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Introduction

I In practical multicategory applications, it is not unusual to
encounter problems involving tens or hundreds of features.

I Intuitively, it may seem that each feature is useful for at
least some of the discriminations.

I In general, if the performance obtained with a given set of
features is inadequate, it is natural to consider adding new
features.

I Even though increasing the number of features increases
the complexity of the classifier, it may be acceptable for an
improved performance.
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Introduction

Figure 1: There is a non-zero Bayes error in the one-dimensional x1 space
or the two-dimensional x1, x2 space. However, the Bayes error vanishes in
the x1, x2, x3 space because of non-overlapping densities.
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Problems of Dimensionality

I Unfortunately, it has frequently been observed in practice
that, beyond a certain point, adding new features leads to
worse rather than better performance.

I This is called the curse of dimensionality .
I There are two issues that we must be careful about:

I How is the classification accuracy affected by the
dimensionality (relative to the amount of training data)?

I How is the complexity of the classifier affected by the
dimensionality?

CS 551, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 4 / 42



Problems of Dimensionality

I Potential reasons for increase in error include
I wrong assumptions in model selection, or
I estimation errors due to the finite number of training samples

for high-dimensional observations (overfitting).

I Potential solutions include
I reducing the dimensionality,
I simplifying the estimation.
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Problems of Dimensionality

I Dimensionality can be reduced by
I redesigning the features,
I selecting an appropriate subset among the existing features,
I combining existing features.

I Estimation errors can be simplified by
I assuming equal covariance for all classes (for the Gaussian

case),
I using prior information and a Bayes estimate,
I using heuristics such as conditional independence.
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Problems of Dimensionality

Figure 2: Problem of insufficient data is analogous to problems in curve
fitting. The training data (black dots) are selected from a quadratic function
plus Gaussian noise. A tenth-degree polynomial fits the data perfectly but we
prefer a second-order polynomial for better generalization.
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Problems of Dimensionality

I All of the commonly used classifiers can suffer from the
curse of dimensionality.

I While an exact relationship between the probability of error,
the number of training samples, the number of features, and
the number of parameters is very difficult to establish, some
guidelines have been suggested.

I It is generally accepted that using at least ten times as
many training samples per class as the number of features
(n/d > 10) is a good practice.

I The more complex the classifier, the larger should the ratio
of sample size to dimensionality be.

CS 551, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 8 / 42



Feature Reduction

I One approach for coping with the problem of high
dimensionality is to reduce the dimensionality by combining
features.

I Issues in feature reduction:
I Linear vs. non-linear transformations.
I Use of class labels or not (depends on the availability of

training data).
I Training objective:

I minimizing classification error (discriminative training),
I minimizing reconstruction error (PCA),
I maximizing class separability (LDA),
I retaining interesting directions (projection pursuit),
I making features as independent as possible (ICA).
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Feature Reduction

I Linear combinations are particularly attractive because they
are simple to compute and are analytically tractable.

I Linear methods project the high-dimensional data onto a
lower dimensional space.

I Advantages of these projections include
I reduced complexity in estimation and classification,
I ability to visually examine the multivariate data in two or

three dimensions.
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Feature Reduction

I Given x ∈ Rd, the goal is to find a linear transformation A

that gives y = ATx ∈ Rd′ where d′ < d.
I Two classical approaches for finding optimal linear

transformations are:
I Principal Components Analysis (PCA): Seeks a projection

that best represents the data in a least-squares sense.
I Linear Discriminant Analysis (LDA): Seeks a projection that

best separates the data in a least-squares sense.
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Principal Components Analysis

I Given x1, . . . ,xn ∈ Rd, the goal is to find a d′-dimensional
subspace where the reconstruction error of xi in this
subspace is minimized.

I The criterion function for the reconstruction error can be
defined in the least-squares sense as

Jd′ =
n∑

i=1

∥∥∥∥∥
d′∑

k=1

yikek − xi

∥∥∥∥∥
2

where e1, . . . , ed′ are the bases for the subspace (stored as
the columns of A) and yi is the projection of xi onto that
subspace.
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Principal Components Analysis

I It can be shown that Jd′ is minimized when e1, . . . , ed′ are
the d′ eigenvectors of the scatter matrix

S =
n∑

i=1

(xi − µ)(xi − µ)T

having the largest eigenvalues.
I The coefficients y = (yi, . . . ,yd′)

T are called the principal
components.

I When the eigenvectors are sorted in descending order of
the corresponding eigenvalues, the greatest variance of the
data lies on the first principal component, the second
greatest variance on the second component, etc.
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Principal Components Analysis

I Often there will be just a few large eigenvalues, and this implies
that the d′-dimensional subspace contains the signal and the
remaining d− d′ dimensions generally contain noise.

I The actual subspace where the data may lie is related to the
intrinsic dimensionality that determines whether the given
d-dimensional patterns can be described adequately in a
subspace of dimensionality less than d.

