Bayesian Decision Theory

Selim Aksoy

Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr

CS 551, Spring 2012

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the tradeoffs between various decisions using probabilities and costs that accompany such decisions.
- First, we will assume that all probabilities are known.
- Then, we will study the cases where the probabilistic structure is not completely known.

Fish Sorting Example Revisited

- State of nature is a random variable.
- Define w as the type of fish we observe (state of nature, class) where
 - $w = w_1$ for sea bass,
 - $w = w_2$ for salmon.
 - ► P(w₁) is the *a priori probability* that the next fish is a sea bass.
 - $P(w_2)$ is the a priori probability that the next fish is a salmon.

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(w_1)$ and $P(w_2)$?
 - Set $P(w_1) = P(w_2)$ if they are equiprobable (*uniform priors*).
 - May use different values depending on the fishing area, time of the year, etc.
- Assume there are no other types of fish

$$P(w_1) + P(w_2) = 1$$

(exclusivity and exhaustivity).

How can we make a decision with only the prior information?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1) > P(w_2) \\ w_2 & \text{otherwise} \end{cases}$$

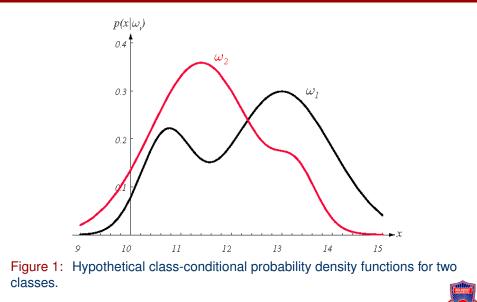
What is the probability of error for this decision?

 $P(error) = \min\{P(w_1), P(w_2)\}$

Class-Conditional Probabilities

- Let's try to improve the decision using the lightness measurement x.
- ► Let *x* be a continuous random variable.
- ► Define p(x|w_j) as the class-conditional probability density (probability of x given that the state of nature is w_j for j = 1, 2).
- ▶ p(x|w₁) and p(x|w₂) describe the difference in lightness between populations of sea bass and salmon.

Class-Conditional Probabilities



7/46

Posterior Probabilities

- Suppose we know P(w_j) and p(x|w_j) for j = 1, 2, and measure the lightness of a fish as the value x.
- ► Define P(w_j|x) as the *a posteriori probability* (probability of the state of nature being w_j given the measurement of feature value x).
- We can use the *Bayes formula* to convert the prior probability to the posterior probability

$$P(w_j|x) = \frac{p(x|w_j)P(w_j)}{p(x)}$$

where
$$p(x) = \sum_{j=1}^{2} p(x|w_j) P(w_j)$$
.

Making a Decision

- ▶ p(x|w_j) is called the *likelihood* and p(x) is called the *evidence*.
- How can we make a decision after observing the value of x?

Decide
$$\begin{cases} w_1 & \text{if } P(w_1|x) > P(w_2|x) \\ w_2 & \text{otherwise} \end{cases}$$

Rewriting the rule gives

$$\begin{array}{ll} \text{Decide} & \left\{ w_1 & \text{if } \frac{p(x|w_1)}{p(x|w_2)} > \frac{P(w_2)}{P(w_1)} \\ w_2 & \text{otherwise} \end{array} \right. \end{array}$$

• Note that, at every x, $P(w_1|x) + P(w_2|x) = 1$.

