Feature Reduction and Selection

Selim Aksoy

Department of Computer Engineering
Bilkent University
saksoy@cs.bilkent.edu.tr

CS 551, Spring 2009

CS 551, Spring 2009 ©2009, Selim Aksoy (Bilkent University)



Introduction

» In practical multicategory applications, it is not unusual to
encounter problems involving tens or hundreds of features.

» Intuitively, it may seem that each feature is useful for at
least some of the discriminations.

» In general, if the performance obtained with a given set of
features is inadequate, it is natural to consider adding new
features.

» Even though increasing the number of features increases
the complexity of the classifier, it may be acceptable for an
improved performance.
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Introduction

Figure 1: There is a non-zero Bayes error in the one-dimensional x; space
or the two-dimensional z, z2 space. However, the Bayes error vanishes in
the z1, x9, x3 Space because of non-overlapping densities.
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Problems of Dimensionality

» Unfortunately, it has frequently been observed in practice
that, beyond a certain point, adding new features leads to
worse rather than better performance.

» This is called the curse of dimensionality .

» There are two issues that we must be careful about:

» How is the classification accuracy affected by the
dimensionality (relative to the amount of training data)?

» How is the complexity of the classifier affected by the
dimensionality?
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Problems of Dimensionality

» Potential reasons for increase in error include
» wrong assumptions in model selection, or
» estimation errors due to the finite number of training samples
for high-dimensional observations (overfitting).
» Potential solutions include

» reducing the dimensionality,
» simplifying the estimation.
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Problems of Dimensionality

» Dimensionality can be reduced by
» redesigning the features,
» selecting an appropriate subset among the existing features,
» combining existing features.
» Estimation errors can be simplified by
» assuming equal covariance for all classes (for the Gaussian
case),
» using prior information and a Bayes estimate,
» using heuristics such as conditional independence.
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Problems of Dimensionality
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Figure 2: Problem of insufficient data is analogous to problems in curve
fitting. The training data (black dots) are selected from a quadratic function
plus Gaussian noise. A tenth-degree polynomial fits the data perfectly but we
prefer a second-order polynomial for better generalization.
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Problems of Dimensionality

» All of the commonly used classifiers can suffer from the
curse of dimensionality.

» While an exact relationship between the probability of error,
the number of training samples, the number of features, and
the number of parameters is very difficult to establish, some
guidelines have been suggested.

» It is generally accepted that using at least ten times as
many training samples per class as the number of features
(n/d > 10) is a good practice.

» The more complex the classifier, the larger should the ratio
of sample size to dimensionality be.
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Feature Reduction

» One approach for coping with the problem of high
dimensionality is to reduce the dimensionality by combining
features.

» Issues in feature reduction:

» Linear vs. non-linear transformations.
» Use of class labels or not (depends on the availability of
training data).
» Training objective:
» minimizing classification error (discriminative training),
» minimizing reconstruction error (PCA),
» maximizing class separability (LDA),
» retaining interesting directions (projection pursuit),
» making features as independent as possible (ICA).
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Feature Reduction

» Linear combinations are particularly attractive because they
are simple to compute and are analytically tractable.

» Linear methods project the high-dimensional data onto a
lower dimensional space.
» Advantages of these projections include

» reduced complexity in estimation and classification,
» ability to visually examine the multivariate data in two or
three dimensions.
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Feature Reduction

» Given x € RY, the goal is to find a linear transformation A
that gives y = A7x € R* where d’ < d.
» Two classical approaches for finding optimal linear
transformations are:
» Principal Components Analysis (PCA): Seeks a projection
that best represents the data in a least-squares sense.
» Linear Discriminant Analysis (LDA): Seeks a projection that
best separates the data in a least-squares sense.
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Principal Components Analysis

» Given xy,...,x, € RY the goal is to find a d’-dimensional
subspace where the reconstruction error of x; in this
subspace is minimized.

» The criterion function for the reconstruction error can be
defined in the least-squares sense as

d/
E Yir€r — X4
k=1

n 2

Jr=Y_

i=1

where ey, ..., ey are the bases for the subspace (stored as
the columns of A) and y, is the projection of x; onto that
subspace.
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Principal Components Analysis

» |t can be shown that J; is minimized when e,, ..., ey are
the d’ eigenvectors of the scatter matrix

S= Z(Xi —p)(x; — p)"

having the largest eigenvalues.

» The coefficients y = (y;,...,y,)" are called the principal
components.

» When the eigenvectors are sorted in descending order of
the corresponding eigenvalues, the greatest variance of the
data lies on the first principal component, the second
greatest variance on the second component, etc.
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Principal Components Analysis

» Often there will be just a few large eigenvalues, and this implies
that the d’-dimensional subspace contains the signal and the
remaining d — d’ dimensions generally contain noise.

