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Introduction

I Bayesian Decision Theory shows us how to design an
optimal classifier if we know the prior probabilities P (wi)

and the class-conditional densities p(x|wi).

I Unfortunately, we rarely have complete knowledge of the
probabilistic structure.

I However, we can often find design samples or training data
that include particular representatives of the patterns we
want to classify.
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Introduction

I To simplify the problem, we can assume some parametric
form for the conditional densities and estimate these
parameters using training data.

I Then, we can use the resulting estimates as if they were the
true values and perform classification using the Bayesian
decision rule.

I We will consider only the supervised learning case where
the true class label for each sample is known.
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Introduction

I We will study two estimation procedures:
I Maximum likelihood estimation

I Views the parameters as quantities whose values are fixed
but unknown.

I Estimates these values by maximizing the probability of
obtaining the samples observed.

I Bayesian estimation
I Views the parameters as random variables having some

known prior distribution.
I Observing new samples converts the prior to a posterior

density.
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Maximum Likelihood Estimation

I Suppose we have a set D = {x1, . . . ,xn} of independent
and identically distributed (i.i.d.) samples drawn from the
density p(x|θ).

I We would like to use training samples in D to estimate the
unknown parameter vector θ.

I Define L(θ|D) as the likelihood function of θ with respect to
D as

L(θ|D) = p(D|θ) = p(x1, . . . ,xn|θ) =
n∏

i=1

p(xi|θ).
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Maximum Likelihood Estimation

I The maximum likelihood estimate (MLE) of θ is, by
definition, the value θ̂ that maximizes L(θ|D) and can be
computed as

θ̂ = arg max
θ

L(θ|D).

I It is often easier to work with the logarithm of the likelihood
function (log-likelihood function) that gives

θ̂ = arg max
θ

log L(θ|D) = arg max
θ

n∑
i=1

log p(xi|θ).
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Maximum Likelihood Estimation

I If the number of parameters is p, i.e.,
θ = (θ1, . . . ,θp)T , define the gradient operator

∇θ ≡


∂

∂θ1...
∂

∂θp

 .

I Then, the MLE of θ should satisfy the necessary conditions

∇θ log L(θ|D) =
n∑

i=1

∇θ log p(xi|θ) = 0.
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Maximum Likelihood Estimation

I Properties of MLEs:
I The MLE is the parameter point for which the observed

sample is the most likely.
I The procedure with partial derivatives may result in several

local extrema. We should check each solution individually to
identify the global optimum.

I Boundary conditions must also be checked separately for
extrema.

I Invariance property: if θ̂ is the MLE of θ, then for any
function f(θ), the MLE of f(θ) is f(θ̂).
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The Gaussian Case

I Suppose that p(x|θ) = N(µ,Σ).
I When Σ is known but µ is unknown:

µ̂ =
1
n

n∑
i=1

xi

I When both µ and Σ are unknown:

µ̂ =
1
n

n∑
i=1

xi and Σ̂ =
1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T
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The Bernoulli Case

I Suppose that P (x|θ) = Bernoulli(θ) = θx(1− θ)1−x where
x = 0, 1 and 0 ≤ θ ≤ 1.

I The MLE of θ can be computed as

θ̂ =
1

n

n∑
i=1

xi.
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Bias of Estimators

I Bias of an estimator θ̂ is the difference between the
expected value of θ̂ and θ.

I The MLE of µ is an unbiased estimator for µ because
E[µ̂] = µ.

I The MLE of Σ is not an unbiased estimator for Σ because
E[Σ̂] = n−1

n
Σ 6= Σ.

I The sample covariance

S2 =
1

n− 1

n∑
i=1

(xi − µ̂)(xi − µ̂)T

is an unbiased estimator for Σ.
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Goodness-of-fit

I To measure how well a fitted distribution resembles the
sample data (goodness-of-fit), we can use the
Kolmogorov-Smirnov test statistic.

I It is defined as the maximum value of the absolute
difference between the cumulative distribution function
estimated from the sample and the one calculated from the
fitted distribution.