Probability of Error

What is the probability of error for this decision?

$$P(error|x) = \begin{cases} P(w_1|x) & \text{if we decide } w_2 \\ P(w_2|x) & \text{if we decide } w_1 \end{cases}$$

What is the average probability of error?

$$P(error) = \int_{-\infty}^{\infty} p(error, x) \, dx = \int_{-\infty}^{\infty} P(error|x) \, p(x) \, dx$$

Bayes decision rule minimizes this error because

$$P(error|x) = \min\{P(w_1|x), P(w_2|x)\}.$$

Bayesian Decision Theory

How can we generalize to

- more than one feature?
 - replace the scalar x by the feature vector x
- more than two states of nature?
 - just a difference in notation
- allowing actions other than just decisions?
 - allow the possibility of rejection
- different risks in the decision?
 - define how costly each action is

- ► Let {w₁,..., w_c} be the finite set of c states of nature (classes, categories).
- Let $\{\alpha_1, \ldots, \alpha_a\}$ be the finite set of *a* possible *actions*.
- Let λ(α_i|w_j) be the *loss* incurred for taking action α_i when the state of nature is w_j.
- Let x be the *d*-component vector-valued random variable called the *feature vector*.

- $p(\mathbf{x}|w_j)$ is the class-conditional probability density function.
- $P(w_j)$ is the prior probability that nature is in state w_j .
- The posterior probability can be computed as

$$P(w_j | \mathbf{x}) = \frac{p(\mathbf{x} | w_j) P(w_j)}{p(\mathbf{x})}$$

where $p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x}|w_j) P(w_j)$.

- Suppose we observe \mathbf{x} and take action α_i .
- If the true state of nature is w_j , we incur the loss $\lambda(\alpha_i|w_j)$.
- The expected loss with taking action α_i is

$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | w_j) P(w_j | \mathbf{x})$$

which is also called the *conditional risk*.

Minimum-Risk Classification

- The general *decision rule* α(x) tells us which action to take for observation x.
- We want to find the decision rule that minimizes the overall risk

$$R = \int R(\alpha(\mathbf{x})|\mathbf{x}) \, p(\mathbf{x}) \, d\mathbf{x}.$$

- ► Bayes decision rule minimizes the overall risk by selecting the action α_i for which R(α_i|x) is minimum.
- The resulting minimum overall risk is called the *Bayes risk* and is the best performance that can be achieved.

Two-Category Classification

Define

- α_1 : deciding w_1 ,
- α_2 : deciding w_2 ,
- $\blacktriangleright \ \lambda_{ij} = \lambda(\alpha_i | w_j).$
- Conditional risks can be written as

 $R(\alpha_1 | \mathbf{x}) = \lambda_{11} P(w_1 | \mathbf{x}) + \lambda_{12} P(w_2 | \mathbf{x}),$ $R(\alpha_2 | \mathbf{x}) = \lambda_{21} P(w_1 | \mathbf{x}) + \lambda_{22} P(w_2 | \mathbf{x}).$

Two-Category Classification

► The minimum-risk decision rule becomes

Decide
$$\begin{cases} w_1 & \text{if } (\lambda_{21} - \lambda_{11}) P(w_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(w_2 | \mathbf{x}) \\ w_2 & \text{otherwise} \end{cases}$$

• This corresponds to deciding w_1 if

$$\frac{p(\mathbf{x}|w_1)}{p(\mathbf{x}|w_2)} > \frac{(\lambda_{12} - \lambda_{22})}{(\lambda_{21} - \lambda_{11})} \frac{P(w_2)}{P(w_1)}$$

 \Rightarrow comparing the *likelihood ratio* to a threshold that is independent of the observation x.

- Actions are decisions on classes (α_i is deciding w_i).
- If action α_i is taken and the true state of nature is w_j, then the decision is correct if i = j and in error if i ≠ j.
- We want to find a decision rule that minimizes the probability of error.

Minimum-Error-Rate Classification

1

► Define the zero-one loss function

$$\lambda(\alpha_i|w_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases} \quad i, j = 1, \dots, c$$

(all errors are equally costly).

Conditional risk becomes

$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | w_j) P(w_j | \mathbf{x})$$
$$= \sum_{j \neq i} P(w_j | \mathbf{x})$$
$$= 1 - P(w_i | \mathbf{x}).$$

► Minimizing the risk requires maximizing P(w_i|x) and results in the *minimum-error decision rule*

Decide w_i if $P(w_i|\mathbf{x}) > P(w_j|\mathbf{x}) \quad \forall j \neq i.$

The resulting error is called the *Bayes error* and is the best performance that can be achieved.