» The actual subspace where the data may lie is related to the
intrinsic dimensionality that determines whether the given
d-dimensional patterns can be described adequately in a
subspace of dimensionality less than d.

» The geometric interpretation of intrinsic dimensionality is that the
entire data set lies on a topological d’-dimensional hypersurface.

» Note that the intrinsic dimensionality is not the same as the linear
dimensionality which is related to the number of significant
eigenvalues of the scatter matrix of the data.
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Examples

Scatter plot and the principal axes
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Figure 3: Scatter plot (red dots) and the principal axes for a bivariate sample.
The blue line shows the axis e; with the greatest variance and the green line
shows the axis e, with the smallest variance. Features are now uncorrelated.
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Examples

Scatter plot of Iris data
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Figure 4: Scatter plot of the iris data. Diagonal cells show the histogram for
each feature. Other cells show scatters of pairs of features x1, zo, x3, 24 In

top-down and left-right order. Red, green and blue points represent samples
for the setosa, versicolor and virginica classes, respectively. .
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Examples

Scatter plot on two principal axes Scatter plot on three principal axes
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Figure 5: Scatter plot of the projection of the iris data onto the first two and
the first three principal axes. Red, green and blue points represent samples
for the setosa, versicolor and virginica classes, respectively.
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Linear Discriminant Analysis

» Whereas PCA seeks directions that are efficient for
representation, discriminant analysis seeks directions that
are efficient for discrimination.

» Given x4, ...,x, € R?divided into two subsets D; and D,
corresponding to the classes w; and ws,, respectively, the
goal is to find a projection onto a line defined as

Yy=wx

where the points corresponding to D; and D, are well
separated.
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Linear Discriminant Analysis
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Figure 6: Projection of the same set of samples onto two different lines in
the directions marked as w. The figure on the right shows greater separation

between the red and black projected points.

CS 551, Spring 2009 (©2009, Selim Aksoy (Bilkent University)



Linear Discriminant Analysis

» The criterion function for the best separation can be defined
as . al?
myp — Mo
J 0=
™="%rz
where m; = ﬁ > ycw, ¥ is the sample mean and
57 = 2 ew, (y — mi)? is the scatter for the projected samples
labeled w;.
» This is called the Fisher’s linear discriminant with the
geometric interpretation that the best projection makes the

difference between the means as large as possible relative
to the variance.
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Linear Discriminant Analysis

» To compute the optimal w, we define the scatter matrices S;

Si = Z (x — m;)(x — m;)" where m; =

x€D;

B
#Di ‘=5, ’
the within-class scatter matrix Sw

Sw = 8S; + Sa,
and the between-class scatter matrix Sg

SB = (m1 — mz)(ml — mz)T.
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Linear Discriminant Analysis

» Then, the criterion function becomes

T
J(w) = w'Sgw

- wlSww
and the optimal w can be computed as

W = S;&(ml — mz).

» Note that, Sw is symmetric and positive semidefinite, and it
is usually nonsingular if n > d. Sg is also symmetric and
positive semidefinite, but its rank is at most 1.
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Linear Discriminant Analysis

» Generalization to c classes involves ¢ — 1 discriminant
functions where the projection is from a d-dimensional
space to a (¢ — 1)-dimensional space (d > c).

» The scatter matrices S; are computed as

S; = Z (x — m;)(x — m;)" where m; = L Z X.

#Di

x€D; x€D;

» The within-class scatter matrix Sy is computed as

Sw = zc: S;.
i=1
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Linear Discriminant Analysis

» The between-class scatter matrix Sg is computed as

[

S =Y (#D;)(m; — m)(m; — m)"

=1
where m = 1 3~ x is the total mean vector.
» Then, the criterion function becomes
WTSpW
J(W) = W SsW| _— |
(W SwW|

where W is the d-by-(c — 1) transformation matrix and | - |
represents the determinant.
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Linear Discriminant Analysis

» It can be shown that J(W) is maximized when the columns
of W are the eigenvectors of Sy Sg having the largest
eigenvalues.

» Because Sg is the sum of ¢ matrices of rank one or less,
and because only ¢ — 1 of these are independent, Sg is of
rank ¢ — 1 or less. Thus, no more than ¢ — 1 of the
eigenvalues are nonzero.

» Once the transformation from the d-dimensional original
feature space to a lower dimensional subspace is done
using PCA or LDA, parametric or non-parametric methods
can be used to train Bayesian classifiers.
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Examples

Scatter plot and the PCA and LDA axes ©
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Figure 7: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.
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Examples

Scatter plot and the PCA and LDA axes
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Figure 8: Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis shows better
separation than the projection onto the first PCA axis.