I The geometric interpretation of intrinsic dimensionality is that the
entire data set lies on a topological d′-dimensional hypersurface.

I Note that the intrinsic dimensionality is not the same as the linear
dimensionality which is related to the number of significant
eigenvalues of the scatter matrix of the data.
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Examples

(a) Scatter plot.

(b) Projection onto e1.

(c) Projection onto e2.
Figure 3: Scatter plot (red dots) and the principal axes for a bivariate sample.
The blue line shows the axis e1 with the greatest variance and the green line
shows the axis e2 with the smallest variance. Features are now uncorrelated.
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Examples

Figure 4: Scatter plot of the iris data. Diagonal cells show the histogram for
each feature. Other cells show scatters of pairs of features x1, x2, x3, x4 in
top-down and left-right order. Red, green and blue points represent samples
for the setosa, versicolor and virginica classes, respectively.
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Examples

Figure 5: Scatter plot of the projection of the iris data onto the first two and
the first three principal axes. Red, green and blue points represent samples
for the setosa, versicolor and virginica classes, respectively.
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Linear Discriminant Analysis

I Whereas PCA seeks directions that are efficient for
representation, discriminant analysis seeks directions that
are efficient for discrimination.

I Given x1, . . . ,xn ∈ Rd divided into two subsets D1 and D2

corresponding to the classes w1 and w2, respectively, the
goal is to find a projection onto a line defined as

y = wTx

where the points corresponding to D1 and D2 are well
separated.
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Linear Discriminant Analysis

Figure 6: Projection of the same set of samples onto two different lines in
the directions marked as w. The figure on the right shows greater separation
between the red and black projected points.
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Linear Discriminant Analysis

I The criterion function for the best separation can be defined
as

J(w) =
|m̃1 − m̃2|2

s̃2
1 + s̃2

2

where m̃i = 1
#Di

∑
y∈wi

y is the sample mean and
s̃2

i =
∑

y∈wi
(y − m̃i)

2 is the scatter for the projected samples
labeled wi.

I This is called the Fisher’s linear discriminant with the
geometric interpretation that the best projection makes the
difference between the means as large as possible relative
to the variance.
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Linear Discriminant Analysis

I To compute the optimal w, we define the scatter matrices Si

Si =
∑
x∈Di

(x−mi)(x−mi)
T where mi =

1

#Di

∑
x∈Di

x,

the within-class scatter matrix SW

SW = S1 + S2,

and the between-class scatter matrix SB

SB = (m1 −m2)(m1 −m2)
T .
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Linear Discriminant Analysis

I Then, the criterion function becomes

J(w) =
wTSBw

wTSWw

and the optimal w can be computed as

w = S−1
W(m1 −m2).

I Note that, SW is symmetric and positive semidefinite, and it
is usually nonsingular if n > d. SB is also symmetric and
positive semidefinite, but its rank is at most 1.
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Linear Discriminant Analysis

I Generalization to c classes involves c− 1 discriminant
functions where the projection is from a d-dimensional
space to a (c− 1)-dimensional space (d ≥ c).

I The scatter matrices Si are computed as

Si =
∑
x∈Di

(x−mi)(x−mi)
T where mi =

1

#Di

∑
x∈Di

x.

I The within-class scatter matrix SW is computed as

SW =
c∑

i=1

Si.
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Linear Discriminant Analysis

I The between-class scatter matrix SB is computed as

SB =
c∑

i=1

(#Di)(mi −m)(mi −m)T

where m = 1
n

∑
x x is the total mean vector.

I Then, the criterion function becomes

J(W) =
|WTSBW|
|WTSWW|

where W is the d-by-(c− 1) transformation matrix and | · |
represents the determinant.
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Linear Discriminant Analysis

I It can be shown that J(W) is maximized when the columns
of W are the eigenvectors of S−1

WSB having the largest
eigenvalues.

I Because SB is the sum of c matrices of rank one or less,
and because only c− 1 of these are independent, SB is of
rank c− 1 or less. Thus, no more than c− 1 of the
eigenvalues are nonzero.

I Once the transformation from the d-dimensional original
feature space to a lower dimensional subspace is done
using PCA or LDA, parametric or non-parametric methods
can be used to train Bayesian classifiers.
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Examples

(a) Scatter plot.

(b) Projection onto the
first PCA axis.

(c) Projection onto the
first LDA axis.

Figure 7: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.
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Examples

(a) Scatter plot.

(b) Projection onto the
first PCA axis.

(c) Projection onto the
first LDA axis.

Figure 8: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.

CS 551, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 27 / 42



Examples

Figure 9: A satellite image and the first six PCA bands. Histogram
equalization was applied to all images for better visualization.
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Examples

Figure 10: A satellite image and the six LDA bands. Histogram equalization
was applied to all images for better visualization.
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Examples

Figure 11: A satellite image and the first six PCA bands. Histogram
equalization was applied to all images for better visualization.
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Examples

Figure 12: A satellite image and the six LDA bands. Histogram
equalization was applied to all images for better visualization.
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Examples

Figure 13: Example face images. (Taken from
http://www.geop.ubc.ca/CDSST/eigenfaces.html.)
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Examples

Figure 14: Eigenvectors of the face images (often referred to as
eigenfaces).
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Feature Reduction

Table 1: Feature reduction methods.
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Feature Selection

I An alternative to feature reduction that uses linear or
non-linear combinations of features is feature selection that
reduces dimensionality by selecting subsets of existing
features.

