all.

In general, experience shows that spectral clustering can
be quite sensitive to changes in the similarity graph and to
the choice of its parameters. Unfortunately, to our knowl-
edge there has been no systematic study which investigates
the effects of the similarity graph and its parameters on clus-
tering and comes up with well-justified rules of thumb. None
of the recommendations above is based on a firm theoretic
ground. Finding rules which have a theoretical justification
should be considered an interesting and important topic for
future research.

8.2 Computing the eigenvectors

To implement spectral clustering in practice one has to com-
pute the first k eigenvectors of a potentially large graph
Laplace matrix. Luckily, if we use the k-nearest neighbor
graph or the ε-neighborhood graph, then all those matri-
ces are sparse. Efficient methods exist to compute the first
eigenvectors of sparse matrices, the most popular ones being
the power method or Krylov subspace methods such as the
Lanczos method (Golub and Van Loan 1996). The speed of
convergence of those algorithms depends on the size of the
eigengap (also called spectral gap) γk = |λk − λk+1|. The
larger this eigengap is, the faster the algorithms computing
the first k eigenvectors converge.

Note that a general problem occurs if one of the eigen-
values under consideration has multiplicity larger than one.
For example, in the ideal situation of k disconnected clus-
ters, the eigenvalue 0 has multiplicity k. As we have seen,

in this case the eigenspace is spanned by the k cluster in-
dicator vectors. But unfortunately, the vectors computed by
the numerical eigensolvers do not necessarily converge to
those particular vectors. Instead they just converge to some
orthonormal basis of the eigenspace, and it usually depends
on implementation details to which basis exactly the algo-
rithm converges. But this is not so bad after all. Note that all
vectors in the space spanned by the cluster indicator vectors
1Ai

have the form u = ∑k
i=1 ai1Ai

for some coefficients ai ,
that is, they are piecewise constant on the clusters. So the
vectors returned by the eigensolvers still encode the infor-
mation about the clusters, which can then be used by the
k-means algorithm to reconstruct the clusters.

8.3 The number of clusters

Choosing the number k of clusters is a general problem
for all clustering algorithms, and a variety of more or less
successful methods have been devised for this problem. In
model-based clustering settings there exist well-justified cri-
teria to choose the number of clusters from the data. Those
criteria are usually based on the log-likelihood of the data,
which can then be treated in a frequentist or Bayesian way,
for examples see Fraley and Raftery (2002). In settings
where no or few assumptions on the underlying model are
made, a large variety of different indices can be used to
pick the number of clusters. Examples range from ad-hoc
measures such as the ratio of within-cluster and between-
cluster similarities, over information-theoretic criteria (Still
and Bialek 2004), the gap statistic (Tibshirani et al. 2001), to
stability approaches (Ben-Hur et al. 2002; Lange et al. 2004;
Ben-David et al. 2006). Of course all those methods can also
be used for spectral clustering. Additionally, one tool which
is particularly designed for spectral clustering is the eigen-
gap heuristic, which can be used for all three graph Lapla-
cians. Here the goal is to choose the number k such that all
eigenvalues λ1, . . . , λk are very small, but λk+1 is relatively
large. There are several justifications for this procedure. The
first one is based on perturbation theory, where we observe
that in the ideal case of k completely disconnected clusters,
the eigenvalue 0 has multiplicity k, and then there is a gap to
the (k + 1)th eigenvalue λk+1 > 0. Other explanations can
be given by spectral graph theory. Here, many geometric in-
variants of the graph can be expressed or bounded with the
help of the first eigenvalues of the graph Laplacian. In par-
ticular, the sizes of cuts are closely related to the size of the
first eigenvalues. For more details on this topic we refer to
Bolla (1991), Mohar (1997) and Chung (1997).