CS 551, Spring 2009

©2009, Selim Aksoy (Bilkent University)



Examples

Flgure 9 A satelllte image and the first six PCA bands Hlstogram
equalization was applied to all images for better visualization.
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Examples

Figure 10 A satelllte image and the Six LDA bands. Hlstogram equahzatlon
was applied to all images for better visualization.
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Examples

Figure 11: A satellite image and the first six PCA bands. Histogram
equalization was applied to all images for better visualization.

CS 551, Spring 2009 (©2009, Selim Aksoy (Bilkent University)



Examples

Figure 12: A satellite image and the six LDA bands. Histogram
equalization was applied to all images for better visualization.
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Examples

Figure 13: Example face images. (Taken from
http://www.geop.ubc.ca/CDSST/eigenfaces.html.)
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Examples

Figure 14: Eigenvectors of the face images (often referred to as
eigenfaces).
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Feature Reduction

Table 1: Feature reduction methods.

[ Method Troperty . Comments
Principal Component. Linear map; fast; Traditional, eipenvector baged method, also known
Analysis (PCA) oigenvector-based. a3 Karhunen-Todve expansion; gaod lor Ganssian
dara,
Lincar Discriminant | Supervised Hnear map; TBetter than PCA for classilication; fimited Lo {e — 1)
Analysis fast; cigenvoctor-hased. compaonents with non-zero vigenvahzes,
1'rojection TPursuit Tiucar map; iterative; Mainly used for Intoractive exploratory data
non-Gaussian. analysis,
Tadependent Comporent. | Lincar map, iterative, Blind souree separabion, used for de-mixing
Analysis (TCA) non-Galssian. non-Gawssinn distributed sonrees (features).
Iernel PCA 7| Nonlinenr map; T'CA-haredd method, using a kenel o replace mner |
eigenveetor-hased procdnets of patiern veclors,
TCA Network Linear map; iterative, Auto-associative neural network with linear transter
functions and just one hidden layer.
[Noulintar FCA Tinear niap; uon-Genssian | Newural network approach, possibly used for TUA.
criterion; usually iterative
Nonlinear atte- Nonlizoar map; nron-Gaus- | Bottleneck networle with several idden Jayors; the
associative network gan criterion; terative. nanlinear map is optimized by & nonlinear
rocongtruetion; input is userd as twget.
Multichimensional Nonliuca map; iterative. | Often paor genevalization; munpl:-
sealing (MDS), and limited; noise sen:
Saminon's proj 2-dunensional wisual
Sel-Organizing Map | Nonliuear; iterative. TRased on a grid of nenrons n Ghe featn
{S0M) | suitable for extracting spaces of low dimensionality,
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Feature Selection

» An alternative to feature reduction that uses linear or
non-linear combinations of features is feature selection that
reduces dimensionality by selecting subsets of existing
features.

» The first step in feature selection is to define a criterion
function that is typically a function of the classification error.

» Note that, the use of classification error in the criterion
function makes feature selection procedures dependent on
the specific classifier used.

CS 551, Spring 2009 (©2009, Selim Aksoy (Bilkent University)



Feature Selection

» The most straightforward approach would require

> examining all (%) possible subsets of size m,
» selecting the subset that performs the best according to the
criterion function.

» The number of subsets grows combinatorially, making the
exhaustive search impractical.

» lterative procedures are often used but they cannot
guarantee the selection of the optimal subset.
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Feature Selection

» Sequential forward selection:

» First, the best single feature is selected.

» Then, pairs of features are formed using one of the
remaining features and this best feature, and the best pair is
selected.

» Next, triplets of features are formed using one of the
remaining features and these two best features, and the best
triplet is selected.

» This procedure continues until all or a predefined number of
features are selected.
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Feature Selection

» Sequential backward selection:

» First, the criterion function is computed for all d features.

» Then, each feature is deleted one at a time, the criterion
function is computed for all subsets with d — 1 features, and
the worst feature is discarded.

» Next, each feature among the remaining d — 1 is deleted one
at a time, and the worst feature is discarded to form a subset
with d — 2 features.

