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AbstractÐThis paper describes a novel framework for comparing and matching

corrupted relational graphs. The paper develops the idea of edit-distance originally

introduced for graph-matching by Sanfeliu and Fu [1]. We show how the

Levenshtein distance can be used to model the probability distribution for

structural errors in the graph-matching problem. This probability distribution is

used to locate matches using MAP label updates. We compare the resulting

graph-matching algorithm with that recently reported by Wilson and Hancock. The

use of edit-distance offers an elegant alternative to the exhaustive compilation of

label dictionaries. Moreover, the method is polynomial rather than exponential in

its worst-case complexity. We support our approach with an experimental study on

synthetic data and illustrate its effectiveness on an uncalibrated stereo

correspondence problem. This demonstrates experimentally that the gain in

efficiency is not at the expense of quality of match.

Index TermsÐGraph matching, edit-distance, Bayesian, MAP estimation, stereo

images.
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1 INTRODUCTION

RELATIONAL matching is an abstract problem which models many
processes in machine vision, ranging from midlevel tasks such as
stereopsis [2] and multiple sensor fusion [3], [4] to higher-level ones
such as object recognition [5] and scene understanding [6]. The two
key issues in graph-matching are how to measure similarity when
structural corruption is present and how to search efficiently for the
best match. The first of these problems was extensively addressed
in the structural pattern recognition literature of the 1980s.
Concrete examples include Shapiro and Haralick's [7] idea of
counting consistent cliques. A finer measure of similarity is
provided by Sanfeliu and Fu's [1] idea using an edit-distance
which counts node and edge relabelings together with the number
of node and edge deletions or insertions necessary to transform one
graph into another. More recently, in an attempt to cast the graph-
matching problem into a Bayesian framework, Wilson and Han-
cock have shown in [8] how to construct a mixture model over a
dictionary of structure-preserving mappings between the model
graph and the data graph. Here, the distance between graphs
depends on the Hamming distance between the node labels
together with the size difference of the graphs. Although the
dictionary can be compiled offline, its size can grow exponentially
when the graphs are of different size and dummy nodes have to be
inserted so as to model structural corruption due to the presence of
clutter.

The aim in this paper is to focus more closely on the issue of
how to measure the similarity of structurally corrupted graphs.
The idea of using the Levenshtein or edit-distance to compare

coded patterns which may have different sizes has existed for
many years [9], [10]Ðindeed, the Hamming distance between two
strings is a special case of the edit-distance. Wagner and Fischer
used dynamic programming to evaluate the edit-distance between

strings [10]. This idea has been extended to form a basis for
comparing trees and graphs on a global level [11], [12], [1], [7].
More recently, the idea of actively editing graphs during the
matching process to eliminate relational clutter has proved very
successful [13], [8], [14]. The string edit-distance problem has
received renewed interest in the pattern recognition literature [15],
and Marzal and Vidal have recently shown how to normalize the
edit-distance so that it may be consistently applied across a range
of objects of different sizes [16]. Of particular relevance to the
graph matching problem is the recent work of Messmer and Bunke
[13] who exploited Sanfeliu and Fu's [1] graph-edit-distance to
index multiple graph representations that have been encoded in a
large model library using structural hashing. Finally, Bunke has
recently demonstrated some interesting properties of the graph
edit-distance. First, he has shown that the size of the maximum
common subgraph is related to the edit-distance [17]. Second, he
has commented on the uniqueness of the cost-function [18].

The observation underpinning this paper is that edit-distance
represents an elegant alternative to the exhaustive compilation of
dictionaries. Specifically, it provides a means by which structural
errors can be modeled in an implicit rather than an explicit
manner. Our goal is to follow Wilson and Hancock [19], [8] by
modeling the probability distribution for edit-distance. We
commence with a simple memoryless distribution rule over the
basic edit operations. This leads to an exponential distribution.
Although it can be shown that the dictionary-based graph-
matching technique requires a polynomial number of dictionary
comparisons, relatively little attention has been paid to the time
and space complexity of dictionary compilation and lookup. In the
original work on discrete relaxation, Waltz [20] had a large but
fixed set of dictionaries for line labeling. Because it models
structural error by padding out and permuting the nodes of graphs
of different size, Wilson and Hancock's dictionary can grow
exponentially. Although this growth can be curbed using relatively
unobjectionable heuristics, the aim in this paper is to take a more
principled approach. By adopting the edit-distance as our measure
of similarity, we remove the need for dictionary padding and
reduce the worst-case complexity to be polynomial. In an
experimental study, we show that even a relatively naõÈve
application of the edit-distance approach performs no worse than
the original, and can do significantly better under certain
circumstances.