We would like to illustrate the eigengap heuristic on our
toy example introduced in Sect. 4. For this purpose we con-
sider similar data sets as in Sect. 4, but to vary the difficulty
of clustering we consider the Gaussians with increasing vari-
ance. The first row of Fig. 4 shows the histograms of the
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Fig. 4 Three data sets, and the smallest 10 eigenvalues of Lrw. See text for more details

three samples. We construct the 10-nearest neighbor graph
as described in Sect. 4, and plot the eigenvalues of the nor-
malized Laplacian Lrw on the different samples (the results
for the unnormalized Laplacian are similar). The first data
set consists of four well separated clusters, and we can see
that the first 4 eigenvalues are approximately 0. Then there
is a gap between the 4th and 5th eigenvalue, that is |λ5 −λ4|
is relatively large. According to the eigengap heuristic, this
gap indicates that the data set contains 4 clusters. The same
behavior can also be observed for the results of the fully
connected graph (already plotted in Fig. 1). So we can see
that the heuristic works well if the clusters in the data are
very well pronounced. However, the more noisy or overlap-
ping the clusters are, the less effective is this heuristic. We
can see that for the second data set where the clusters are
more “blurry”, there is still a gap between the 4th and 5th
eigenvalue, but it is not as clear to detect as in the case be-
fore. Finally, in the last data set, there is no well-defined gap,
the differences between all eigenvalues are approximately
the same. But on the other hand, the clusters in this data set
overlap so much that many algorithms will have difficulties
to detect the clusters, unless they make strong assumptions
on the underlying model. In this particular example, even for
a human looking at the histogram it is not obvious what the
correct number of clusters should be. This illustrates that,
as most methods for choosing the number of clusters, the
eigengap heuristic usually works well if the data contains
very well pronounced clusters, but in ambiguous cases it
also returns ambiguous results.

Finally, note that the choice of the number of clusters
and the choice of the connectivity parameters of the neigh-
borhood graph affect each other. For example, if the con-
nectivity parameter of the neighborhood graph is so small
that the graph breaks into, say, k0 connected components,

then choosing k0 as the number of clusters is a valid choice.
However, as soon as the neighborhood graph is connected,
it is not clear how the number of clusters and the connec-
tivity parameters of the neighborhood graph interact. Both
the choice of the number of clusters and the choice of the
connectivity parameters of the graph are difficult problems
on their own, and to our knowledge nothing non-trivial is
known on their interactions.

8.4 The k-means step

The three spectral clustering algorithms we presented in
Sect. 4 use k-means as last step to extract the final parti-
tion from the real valued matrix of eigenvectors. First of all,
note that there is nothing principled about using the k-means
algorithm in this step. In fact, as we have seen from the var-
ious explanations of spectral clustering, this step should be
very simple if the data contains well-expressed clusters. For
example, in the ideal case if completely separated clusters
we know that the eigenvectors of L and Lrw are piecewise
constant. In this case, all points xi which belong to the same
cluster Cs are mapped to exactly the sample point yi , namely
to the unit vector es ∈ R

k . In such a trivial case, any cluster-
ing algorithm applied to the points yi ∈ R

k will be able to
extract the correct clusters.

While it is somewhat arbitrary what clustering algorithm
exactly one chooses in the final step of spectral clustering,
one can argue that at least the Euclidean distance between
the points yi is a meaningful quantity to look at. We have
seen that the Euclidean distance between the points yi is re-
lated to the “commute distance” on the graph, and in Nadler
et al. (2006) the authors show that the Euclidean distances
between the yi are also related to a more general “diffusion
distance”. Also, other uses of the spectral embeddings (e.g.,
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Bolla 1991 or Belkin and Niyogi 2003) show that the Euclid-
ean distance in R

d is meaningful.
Instead of k-means, people also use other techniques to

construct he final solution from the real-valued representa-
tion. For example, in Lang (2006) the authors use hyper-
planes for this purpose. A more advanced post-processing
of the eigenvectors is proposed in Bach and Jordan (2004).
Here the authors study the subspace spanned by the first k

eigenvectors, and try to approximate this subspace as well
as possible using piecewise constant vectors. This also leads
to minimizing certain Euclidean distances in the space R

k ,
which can be done by some weighted k-means algorithm.