I After estimating the parameters for different distributions,
we can compute the Kolmogorov-Smirnov statistic for each
distribution and choose the one with the smallest value as
the best fit to our sample.

CS 551, Spring 2012 c©2012, Selim Aksoy (Bilkent University) 12 / 33



Maximum Likelihood Estimation Examples
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(a) True pdf is N(10, 4). Estimated pdf is
N(10.1, 3.9).
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(b) True pdf is 0.5N(10, 0.16) + 0.5N(11, 0.25).
Estimated pdf is N(10.5, 0.5).
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(c) True pdf is Gamma(4, 4). Estimated pdfs
are N(15.8, 62.1) and Gamma(4.0, 3.9).
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Figure 1: Histograms of samples and estimated densities for different
distributions.
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Bayesian Estimation

I Suppose the set D = {x1, . . . ,xn} contains the samples
drawn independently from the density p(x|θ) whose form is
assumed to be known but θ is not known exactly.

I Assume that θ is a quantity whose variation can be
described by the prior probability distribution p(θ).
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Bayesian Estimation

I Given D, the prior distribution can be updated to form the
posterior distribution using the Bayes rule

p(θ|D) =
p(D|θ)p(θ)

p(D)

where
p(D) =

∫
p(D|θ) p(θ) dθ

and

p(D|θ) =
n∏

i=1

p(xi|θ).
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Bayesian Estimation

I The posterior distribution p(θ|D) can be used to find
estimates for θ (e.g., the expected value of p(θ|D) can be
used as an estimate for θ).

I Then, the conditional density p(x|D) can be computed as

p(x|D) =

∫
p(x|θ) p(θ|D) dθ

and can be used in the Bayesian classifier.
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MLEs vs. Bayes Estimates

I Maximum likelihood estimation finds an estimate of θ based
on the samples in D but a different sample set would give
rise to a different estimate.

I Bayes estimate takes into account the sampling variability.

I We assume that we do not know the true value of θ, and
instead of taking a single estimate, we take a weighted sum
of the densities p(x|θ) weighted by the distribution p(θ|D).
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The Gaussian Case

I Consider the univariate case p(x|µ) = N(µ, σ2) where µ is
the only unknown parameter with a prior distribution
p(µ) = N(µ0, σ

2
0) (σ2, µ0 and σ2

0 are all known).

I This corresponds to drawing a value for µ from the
population with density p(µ), treating it as the true value in
the density p(x|µ), and drawing samples for x from this
density.
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The Gaussian Case

I Given D = {x1, . . . , xn}, we obtain

p(µ|D) ∝
n∏

i=1

p(xi|µ)p(µ)

∝ exp

[
− 1

2

((
n

σ2
+

1
σ2

0

)
µ2 − 2

(
1
σ2

n∑
i=1

xi +
µ0

σ2
0

)
µ

)]
= N(µn, σ2

n)

where

µn =
(

nσ2
0

nσ2
0 + σ2

)
µ̂n +

(
σ2

nσ2
0 + σ2

)
µ0

(
µ̂n =

1
n

n∑
i=1

xi

)
σ2

n =
σ2

0σ
2

nσ2
0 + σ2

.
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The Gaussian Case

I µ0 is our best prior guess and σ2
0 is the uncertainty about

this guess.

I µn is our best guess after observing D and σ2
n is the

uncertainty about this guess.
I µn always lies between µ̂n and µ0.

I If σ0 = 0, then µn = µ0 (no observation can change our prior
opinion).

I If σ0 � σ, then µn = µ̂n (we are very uncertain about our
prior guess).

I Otherwise, µn approaches µ̂n as n approaches infinity.
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The Gaussian Case

I Given the posterior density p(µ|D), the conditional density
p(x|D) can be computed as

p(x|D) = N(µn, σ
2 + σ2

n)

where the conditional mean µn is treated as if it were the
true mean, and the known variance is increased to account
for our lack of exact knowledge of the mean µ.
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The Gaussian Case

I Consider the multivariate case p(x|µ) = N(µ,Σ) where µ is
the only unknown parameter with a prior distribution
p(µ) = N(µ0,Σ0) (Σ, µ0 and Σ0 are all known).