The outline of this paper is as follows: In Section 2, we briefly
review Wilson and Hancock's MAP framework for discrete
relaxation. Section 3 describes the dictionary-based prior for
graph-matching. In Section 4, we look critically at the complexity
of dictionary compilation when there are structural errors and
inexact graph-matching is being attempted. Section 5 introduces
the edit-path concept and provides a Bayesian model of the
associated prior. In Section 6, we provide some comparative
experimental evaluation. This consists of both a sensitivity study
and some real-world examples. Finally, Section 7 provides some
conclusions and offers prospects for future work.

2 MAP FRAMEWORK

We are interested in matching attributed relational graphs
(ARGs) [1]. An ARG is a triple, G � �V ;E;A�, where V is the
set of vertices (nodes), E is the edge set (E � V � V ), and A is
the set of node attributes (A � f~xjjj 2 V g). Consider a data
graph GD � �VD;ED;AD�, which is to be matched onto a model
graph GM � �VM;EM;AM�. The state of correspondence match
can be represented by the function f : VD 7!VM [ f�g from the
node set of the data graph onto the node set of the model
graph, where the node set of the model graph is augmented by
adding a NULL label, �, to allow for unmatchable nodes in the
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data graph. According to Wilson and Hancock's Bayesian

framework [8], the quality of a match is measured by its

a posteriori probability given the node attributes.

P �f jAD;AM� � p�AD;AM jf�
p�AD;AM� Q�f�; �1�

where p�AD;AM jf� is the conditional measurement density,

p�AD;AM� is the joint measurement density, and Q�f� is the

matching prior. In [8], this criterion is optimized by hill climbing.

That is, an initial match is established according to the measure-

ment densities alone, and then iteratively updated so as to

monotonically increase the value of the criterion. Assuming

statistical independence of node attributes, the conditional

measurement density, p�AD;AM jf�, can be factorized over the

tuples �u; v� in the match f to yield an expression in terms of the

a posteriori measurement probabilities, P �u; vj~xu;~xv�. Since the

unconditional densities p�AD;AM� and p�~xu;~xv� are independent of

the values of u and v, the criterion in (1) can be optimized by

choosing a new value v for f�u� at each iteration according to the

following MAP update rule:

f�u� � arg max
v2VM[f�g

P �u; vj~xu;~xv�
P �u; v� Q�f�: �2�

The measurement densities are concerned with node attributes

and are not our primary interest in this paper, although they are

crucial ingredients of the overall matching strategy. We are

concerned here with the matching prior, Q�f�. Wilson and

Hancock average the matching prior, Q�f�, over the matching

probabilities for the set of supercliques in the data graph. The

superclique of the node i consists of its center node, together with

its immediate neighbors connected by edges in the graph, i.e.,

CD
i � i [ fu; �i; u� 2 EDg. Supercliques are illustrated in Fig. 1a,

which shows a graph with two of its supercliques highlighted.

Since the neighborhoods or supercliques of neighboring nodes are

overlapping, and their individual probabilities are hence not

independent, Wilson and Hancock take a goal directed tack in

averaging the matching prior over the data graph supercliques.

The matching prior can be rewritten in terms of the probabilities of

the images of the supercliques in the data graph under f :

Q�f� � 1

jVDj
X
i2VD

P �ÿi�; �3�

where ÿi � �f�u0�; f�u1�; . . . . . . ; f�ujCD
i j� denotes the relational

image of the superclique CD
i in GD under the matching function f .

3 DICTIONARY-BASED MATCHING PRIOR

In this section, we review Wilson and Hancock's model of

structural errors. This commences with a mixture model which

computes the probability of the structure-preserving mapping ÿi.