8.5 Which graph Laplacian should be used?

A fundamental question related to spectral clustering is the
question which of the three graph Laplacians should be used
to compute the eigenvectors. Before deciding this question,
one should always look at the degree distribution of the sim-
ilarity graph. If the graph is very regular and most vertices
have approximately the same degree, then all the Laplacians
are very similar to each other, and will work equally well
for clustering. However, if the degrees in the graph are very
broadly distributed, then the Laplacians differ considerably.
In our opinion, there are several arguments which advocate
for using normalized rather than unnormalized spectral clus-
tering, and in the normalized case to use the eigenvectors of
Lrw rather than those of Lsym.

8.5.1 Clustering objectives satisfied by the different
algorithms

The first argument in favor of normalized spectral clustering
comes from the graph partitioning point of view. For sim-
plicity let us discuss the case k = 2. In general, clustering
has two different objectives:

1. We want to find a partition such that points in different
clusters are dissimilar to each other, that is we want to
minimize the between-cluster similarity. In the graph set-
ting, this means to minimize cut(A, Ā).

2. We want to find a partition such that points in the same
cluster are similar to each other, that is we want to
maximize the within-cluster similarities W(A,A) and
W(Ā, Ā).

Both RatioCut and Ncut directly implement the first ob-
jective by explicitly incorporating cut(A, Ā) in the objective
function. However, concerning the second point, both algo-
rithms behave differently. Note that

W(A,A) = W(A,V ) − W(A, Ā) = vol(A) − cut(A, Ā).

Hence, the within-cluster similarity is maximized if
cut(A, Ā) is small and if vol(A) is large. As this is ex-
actly what we achieve by minimizing Ncut, the Ncut crite-
rion implements the second objective. This can be seen even

more explicitly by considering yet another graph cut objec-
tive function, namely the MinmaxCut criterion introduced
by Ding et al. (2001):

MinmaxCut(A1, . . . ,Ak) :=
k∑

i=1

cut(Ai, Āi)

W(Ai,Ai)
.

Compared to Ncut, which has the term vol(A) =
cut(A, Ā) + W(A,A) in the denominator, the MinmaxCut
criterion only has W(A,A) in the denominator. In practice,
Ncut and MinmaxCut are often minimized by similar cuts,
as a good Ncut solution will have a small value of cut(A, Ā)

anyway and hence the denominators are not so different af-
ter all. Moreover, relaxing MinmaxCut leads to exactly the
same optimization problem as relaxing Ncut, namely to nor-
malized spectral clustering with the eigenvectors of Lrw.
So one can see by several ways that normalized spectral
clustering incorporates both clustering objectives mentioned
above.

Now consider the case of RatioCut. Here the objective
is to maximize |A| and|Ā| instead of vol(A) and vol(Ā).
But |A| and |Ā| are not necessarily related to the within-
cluster similarity, as the within-cluster similarity depends
on the edges and not on the number of vertices in A. For
instance, just think of a set A which has very many ver-
tices, all of which only have very low weighted edges to
each other. Minimizing RatioCut does not attempt to maxi-
mize the within-cluster similarity, and the same is then true
for its relaxation by unnormalized spectral clustering.

So this is our first important point to keep in mind: Nor-
malized spectral clustering implements both clustering ob-
jectives mentioned above, while unnormalized spectral clus-
tering only implements the first objective.

8.5.2 Consistency issues

A completely different argument for the superiority of nor-
malized spectral clustering comes from a statistical analysis
of both algorithms. In a statistical setting one assumes that
the data points x1, . . . , xn have been sampled i.i.d. according
to some probability distribution P on some underlying data
space X . The most fundamental question is then the ques-
tion of consistency: if we draw more and more data points,
do the clustering results of spectral clustering converge to a
useful partition of the underlying space X ?