Minimum-Error-Rate Classification

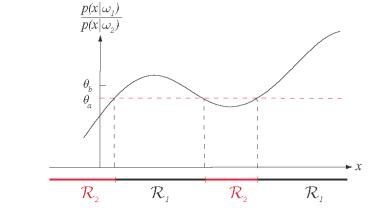


Figure 2: The likelihood ratio $p(\mathbf{x}|w_1)/p(\mathbf{x}|w_2)$. The threshold θ_a is computed using the priors $P(w_1) = 2/3$ and $P(w_2) = 1/3$, and a zero-one loss function. If we penalize mistakes in classifying w_2 patterns as w_1 more than the converse, we should increase the threshold to θ_b .

Discriminant Functions

► A useful way of representing classifiers is through discriminant functions g_i(x), i = 1,..., c, where the classifier assigns a feature vector x to class w_i if

 $g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall j \neq i.$

For the classifier that minimizes conditional risk

$$g_i(\mathbf{x}) = -R(\alpha_i | \mathbf{x}).$$

For the classifier that minimizes error

$$g_i(\mathbf{x}) = P(w_i | \mathbf{x}).$$

- ► These functions divide the feature space into *c* decision regions (*R*₁,..., *R_c*), separated by decision boundaries.
- ► Note that the results do not change even if we replace every g_i(x) by f(g_i(x)) where f(·) is a monotonically increasing function (e.g., logarithm).
- This may lead to significant analytical and computational simplifications.

The Gaussian Density

- Gaussian can be considered as a model where the feature vectors for a given class are continuous-valued, randomly corrupted versions of a single typical or prototype vector.
- Some properties of the Gaussian:
 - Analytically tractable.
 - Completely specified by the 1st and 2nd moments.
 - Has the maximum entropy of all distributions with a given mean and variance.
 - Many processes are asymptotically Gaussian (Central Limit Theorem).
 - Linear transformations of a Gaussian are also Gaussian.
 - Uncorrelatedness implies independence.

Univariate Gaussian

For $x \in \mathbb{R}$:

$$p(x) = N(\mu, \sigma^2)$$
$$= \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$

where

$$\mu = E[x] = \int_{-\infty}^{\infty} x \, p(x) \, dx,$$

$$\sigma^2 = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 \, p(x) \, dx.$$

Univariate Gaussian

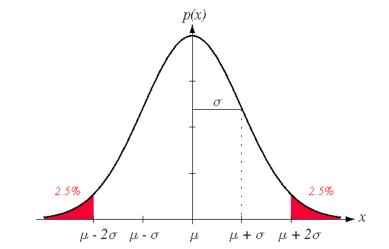


Figure 3: A univariate Gaussian distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$.

Multivariate Gaussian

• For $\mathbf{x} \in \mathbb{R}^d$:

$$p(\mathbf{x}) = N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

= $\frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$

where

$$\boldsymbol{\mu} = E[\mathbf{x}] = \int \mathbf{x} \, p(\mathbf{x}) \, d\mathbf{x},$$
$$\boldsymbol{\Sigma} = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T] = \int (\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^T \, p(\mathbf{x}) \, d\mathbf{x}.$$

Multivariate Gaussian

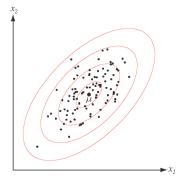


Figure 4: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean μ . The loci of points of constant density are the ellipses for which $(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)$ is constant, where the eigenvectors of Σ determine the direction and the corresponding eigenvalues determine the length of the principal axes. The quantity $r^2 = (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu)$ is called the squared *Mahalanobis distance* from \mathbf{x} to μ .