The idea is to use the Bayes rule to expand the matching

probability over a dictionary of legal structure-preserving

mappings between the data and model graphs. The dictionary is

compiled by considering the cyclic permutations of the peripheral

nodes about the center node in the superclique, as shown in Fig. 1b.

A complication arises from the fact that the supercliques being

compared in the two graphs may be of different size due to clutter

(i.e., noise) or dropout. Wilson and Hancock [8] dealt with this

problem by adding padding to the smaller superclique and by

screening out nodes from the larger superclique as appropriate.

This is essentially a brute force method and may significantly add

to the complexity of the dictionaries as we will show later.
Wilson and Hancock's [8] aim is to assign matches to the nodes

in the data graph GD by exploiting structural constraints provided

by the supercliques of the model graph GM . The constraints are

represented by a dictionary of structure preserving mappings

between the data graph superclique CD
i and each of the super-

cliques CM
j belonging to the model graph GM . A series of entries

are created in the dictionary �i for the data graph node i for each

of the model graph supercliques. If the model graph superclique is

of the same size as the data graph superclique, then the entries are

created by permuting the order of the peripheral model graph

nodes about the center node. However, when the supercliques are

of different size, then the smaller unit is padded with dummy

nodes to raise it to the same size as the larger unit. This is a two

step process. First, one or more dummy edges are inserted into the

smaller superclique between each pair of the existing edges.

Second, each of the resulting padded configurations undergoes

cyclic permutation to generate dictionary entries. The process

effectively models the disruption of the adjacency structure of the

data graph caused by the addition of clutter elements or the loss of

elements due to segmental dropout. It is important to stress that

the center nodes are always paired with one another. The

dictionary of feasible mappings generated in this way is denoted

by �i � fSg. Each dictionary item is a structure-preserving

mapping of the form

S � �s0; s1; ::; su; :::::; sjCD
i j�; �4�

where su 2 j [ fv; �j; v� 2 CM
j g [ � is either one of the node labels

drawn from the model graph superclique or the null label �, and

u 2 CD
i is one of the node labels drawn from the data graph

superclique CD
i .
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Fig. 1. Supercliques as defined by Wilson and Hancock in [8]. (a) Supercliques and (b) Possible mappings.



With the dictionary at hand, Wilson and Hancock [8] use the
Bayes formula to compute the matching probability, P �ÿi�. This is
done by expanding over the dictionary �i in the following manner:

P �ÿi� �
X
S2�i

P �ÿijS�:P �S�: �5�

The dictionary prior, P �S�, is generally taken to be uniformly
distributed over the dictionaries, and, is hence, equal to 1

j�i j. The
conditional matching probability P �ÿijS� is determined by
comparing every assigned match f�u� in the configuration ÿi with
the corresponding item su in the dictionary entry S. Wilson and
Hancock use a model in which differences between the configura-
tion and the dictionary item are the outcome of a memoryless label
corruption process. Assuming statistical independence of these
errors, they factorize over the superclique to give the configuration
probability in terms of the atomic labeling probabilities

P �ÿijS� �
Y
u2CD

i

P �f�u�jsu� �6�

and these atomic probabilities are, in turn, given by a simple
distribution rule.

P �f�u�jsu� � Pe if f�u� 6� su
�1ÿ Pe� otherwise:

�
�7�

This gives an exponential form for P �ÿi� which depends on the
label error probability, Pe, and the Hamming distance between the
mappings and the dictionary, H�ÿi;S�:

P �ÿi� �
KCD

i

j�ij
X
S2�i

exp ÿkeH�ÿi; S�� �; �8�

where KCD
i
� �1ÿ Pe�jC

D
i j, and ke � ln �1ÿPe�Pe

.
The MAP estimate of the matching-function can be located by

gradient ascent, following the framework set out in [8], or by global
optimization techniques such as genetic search [14]. That is, an
initial match is established according to the node attributes alone,
and then, iteratively updated so as to monotonically increase the
value of the criterion. The value of Pe is decreased from an initial
high value to some arbitrarily small value, in a manner analogous
to temperature change in an annealing process [21].