I The first step in feature selection is to define a criterion
function that is typically a function of the classification error.

I Note that, the use of classification error in the criterion
function makes feature selection procedures dependent on
the specific classifier used.

CS 551, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 35 / 42



Feature Selection

I The most straightforward approach would require
I examining all

(
d
m

)
possible subsets of size m,

I selecting the subset that performs the best according to the
criterion function.

I The number of subsets grows combinatorially, making the
exhaustive search impractical.

I Iterative procedures are often used but they cannot
guarantee the selection of the optimal subset.
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Feature Selection

I Sequential forward selection:
I First, the best single feature is selected.
I Then, pairs of features are formed using one of the

remaining features and this best feature, and the best pair is
selected.

I Next, triplets of features are formed using one of the
remaining features and these two best features, and the best
triplet is selected.

I This procedure continues until all or a predefined number of
features are selected.
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Feature Selection

I Sequential backward selection:
I First, the criterion function is computed for all d features.
I Then, each feature is deleted one at a time, the criterion

function is computed for all subsets with d− 1 features, and
the worst feature is discarded.

I Next, each feature among the remaining d− 1 is deleted one
at a time, and the worst feature is discarded to form a subset
with d− 2 features.

I This procedure continues until one feature or a predefined
number of features are left.
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Examples

56 58 60 62 64 66 68 70 72 74

AERIAL_GABOR1::COARSE0DEG
AERIAL::BAND3

AERIAL_GABOR2::COARSE90DEG
AERIAL::BAND2
AERIAL::BAND1

AERIAL_GABOR2::FINE0DEG
IKONOS3::BAND2

AERIAL_GABOR1::COARSE90DEG
AERIAL_GABOR2::FINE90DEG
AERIAL_GABOR1::FINE90DEG

IKONOS3::BAND1
AERIAL_GABOR2::COARSE0DEG

IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::FINE90DEG

IKONOS3::BAND3
IKONOS3::BAND4

IKONOS2_GABOR1::FINE0DEG
IKONOS2_GABOR1::COARSE0DEG

AERIAL_GABOR1::FINE0DEG
IKONOS2_GABOR4::COARSE0DEG

IKONOS2_GABOR4::FINE0DEG
IKONOS2_GABOR4::COARSE90DEG

IKONOS2_GABOR4::FINE90DEG
IKONOS2::BAND4
IKONOS2::BAND2
IKONOS2::BAND3
IKONOS2::BAND1
DEM::ELEVATION

Sequential forward selection

Classification accuracy

Figure 15: Results of sequential forward feature selection for classification of
a satellite image using 28 features. x-axis shows the classification accuracy
(%) and y-axis shows the features added at each iteration (the first iteration is
at the bottom). The highest accuracy value is shown with a star.
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Examples

54 56 58 60 62 64 66 68 70 72

NONE
DEM::ELEVATION
IKONOS3::BAND3

AERIAL_GABOR1::COARSE90DEG
IKONOS2::BAND1
IKONOS2::BAND3

IKONOS2_GABOR4::FINE90DEG
AERIAL_GABOR2::COARSE0DEG

AERIAL_GABOR1::FINE0DEG
AERIAL_GABOR2::FINE90DEG

IKONOS2_GABOR4::COARSE90DEG
IKONOS3::BAND4

IKONOS2_GABOR1::FINE90DEG
IKONOS3::BAND1
IKONOS2::BAND2

IKONOS2_GABOR4::COARSE0DEG
IKONOS2_GABOR1::COARSE0DEG

IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::FINE0DEG

IKONOS2::BAND4
IKONOS2_GABOR4::FINE0DEG
AERIAL_GABOR1::FINE90DEG

AERIAL_GABOR2::COARSE90DEG
AERIAL_GABOR1::COARSE0DEG

IKONOS3::BAND2
AERIAL::BAND3
AERIAL::BAND2

AERIAL_GABOR2::FINE0DEG

Sequential backward selection

Classification accuracy

Figure 16: Results of sequential backward feature selection for classification
of a satellite image using 28 features. x-axis shows the classification
accuracy (%) and y-axis shows the features removed at each iteration (the
first iteration is at the bottom). The highest accuracy value is shown with a
star.
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Feature Selection

Table 2: Feature selection methods.
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Summary

I The choice between feature reduction and feature selection
depends on the application domain and the specific training
data.

I Feature selection leads to savings in computational costs
and the selected features retain their original physical
interpretation.

I Feature reduction with transformations may provide a better
discriminative ability but these new features may not have a
clear physical meaning.
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