Linear Transformations

- Recall that, given $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{d \times k}$, $\mathbf{y} = \mathbf{A}^T \mathbf{x} \in \mathbb{R}^k$, if $x \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $y \sim N(\mathbf{A}^T \boldsymbol{\mu}, \mathbf{A}^T \boldsymbol{\Sigma} \mathbf{A})$.
- ► As a special case, the *whitening transform*

$$A_w = \Phi \Lambda^{-1/2}$$

where

- Φ is the matrix whose columns are the orthonormal eigenvectors of Σ,
- Λ is the diagonal matrix of the corresponding eigenvalues, gives a covariance matrix equal to the identity matrix **I**.

Discriminant Functions for the Gaussian Density

 Discriminant functions for minimum-error-rate classification can be written as

 $g_i(\mathbf{x}) = \ln p(\mathbf{x}|w_i) + \ln P(w_i).$

• For $p(\mathbf{x}|w_i) = N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(w_i).$$

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$
 (linear discriminant)

where

$$\mathbf{w}_{i} = \frac{1}{\sigma^{2}} \boldsymbol{\mu}_{i}$$
$$w_{i0} = -\frac{1}{2\sigma^{2}} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i} + \ln P(w_{i})$$

 $(w_{i0} \text{ is the threshold or bias for the } i'\text{th category}).$

► Decision boundaries are the hyperplanes g_i(x) = g_j(x), and can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x}_0) = 0$$

where

$$\mathbf{w} = \boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}$$
$$\mathbf{x}_{0} = \frac{1}{2}(\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{j}) - \frac{\sigma^{2}}{\|\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}\|^{2}} \ln \frac{P(w_{i})}{P(w_{j})}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}).$$

Hyperplane separating R_i and R_j passes through the point x₀ and is orthogonal to the vector w.

Case 1: $\Sigma_i = \sigma^2 \mathbf{I}$

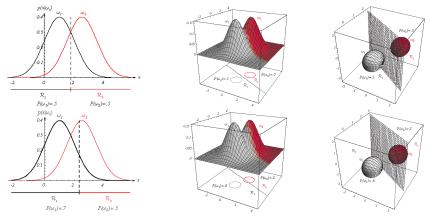


Figure 5: If the covariance matrices of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in *d* dimensions, and the boundary is a generalized hyperplane of d - 1 dimensions, perpendicular to the line separating the means. The decision boundary shifts as the priors are changed.

CS 551, Spring 2012

©2012, Selim Aksoy (Bilkent University)

► Special case when P(w_i) are the same for i = 1,..., c is the minimum-distance classifier that uses the decision rule

assign
$$\mathbf{x}$$
 to w_{i^*} where $i^* = \arg \min_{i=1,...,c} ||\mathbf{x} - \boldsymbol{\mu}_i||$.

Discriminant functions are

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$
 (linear discriminant)

where

$$\mathbf{w}_{i} = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i}$$
$$w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{i} + \ln P(w_{i}).$$

Decision boundaries can be written as

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$

where

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})$$
$$\mathbf{x}_{0} = \frac{1}{2}(\boldsymbol{\mu}_{i} + \boldsymbol{\mu}_{j}) - \frac{\ln(P(w_{i})/P(w_{j}))}{(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})^{T} \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j})}(\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}).$$

 Hyperplane passes through x₀ but is not necessarily orthogonal to the line between the means.

Case 2: $\Sigma_i = \Sigma$

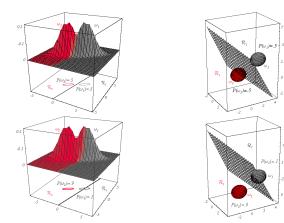


Figure 6: Probability densities with equal but asymmetric Gaussian distributions. The decision hyperplanes are not necessarily perpendicular to the line connecting the means.