3.1 Dictionary Padding

It is usually the case that the sizes of the superclique CD
i of the

data graph node, i, and that of its relational image, Cf �i�M , in the
model graph, are different. In [8], Wilson and Hancock addressed
this problem by padding the dictionary items with dummy labels
so that it was the same size as the local configuration. This idea
has been employed by several other authors including Wong and
Ghahraman [22], Wong and You [23] and, more recently, by
Sengupta and Boyer [24]. For example, consider the configuration,
ÿi �< u1; u2; u3 > , and the dictionary item, S �< v1; v2 > . In
order to compare the configuration to the dictionary item, padding
must be added to the dictionary item to give S0 �< v1; v2;� > . If
the dictionary item is larger than the configuration, the config-
uration must be padded. This approach to the problem entails
several important drawbacks: First, an additional parameter is
required; second, the number of such padded dictionary entries
will be large, and third, summing over very many dictionary items
(8) will distort the criterion.

To see the need for an extra parameter, consider the distribution
rule in (7), in the case when dummy labels are present. Suppose that
the consistent labeling, < u1; u2; u3 > , has been corrupted by the
addition of u4 at the end. When comparing to the dictionary item
< v1; v2;�; v3 > , one might conclude that the Hamming distance
should be 2, whereas, in fact, only a single error has occurred. On the

other hand, simply ignoring dummy labels would lead to
considering < u1; u2; u3; u4 > a perfect match for < v1; v2; v3;� >
even though there is an error in the labeling. To avoid these
difficulties, Wilson and Hancock use the following distribution rule:

P �f�u�jsu� �
P� if f�u� � � or su � �
�1ÿ P��Pe if f�u� 6� su
�1ÿ P���1ÿ Pe� otherwise:

8<:
�9�

The effect of this on the global criterion of (8) is to introduce as
an additional control variable the probability of a label being
added to or deleted from a configuration, P�. Wilson and Hancock
found that explicitly controlling P� did not give particularly good
results [8]. Whereas the introduction of Pe allowed the labeling
process to be controlled in a principled manner, the introduction of
P� only caused problems. A major part of Wilson and Hancock's
work was the control of the process by which data graph nodes are
assigned the NULL label. In [8], it was found that the best method
for NULL labeling was graph editing, closely followed by a
constraint filtering postprocessing step, both of which considerably
outperformed explicit control of P�. However, that work did not
address the consequences of dictionary padding for the space and
time requirements of the evaluation of (8).

4 COMPLEXITY

The number of dictionary comparisons and, hence, the time
complexity of the computation of P �ÿi� is clearly O�j�ij:jSj�, and
will depend on the sizes of the supercliques in the model graph
and the amount of padding added to the dictionaries. The length of
the structure-preserving mappings, jSj, is linear in the superclique
size and the amount of padding, and will not play a significant role
in the overall complexity. The dictionary �i, however, is
constructed by adding dummy items to the supercliques CD

i in
the model graph such that every possible combination is
represented. If there are to be k NULLs, there are jCD

i j � k
positions in the ith dictionary, of which k are NULL. Since the
dictionary items are cyclic, only jCD

i j � kÿ 1 of these positions are
distinct. The order of the NULLs is not important, since they are
indistinguishable from one another, so the number of possibilities
is

jCD
i j � kÿ 1

k

� �
:

Since the mapping of the center node is fixed, for each value of k,
the dictionary is composed of the jCD

i j � kÿ 1 cyclic permutations
of the augmented supercliques. Thus, the total size of the
dictionary �i is

j�ij �
X

0�k<KMAX

�jCD
i j � kÿ 1�: jC

D
i j � kÿ 1

k

� �
: �10�

This quantity is at a maximum when k � jCD
i j. Hence, we can give

an upper bound for the dictionary size in terms of the average

superclique size jCD
i j.

j�ijMAX � O VM:2jCD
i j:
�2jCD

i j�!
jCD

i j!
2

0@ 1A
� O 4jC

D
i j

� �
:

�11�

It should be stressed that this is very much a worst-case
scenario, which occurs infrequently. However, in the case of the
two 50-node Delaunay graphs which we shall encounter in
Section 6.4, the mean superclique size of the model graph is 5.5
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(s.d. = 1.3) with a maximum of 9, and the mean size difference
between superclique pairs from the two graphs is 1.4 (s.d. = 1.2),
but has a maximum of 6. If we took the view that supercliques with
size differences within 2 s.d.s of the mean should be considered, it
would be necessary to add 4 NULLs to every superclique in order
to form the dictionaries. According to (10), the estimated number
of dictionary items that would have to be compiled is

50
X

0�k<5

�6� kÿ 1� 6� kÿ 1

k

� �
�50� �5� 6� 6� 7� 21� 8� 56� 9� 126�
�88; 500;

which is considerable.
In practice, something like 80 percent of the pairs of super-

cliques have size differences of two or less. Given the underlying
assumption of (7), that only one error occurs per mapping, the
probability of significant superclique corruption is small. It is
therefore reasonable to suppose that supercliques with size
differences greater than 2 are not matchable anyway. In other
words, setting the maximum number of NULLs at 2 gives
manageable dictionaries and screens out some 20 percent of
probably unmatchable superclique pairs, even though it violates
the assumption of statistical independence that underpins (6). With
only 2 NULLs, 9,400 dictionary items would be needed.

5 EDIT DISTANCE

Despite the success of the goal directed upper limit on dictionary
padding in containing the underlying exponential time/space
complexity of evaluating Q�f�, there remains a second theoretical
weakness. The criterion relies on a rather artificial model in which
dictionaries have to be padded so that they are the same size as the
supercliques in the data graph. A measure of the distance between
lists of differing lengths has existed for many years: the
Levenshtein or string edit-distance [9], [10]. This avoids the use
of padding altogether, by considering insertions and deletions in
addition to changes. In what follows, we work with a simplified
dictionary �c

i which contains only cyclic permutations and whose
size is therefore equal to jCD

i j ÿ 1.
Let X and Y be two strings of symbols drawn from an alphabet

�. We wish to convert X to Y via an ordered sequence of
operations such that the cost associated with the sequence is

minimal. The original string to string correction algorithm defined

elementary edit operations, �a; b� 6� ��; ��, where a and b are symbols

from the two strings or the NULL symbol, �. Thus, changing

symbol x to y is denoted �x; y�, inserting y is denoted ��; y�, and

deleting x is denoted �x; ��. A sequence of such operations which

transforms X into Y is known as an edit transformation and denoted

� �< �1; . . . ; �j�j > . Elementary costs are assigned by an elemen-

tary weighting function  : � [ f�g � � [ f�g7!<; the cost of an edit

transformation, W���, is the sum of its elementary costs. The edit-

distance between X and Y is defined as:

d�X; Y � � minfW���j� transforms X to Y g: �12�
An interesting property of this quantity is that it is a metric if

 > 0 for all nonidentical pairs and 0 otherwise, and if  is

selfinverse.
When used purely as a distance measure, the raw edit-distance,

d, may not be particularly useful for problems in which several

comparisons must be made. If, for example, we wish to find the

closest pair of strings in a set, as opposed to determining how to

transform one string to another, correcting two errors between

strings of size 3 should be more expensive than correcting five errors

in strings of size 10. In [16], Marzal and Vidal address this problem

by introducing the normalized edit-distance. They introduce the

notion of an edit path which is a sequence of ordered pairs of

positions in X and Y such that the path monotonically traverses the

edit matrix of X and Y from �0; 0� to �jXj; jY j�, as shown in Fig. 2.

Essentially, the transition from one point in the path to the next is

equivalent to an elementary edit operation: �a; b� ! �a� 1; b�
corresponds to deletion of the symbol in X at position a. Similarly,

�a; b� ! �a; b� 1� corresponds to insertion of the symbol at position

b in Y . The transition �a; b� ! �a� 1; b� 1� corresponds to a change

from X�a� to Y �b�. Thus, the cost of an edit path, W �P �, can be

determined by summing the elementary weights of the edit

operations implied by the path.