» This procedure continues until one feature or a predefined
number of features are left.
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Examples

Sequential forward selection

DEM::ELEVATION|
IKONOS2::BAND1
IKONOS2::BAND3
IKONOS2::BAND2
IKONOS2::BAND4
IKONOS2_GABOR4::FINE9ODEG
IKONOS2_GABOR4::COARSES0DEG
IKONOS2_GABORA4::FINEODEG
IKONOS2_GABOR4::COARSEODEG
AERIAL_GABOR1::FINEODEG
IKONOS2_GABOR1::COARSEODEG
IKONOS2_GABOR1::FINEODEG
IKONOS3::BAND4
IKONOS3::BAND3
IKONOS2_GABOR1::FINEQODEG
IKONOS2_GABOR1::COARSES0DEG
AERIAL_GABOR2::COARSEODEG
IKONOS3::BAND1
AERIAL_GABOR1::FINEQODEG
AERIAL_GABOR2::FINE9QODEG
AERIAL_GABOR1::COARSE90DEG
IKONOS3::BAND2
AERIAL_GABOR2::FINEODEG
AERIAL::BAND1
AERIAL::BAND2
AERIAL_GABOR2:COARSES0DEG
AERIAL::BAND3
AERIAL_GABOR1::COARSEODEG
56 58 60 62 64 66 68 70 72 74
Classification accuracy

Figure 15: Results of sequential forward feature selection for classification of
a satellite image using 28 features. x-axis shows the classification accuracy
(%) and y-axis shows the features added at each iteration (the first iteration is
at the bottom). The highest accuracy value is shown with a star.
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Examples

Sequential backward selection

AERIAL_GABOR2::FINEODEG
AERIAL::BAND2
AERIAL::BAND3
IKONOS3::BAND2
AERIAL_GABOR1::COARSEODEG
AERIAL_GABOR2:COARSES0DEG
AERIAL_GABOR1::FINESODEG
IKONOS2_GABORA4::FINEODEG
IKONOS2::BAND4
IKONOS2_GABOR1::FINEODEG
IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::COARSEODEG
IKONOS2_GABOR4::COARSEODEG
IKONOS2::BAND2
IKONOS3::BAND1
IKONOS2_GABOR1::FINE9ODEG
IKONOS3::BAND4
IKONOS2_GABOR4::COARSES0DEG
AERIAL_GABOR2::FINEQODEG
AERIAL_GABOR1::FINEODEG
AERIAL_GABOR2::COARSEODEG
IKONOS2_GABOR4::FINESODEG
IKONOS2::BAND3
IKONOS2::BAND1
AERIAL_GABOR1::COARSE90DEG
IKONOS3::BAND3
DEM::ELEVATION|

54 56 58 60 62 64 66 68 70 72
Classification accuracy

Figure 16: Results of sequential backward feature selection for classification
of a satellite image using 28 features. x-axis shows the classification
accuracy (%) and y-axis shows the features removed at each iteration (the
first iteration is at the bottom). The highest accuracy value is shown with a
star.
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Feature Selection

Table 2: Feature selection methods.

Methad

Proparty

Comments

Exhnustive §

Brautli-and-Bound Search

Lvalnate all (7] possible subscts.

| Gu

aatteerl o find the opthaal sal-
set; not feasible for even moder-
ately Lupo values of w1 and d.

Uses the woll-known branch-mud-

Lound search method; only a frac-
tion of all possible featnre subsels
1 t0 be enumerated to find the
aptinial subset.

-

Cilaranieed to find the opth;
sot provided the criterlon function
satisf he monotonicty propes
the worst-aso comploxity of this
algorithin is exponential.

Best. Individnal

Ewalnare all the m foatues individ-
vallyr seloel the best m individaal
features,

Computationally simple; nat ikely
to load to an eplimal subset,

Serential Forward Seloction

(3F8)

Select the hest. smgle featie and
thien add one featnes at & tine
which in combination with the
selected foalures maximizes the erl-
torion function.

[Sequentiel Backward Selection
(©18)

Start with all the d featutes and sue-
cossivi leto one feature al a
time,

“Plus b-take away v Sclection

Tivst anlavgn the feature subsct by §
features using forward seloct
andl then delete r features using
backward seleetion,

Ouee a feat s refained, it cannoy

iscarded; computalionally

e ginee to select a subser of

ouly {d — 1) possi-

Onee  fea s deloted, 1t calmot
be, hrought back inte the aptime]
sithsel; requires more corpiitarion
than seguential forward selection.

Avoids the problaa of featare sib-
set “nesting” cucountered jn S8

and SIS method
valnes of Land r{{ > r

Sequential Forward Meating Seavch
(STFS) and Sequential Rackward
Floating Seavcl (SBEFS)

A goneralization of “plus-1 take
away-r" method: the ealues of I aud
*are determined antematically and
updated dymunically,

Provides close Lo opl
at au affordable computational eost.




» The choice between feature reduction and feature selection
depends on the application domain and the specific training
data.

» Feature selection leads to savings in computational costs
and the selected features retain their original physical
interpretation.

» Feature reduction with transformations may provide a better
discriminative ability but these new features may not have a
clear physical meaning.
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