For both normalized spectral clustering algorithms, it
can be proved that this is indeed the case (von Luxburg
et al. to appear, 2004, 2005). Mathematically, one proves
that as we take the limit n → ∞, the matrix Lsym con-
verges in a strong sense to an operator U on the space
C(X ) of continuous functions on X . This convergence im-
plies that the eigenvalues and eigenvectors of Lsym con-
verge to those of U , which in turn can be transformed to
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Fig. 5 Consistency of unnormalized spectral clustering. Plotted are
eigenvalues and eigenvectors of L, for parameter σ = 2 (first row) and
σ = 5 (second row). The dashed line indicates mindj , the eigenval-

ues below mindj are plotted as red diamonds, the eigenvalues above
mindj are plotted as blue stars. See text for more details

a statement about the convergence of normalized spectral
clustering. One can show that the partition which is in-
duced on X by the eigenvectors of U can be interpreted
similar to the random walks interpretation of spectral clus-
tering. That is, if we consider a diffusion process on the
data space X , then the partition induced by the eigenvec-
tors of U is such that the diffusion does not make transi-
tion between the different clusters very often (von Luxburg
et al. 2004). All consistency statements about normalized
spectral clustering hold, for both Lsym and Lrw, under
very mild conditions which are usually satisfied in real
world applications. Unfortunately, explaining more details
about those results goes beyond the scope of this tutor-
ial, so we refer the interested reader to von Luxburg et al.
(to appear).

In contrast to the clear convergence statements for nor-
malized spectral clustering, the situation for unnormal-
ized spectral clustering is much more unpleasant. It can
be proved that unnormalized spectral clustering can fail to
converge, or that it can converge to trivial solutions which
construct clusters consisting of one single point of the data
space (von Luxburg et al. to appear, 2005). Mathematically,
even though one can prove that the matrix (1/n)L itself
converges to some limit operator T on C(X ) as n → ∞, the
spectral properties of this limit operator T can be so nasty
that they prevent the convergence of spectral clustering. It is
possible to construct examples which show that this is not
only a problem for very large sample size, but that it can
lead to completely unreliable results even for small sam-
ple size. At least it is possible to characterize the conditions
when those problem do not occur: We have to make sure
that the eigenvalues of L corresponding to the eigenvectors
used in unnormalized spectral clustering are significantly
smaller than the minimal degree in the graph. This means
that if we use the first k eigenvectors for clustering, then

λi � minj=1,...,n dj should hold for all i = 1, . . . , k. The
mathematical reason for this condition is that eigenvectors
corresponding to eigenvalues larger than mindj approxi-
mate Dirac functions, that is they are approximately 0 in all
but one coordinate. If those eigenvectors are used for clus-
tering, then they separate the one vertex where the eigen-
vector is non-zero from all other vertices, and we clearly do
not want to construct such a partition. Again we refer to the
literature for precise statements and proofs.

For an illustration of this phenomenon, consider again
our toy data set from Sect. 4. We consider the first eigenval-
ues and eigenvectors of the unnormalized graph Laplacian
based on the fully connected graph, for different choices
of the parameter σ of the Gaussian similarity function (see
last row of Fig. 1 and all rows of Fig. 5). The eigenvalues
above mindj are plotted as blue stars, the eigenvalues be-
low mindj are plotted as red diamonds. The dashed line
indicates mindj . In general, we can see that the eigenvec-
tors corresponding to eigenvalues which are much below the
dashed lines are “useful” eigenvectors. In case σ = 1 (plot-
ted already in the last row of Fig. 1), Eigenvalues 2, 3 and 4
are significantly below mindj , and the corresponding Eigen-
vectors 2, 3, and 4 are meaningful (as already discussed in
Sect. 4). If we increase the parameter σ , we can observe that
the eigenvalues tend to move towards mindj . In case σ = 2,
only the first three eigenvalues are below mindj (first row
in Fig. 5), and in case σ = 5 only the first two eigenvalues
are below mindj (second row in Fig. 5). We can see that
as soon as an eigenvalue gets close to or above mindj , its
corresponding eigenvector approximates a Dirac function.
Of course, those eigenvectors are unsuitable for construct-
ing a clustering. In the limit for n → ∞, those eigenvectors
would converge to perfect Dirac functions. Our illustration
of the finite sample case shows that this behavior not only
occurs for large sample size, but can be generated even on
the small example in our toy data set.
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It is very important to stress that those problems only
concern the eigenvectors of the matrix L, and they do not
occur for Lrw or Lsym. Thus, from a statistical point of view,
it is preferable to avoid unnormalized spectral clustering and
to use the normalized algorithms instead.