Discriminant functions are

 $g_i(\mathbf{x}) = \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + w_{i0}$ (quadratic discriminant)

where

$$\mathbf{W}_{i} = -\frac{1}{2} \boldsymbol{\Sigma}_{i}^{-1}$$
$$\mathbf{w}_{i} = \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i}$$
$$w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_{i}^{T} \boldsymbol{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i} - \frac{1}{2} \ln |\boldsymbol{\Sigma}_{i}| + \ln P(w_{i}).$$

Decision boundaries are hyperquadrics.

Case 3: Σ_i = arbitrary

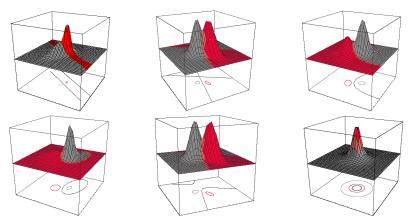


Figure 7: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

Case 3: Σ_i = arbitrary

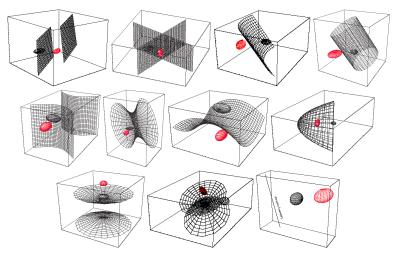


Figure 8: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.

40 / 46

For the two-category case

$$P(error) = P(\mathbf{x} \in \mathcal{R}_2, w_1) + P(\mathbf{x} \in \mathcal{R}_1, w_2)$$

= $P(\mathbf{x} \in \mathcal{R}_2 | w_1) P(w_1) + P(\mathbf{x} \in \mathcal{R}_1 | w_2) P(w_2)$
= $\int_{\mathcal{R}_2} p(\mathbf{x} | w_1) P(w_1) d\mathbf{x} + \int_{\mathcal{R}_1} p(\mathbf{x} | w_2) P(w_2) d\mathbf{x}.$

Error Probabilities and Integrals

For the multicategory case

$$P(error) = 1 - P(correct)$$

= $1 - \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i, w_i)$
= $1 - \sum_{i=1}^{c} P(\mathbf{x} \in \mathcal{R}_i | w_i) P(w_i)$
= $1 - \sum_{i=1}^{c} \int_{\mathcal{R}_i} p(\mathbf{x} | w_i) P(w_i) d\mathbf{x}.$

Error Probabilities and Integrals

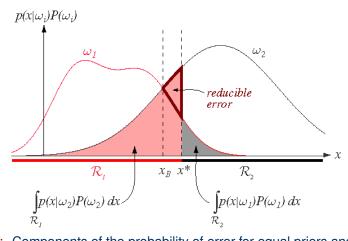


Figure 9: Components of the probability of error for equal priors and the non-optimal decision point x^* . The optimal point x_B minimizes the total shaded area and gives the Bayes error rate.

43 / 46

Receiver Operating Characteristics

- Consider the two-category case and define
 - ▶ w₁: target is present,
 - w_2 : target is not present.

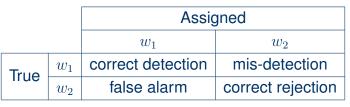


Table 1: Confusion matrix.

- Mis-detection is also called false negative or Type I error.
- ► False alarm is also called false positive or Type II error.

Receiver Operating Characteristics

If we use a parameter (e.g., a threshold) in our decision, the plot of these rates for different values of the parameter is called the receiver operating characteristic (ROC) curve.

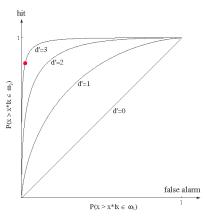


Figure 10: Example receiver operating characteristic (ROC) curves for different settings of the system.

- To minimize the overall risk, choose the action that minimizes the conditional risk R(α|x).
- ► To minimize the probability of error, choose the class that maximizes the posterior probability P(w_j|x).
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.
- Do not forget that these decisions are the optimal ones under the assumption that the "true" values of the probabilities are known.