d�X;Y � � minfW�P �jP is an edit path from X to Y g: �13�
According to Marzal and Vidal, this quantity can be normalized by

dividing by the length of the path, L�P �. However, alternatives

such as normalizing to the length of the shorter string are also

possible. Thus, the normalized edit-distance is
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Fig. 2. An example edit matrix from X to Y . In (a), the thick black line is the editing path. The relationship between the classical and normalized edit-distances is shown in

(b).



d̂�X; Y � � min
W�P �
L�P � jP is an edit path from X to Y

� �
�W�P

��
L�P �� ;

�14�

where P � denotes the optimal path.
As Marzal and Vidal point out, it is clear from the form of d̂ that

it cannot, in general, be determined by simply minimizing W�P �
and then dividing by L�P �. The complexity of computing d̂ by
dynamic programming is O�jXj:jYj2�, jXj � jY j [16]; more efficient
algorithms are also available [25], [26].

5.1 Application to Relational Matching

If we replace X and Y in Fig. 2 by a dictionary entry, S, and the
image of a data graph superclique under the match, ÿi, we can see
that ÿi could have arisen from S through the action of a
memoryless error process, statistically independent of position
(since the errors that ªtransformedº S into ÿi could have occurred
in any order). This means that we can still apply (7), except that we
now factorize over the elementary operations implied by the
transitions in P � to give

P �ÿijS� �
Y

�f�u�;su�(P �ÿi ;S
P �f�u�jsu�; �15�

where �f�u�; su� is an insertion, a deletion, a change or an identity
operation implied by a transition in the minimum length edit path,
P �ÿi ;S , between the superclique match, ÿi, and the unpadded
dictionary entry, S. An important feature of this approach is that
the edit-distance, d̂�ÿi; S�, is not used directly in the calculation of
P �ÿijS�. The role of the edit-distance calculation is to obtain the
sequence of edit operations which makes up the optimal path.
Thus, the probabilities, P �f�u�jsu�, need not necessarily be directly
related to the edit weights, �f�u�; su�. The edit weights will
determine the optimal edit path of minimum cost, but it is the
probabilities of the transitions in that path which contribute to the
matching prior. When the different edit operations all have the
same weights and probabilities, the maximum probability path has
minimum edit-distance. If there is a more complicated distribution,
then this is not necessarily the case. For this reason, we adopt a
simplified distribution rule which corresponds to case in which the
different edit operations have identical cost. The rule for assigning
the probabilities to the edit operations is:

P �f�u�jsu� � �1ÿ Pe� if �f�u�; su� is an identity
Pe otherwise:

�
�16�

The assumption of statistical independence also implies that the
weighting function should be defined as follows:

�f�u�; su� � 0 if �f�u�; su� is an identity
1 otherwise:

�
�17�

We can now write P �ÿijS� as an exponential in terms of the
number of nonidentity transformations in the optimal edit path
from ÿi to S. Given our weighting function in (17), this number is
simply W�P �ÿi ;S�, so the exponential of (8) becomes:

P �ÿi� � 1

j�c
i j
X
S2�c

i

exp ÿ kWW�P �ÿi ;S� � kLL�P �ÿi ;S�
� �h i

; �18�

where kW � ln �1ÿPe�Pe
and kL � ln 1

�1ÿPe� . If all edit operations have
equal weights, the length of the optimal path will be equal to the
length of the larger of jÿij and jSj.

The normalized edit-distance is not used directly. The criterion
merely counts the elementary operations that make up the optimal
path. The items in �i no longer need to be padded, so using the
edit-distance instead of dictionary padding reduces the worst-case
space requirements of the dictionaries from O�4jCD

i j� to O�jCD
i j�.

Although the edit-distance calculation is less efficient than a

linear comparison with a padded dictionary, the number of

dictionary comparisons required will be much less than with

Wilson and Hancock's padded dictionary approach. Looking

ahead to the example in Section 6.4, only 250 dictionary entries

will be needed, regardless of the maximum tolerable size

difference between matchable supercliques. We should expect,

therefore, that the edit-distance based method might be slower

than the dictionary padding method when very small size

differences are tolerated. As the maximum size difference is

increased, the edit-distance method should eventually outperform

the dictionary padding method.