8.5.3 Which normalized Laplacian?

Looking at the differences between the two normalized
spectral clustering algorithms using Lrw and Lsym, all three
explanations of spectral clustering are in favor of Lrw. The
reason is that the eigenvectors of Lrw are cluster indicator
vectors 1Ai

, while the eigenvectors of Lsym are additionally
multiplied with D1/2, which might lead to undesired arti-
facts. As using Lsym also does not have any computational
advantages, we thus advocate for using Lrw.

9 Outlook and further reading

Spectral clustering goes back to Donath and Hoffman
(1973), who first suggested to construct graph partitions
based on eigenvectors of the adjacency matrix. In the same
year, Fiedler (1973) discovered that bi-partitions of a graph
are closely connected with the second eigenvector of the
graph Laplacian, and he suggested to use this eigenvector
to partition a graph. Since then, spectral clustering has been
discovered, re-discovered, and extended many times in dif-
ferent communities, see for example Pothen et al. (1990),
Simon (1991), Bolla (1991), Hagen and Kahng (1992),
Hendrickson and Leland (1995), Van Driessche and Roose
(1995), Barnard et al. (1995), Spielman and Teng (1996),
Guattery and Miller (1998). A nice overview over the his-
tory of spectral clustering can be found in Spielman and
Teng (1996).

In the machine learning community, spectral cluster-
ing has been made popular by the works of Shi and Ma-
lik (2000), Ng et al. (2002), Meila and Shi (2001), and
Ding (2004). Subsequently, spectral clustering has been ex-
tended to many non-standard settings, for example spec-
tral clustering applied to the co-clustering problem (Dhillon
2001), spectral clustering with additional side information
(Joachims 2003) connections between spectral clustering
and the weighted kernel-k-means algorithm (Dhillon et al.
2005), learning similarity functions based on spectral clus-
tering (Bach and Jordan 2004), or spectral clustering in a
distributed environment (Kempe and McSherry 2004). Also,
new theoretical insights about the relation of spectral clus-
tering to other algorithms have been found. A link between
spectral clustering and the weighted kernel k-means algo-
rithm is described in Dhillon et al. (2005). Relations be-
tween spectral clustering and (kernel) principal component
analysis rely on the fact that the smallest eigenvectors of

graph Laplacians can also be interpreted as the largest eigen-
vectors of kernel matrices (Gram matrices). Two different
flavors of this interpretation exist: while Bengio et al. (2004)
interpret the matrix D−1/2WD−1/2 as kernel matrix, other
authors (Saerens et al. 2004) interpret the Moore-Penrose
inverses of L or Lsym as kernel matrix. Both interpretations
can be used to construct (different) out-of-sample exten-
sions for spectral clustering. Concerning application cases
of spectral clustering, in the last few years such a huge num-
ber of papers has been published in various scientific ar-
eas that it is impossible to cite all of them. We encourage
the reader to query his favorite literature data base with the
phrase “spectral clustering” to get an impression on the va-
riety of applications.

The success of spectral clustering is mainly based on the
fact that it does not make strong assumptions on the form
of the clusters. As opposed to k-means, where the resulting
clusters form convex sets (or, to be precise, lie in disjoint
convex sets of the underlying space), spectral clustering can
solve very general problems like intertwined spirals. More-
over, spectral clustering can be implemented efficiently even
for large data sets, as long as we make sure that the similarity
graph is sparse. Once the similarity graph is chosen, we just
have to solve a linear problem, and there are no issues of get-
ting stuck in local minima or restarting the algorithm for sev-
eral times with different initializations. However, we have
already mentioned that choosing a good similarity graph is
not trivial, and spectral clustering can be quite unstable un-
der different choices of the parameters for the neighborhood
graphs. So spectral clustering cannot serve as a “black box
algorithm” which automatically detects the correct clusters
in any given data set. But it can be considered as a powerful
tool which can produce good results if applied with care.