In the special case studied here, where the editing operations

are assumed statistically independent and the different types of

edit operations are assigned identical probabilities, the normalized

edit-distance can in fact be computed by postnormalization. The

reason for this is that when these restrictions apply, the optimal

path is the one with the minimum number of edit operations.

Moreover, the postnormalized distance is efficiently computed by

Wagner and Fischer's algorithm in O�jXj:jY j� time. Hence, by

adopting the model of identical edit probabilities in (16), we are

able to use the Wagner and Fisher method to compute the edit-

distance and, hence, P �ÿi� efficiently.

5.2 Algorithm Complexity

In this section, we consider the time complexity involved in

computing the probability of match P �ÿi� using the dictionary-

based method in (7) and the edit-distance version appearing in

(17). In each case, there are two contributions to the time

complexity. The first of these is the complexity of computing the

distance measure. The second is the number of distance computa-

tions that must be performed. The overall complexity is the

product of these two contributions.

We commence by considering the case of the dictionary-based

method. Suppose that C is the average superclique size. For exact

matching, the dictionary consists of the cyclic permutations of

those model graph supercliques which could match the ith data

graph superclique, and the Hamming distance is computed in

linear time, so the time taken is cubic in the configuration size and

is O�C3�. For inexact matching with padded dictionaries, the

dictionary item comparison is still linear, but the worst-case

dictionary size is as in (10), so here the time complexity is

exponential in the average superclique size and is O�C:4C�. If the

normalized edit-distance is used, instead of the Hamming

distance, as the distance measure, the distance evaluation is cubic

but the dictionary size is now only quadratic, giving a quintic

kernel, O�C5�. Worst case complexities for these three cases are

summarized in Table 1. The worst-case for exact matching is a

quintic algorithm which is feasible. The worst-case for inexact

matching with dictionary padding is infeasible. The worst-case for

inexact matching with edit-distance may or may not be feasible

depending on how powerful the hardware is, and how large C is.

It should be stressed that for exact matching and inexact

matching with edit-distance, these worst-cases are also average

cases. The average case for inexact matching with dictionary

padding depends on the amount of padding.

6 EXPERIMENTS

We have compared the new edit-distance method with the
dictionary-based graph matching algorithm of Wilson and Han-
cock [8]. There are three aspects to this experimental evaluation.
We commence with a sensitivity study where we investigate the
effects of controlled relational corruption and initialization error in
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a simulation study. The second aspect of our study assesses the

efficiency of the two approaches. Finally, we consider some real

world data, and demonstrate the effectiveness of the two

algorithms on matching uncalibrated stereo images. Here, our

work is addressing the structural stereo matching problem first

tackled by Boyer and Kak [2].

6.1 Sensitivity Analysis

We created synthetic 50-node nearest-neighbor graphs with node
attributes drawn from a uniform distribution. To simulate the
effects of errors in feature detection, we randomly added and
deleted nodes from the graphs and recomputed the nearest-
neighbors. The relational disruption thus caused is greater in

nearest-neighbor graphs than in the Delaunay triangulations used
in [8]. We added Gaussian noise to the node attributes until
approximately 50 percent of the nodes would be misclassified by a
simple greedy classifier. The results of matching for both methods
are shown in Fig. 3a. We determined the sensitivity to initialization
error by adding varying amounts of Gaussian noise to the node
attributes of uncorrupted graphs. The results are given in Fig. 3b.

6.2 Timing

To examine the efficiency of the two algorithms, we evaluated

random matches between graphs of differing sizes. We have

already established the theoretical complexity of the functionals in

Sections 4 and 5. The experiments were done with the maximum
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TABLE 1
Worst Case Complexities

Fig. 3. Results of the sensitivity analysis. (a) Corruption and (b) initialization error.

Fig. 4. Time required for evaluation of the functionals. Times for (b) (size difference � 2) should generally be greater than for (a) (size difference � 1) because there are

more comparisons to be made.



permitted superclique size difference set to either 1 or 2. There are
a number of conclusions that can be drawn from the timing data
shown in Fig. 4. First, it shows that for size differences less than or
equal to one, then the dictionary-based method is more efficient
than the edit-distance method. Second, it shows that when the size
difference is less than or equal to two, then the two methods offer
comparable performance. When the size difference is greater than
two, then the edit-distance method is more efficient than the
dictionary-based method.

6.3 Discussion

Fig. 3 shows that the edit-distance method comfortably outper-
forms the dictionary-padding techniques in the presence of
relational corruption, but is more sensitive to initialization error.
However, it should be remembered that the distribution rule in
(16) is rather naõÈve in that it fails to penalize NULL labels even
when the graphs have the same numbers of nodes. Moreover, all
error types are treated as equivalent. This may explain the
suboptimal performance observed for uncorrupted graphs. When
this naõÈve distribution rule is applied for the original criterion in
(8), the criterion performs much worse, unable to recover the
correct match for uncorrupted graphs, and falling below the initial
correct fraction for graphs with only 40 percent corruption.

This choice of distribution rule may also account for the poorer
tolerance of the edit-distance criterion with respect to initialization
error. With the Wilson and Hancock criterion, supercliques of
differing cardinalities are not considered for matching when the

graphs are of the same size, but with the edit-distance based
criterion all supercliques are considered matchable. Artificially
pruning the configuration space for matching improves the edit-
distance based criterion's performance on initialization error.

6.4 Uncalibrated Stereo Matching

We demonstrate the practical applicability of the method on a wide
baseline uncalibrated stereo matching problem. The lack of camera
calibration makes this more difficult than the standard stereo
correspondence problem. Regions were extracted from a gray-scale
image pair (an office scene taken with an IndyCam) using a simple
thresholding technique. Each image contained 50 regions. The
region centroids were Delaunay triangulated using Triangle [27].
We used the average gray level over each region for the attribute
information. The Delaunay triangulations were matched using a
genetic algorithm with a local search step, starting from a random
initial population. The maximum tolerated superclique size
difference was two. Results are given in Fig. 5, which shows the
two images with their Delaunay triangulations, the initial guess,
and the results obtained when matching is effected using the
padded dictionary and edit-distance methods. There were 50 re-
gions in the left image of which 42 had feasible correspondences in
the right. The initial guess contained no correct assignments. The
padded dictionary method found 37 correct matches (88 percent),
and the edit-distance method found 39 (93 percent). The amount of
relational corruption between the two triangulations was esti-
mated at around 35 percent by counting the number of inconsistent
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Fig. 5. Performance on uncalibrated stereo matching. Both algorithms restore a large proportion of the initial mappings despite about 35 percent relational corruption. The

edit-distance method performs slightly better than the padded dictionary method. (a) Uncalibrated stereo pair, (b) initial guess, (c) final match (padded dictionaries), and

(d) final match (edit-distance).



supercliques given the ground truth match. A comparison of these

results with Fig. 3a suggests that both methods are performing as

expected from the synthetic data.

7 CONCLUSION

In this paper, we have shown that reformulating graph matching

in terms of the edit-distance between supercliques remedies the

worst-case exponential complexity of Wilson and Hancock's

previous formulation [8]. For synthetic relational graphs, the new

formulation gives an improvement of approximately 10 percent in

matching accuracy in the presence of noise. When matches

between supercliques with size differences greater than one are

to be considered, the edit-distance method is more efficient than

Wilson and Hancock's original.
Another conclusion to be drawn from this paper is that there is

a taxonomy of graph matching problems which require different

methods of making the dictionary comparison. For exact problems,

in which the sizes of the supercliques and the dictionary items are

the same, the Hamming distance suffices. For inexact problems

where the error process is assumed to be memoryless, the

postnormalized edit-distance must be calculated. Where the

assumption of statistical independence must be dropped, the

normalized edit-distance should be used. In this last case, the

weighting function would also have to be inferred, perhaps by

using a Markov model.
There are a number of ways in which the ideas presented in this

paper can be extended. Although we have focussed on graph

matching in this paper, the idea of using edit-distance is applicable

to a wide range of consistent labeling problems. For instance, in a

recent study, we have used the edit-distance prior for a simple

natural language processing problem using tree-adjoining gram-

mars [28]. One of our motivations for developing an efficient

means of computing the prior was to provide us with a suitable

vehicle for exploring consistent labeling problems using evolu-

tionary optimization [29].
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