In the field of machine learning, graph Laplacians are not
only used for clustering, but also emerge for many other
tasks such as semi-supervised learning (e.g., Chapelle et
al. 2006 for an overview) or manifold reconstruction (e.g.,
Belkin and Niyogi 2003). In most applications, graph Lapla-
cians are used to encode the assumption that data points
which are “close” (i.e., wij is large) should have a “similar”
label (i.e., fi ≈ fj ). A function f satisfies this assumption
if wij (fi − fj )

2 is small for all i, j , that is f ′Lf is small.
With this intuition one can use the quadratic form f ′Lf as
a regularizer in a transductive classification problem. One
other way to interpret the use of graph Laplacians is by the
smoothness assumptions they encode. A function f which
has a low value of f ′Lf has the property that it varies only
“a little bit” in regions where the data points lie dense (i.e.,
the graph is tightly connected), whereas it is allowed to vary
more (e.g., to change the sign) in regions of low data density.
In this sense, a small value of f ′Lf encodes the so called
“cluster assumption” in semi-supervised learning, which re-
quests that the decision boundary of a classifier should lie in
a region of low density.
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An intuition often used is that graph Laplacians formally
look like a continuous Laplace operator (and this is also
where the name “graph Laplacian” comes from). To see this,
transform a local similarity wij to a distance dij by the rela-
tionship wij = 1/d2

ij and observe that

wij (fi − fj )
2 ≈

(
fi − fj

dij

)2

looks like a difference quotient. As a consequence, the equa-
tion f ′Lf = ∑

ij wij (fi − fj )
2 from Proposition 1 looks

like a discrete version of the quadratic form associated to
the standard Laplace operator L on R

n, which satisfies

〈g,Lg〉 =
∫

|∇g|2dx.

This intuition has been made precise in the works of Belkin
(2003), Lafon (2004), Hein et al. (2005, 2007), Belkin and
Niyogi (2005), Hein (2006), Giné and Koltchinskii (2005).
In general, it is proved that graph Laplacians are discrete
versions of certain continuous Laplace operators, and that
if the graph Laplacian is constructed on a similarity graph
of randomly sampled data points, then it converges to some
continuous Laplace operator (or Laplace-Beltrami opera-
tor) on the underlying space. Belkin (2003) studied the first
important step of the convergence proof, which deals with
the convergence of a continuous operator related to discrete
graph Laplacians to the Laplace-Beltrami operator. His re-
sults were generalized from uniform distributions to general
distributions by Lafon (2004). Then in Belkin and Niyogi
(2005), the authors prove pointwise convergence results for
the unnormalized graph Laplacian using the Gaussian sim-
ilarity function on manifolds with uniform distribution. At
the same time, Hein et al. (2005) prove more general results,
taking into account all different graph Laplacians L, Lrw,
and Lsym, more general similarity functions, and manifolds
with arbitrary distributions. In Giné and Koltchinskii (2005),
distributional and uniform convergence results are proved on
manifolds with uniform distribution. Hein (2006) studies the
convergence of the smoothness functional induced by the
graph Laplacians and shows uniform convergence results.

Apart from applications of graph Laplacians to partition-
ing problems in the widest sense, graph Laplacians can also
be used for completely different purposes, for example for
graph drawing (Koren 2005). In fact, there are many more
tight connections between the topology and properties of
graphs and the graph Laplacian matrices than we have men-
tioned in this tutorial. Now equipped with an understanding
for the most basic properties, the interested reader is invited
to further explore and enjoy the huge literature in this field
on his own.
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