I Given D = {x1, . . . ,xn}, we obtain

p(µ|D) ∝ exp

[
− 1

2

(
µT

(
nΣ−1 + Σ−1

0

)
µ

− 2µT

(
Σ−1

n∑
i=1

xi + Σ−1
0 µ0

))]
.
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The Gaussian Case

I It follows that
p(µ|D) = N(µn,Σn)

where

µn = Σ0

(
Σ0 +

1

n
Σ

)−1

µ̂n +
1

n
Σ

(
Σ0 +

1

n
Σ

)−1

µ0,

Σn =
1

n
Σ0

(
Σ0 +

1

n
Σ

)−1

Σ.
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The Gaussian Case

I Given the posterior density p(µ|D), the conditional density
p(x|D) can be computed as

p(x|D) = N(µn,Σ + Σn)

which can be viewed as the sum of a random vector µ with
p(µ|D) = N(µn,Σn) and an independent random vector y

with p(y) = N(0,Σ).
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The Bernoulli Case

I Consider P (x|θ) = Bernoulli(θ) where θ is the unknown
parameter with a prior distribution p(θ) = Beta(α, β) (α
and β are both known).

I Given D = {x1, . . . , xn}, we obtain

p(θ|D) = Beta

(
α +

n∑
i=1

xi, β + n−
n∑

i=1

xi

)
.
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The Bernoulli Case

I The Bayes estimate of θ can be computed as the expected
value of p(θ|D), i.e.,

θ̂ =
α +

∑n
i=1 xi

α + β + n

=

(
n

α + β + n

)
1

n

n∑
i=1

xi +

(
α + β

α + β + n

)
α

α + β
.
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Conjugate Priors

I A conjugate prior is one which, when multiplied with the
probability of the observation, gives a posterior probability
having the same functional form as the prior.

I This relationship allows the posterior to be used as a prior
in further computations.

Table 1: Conjugate prior distributions.

pdf generating the sample corresponding conjugate prior
Gaussian Gaussian

Exponential Gamma
Poisson Gamma
Binomial Beta

Multinomial Dirichlet
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Recursive Bayes Learning

I What about the convergence of p(x|D) to p(x)?

I Given Dn = {x1, . . . ,xn}, for n > 1

p(Dn|θ) = p(xn|θ)p(Dn−1|θ)

and

p(θ|Dn) =
p(xn|θ) p(θ|Dn−1)∫
p(xn|θ) p(θ|Dn−1) dθ

where
p(θ|D0) = p(θ)

⇒ quite useful if the distributions can be represented using
only a few parameters (sufficient statistics).
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Recursive Bayes Learning

I Consider the Bernoulli case P (x|θ) = Bernoulli(θ) where
p(θ) = Beta(α, β), the Bayes estimate of θ is

θ̂ =
α

α + β
.

I Given the training set D = {x1, . . . , xn}, we obtain

p(θ|D) = Beta(α + m, β + n−m)

where m =
∑n

i=1 xi = #{xi|xi = 1, xi ∈ D}.
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Recursive Bayes Learning

I The Bayes estimate of θ becomes

θ̂ =
α + m

α + β + n
.

I Then, given a new training set D′ = {x1, . . . , xn′}, we obtain

p(θ|D,D′) = Beta(α + m + m′, β + n−m + n′ −m′)

where m′ =
∑n′

i=1 xi = #{xi|xi = 1, xi ∈ D′}.
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Recursive Bayes Learning

I The Bayes estimate of θ becomes

θ̂ =
α + m + m′

α + β + n + n′ .

I Thus, recursive Bayes learning involves only keeping the
counts m (related to sufficient statistics of Beta) and the
number of training samples n.

CS 551, Spring 2012 c©2012, Selim Aksoy (Bilkent University) 31 / 33



MLEs vs. Bayes Estimates

Table 2: Comparison of MLEs and Bayes estimates.

MLE Bayes
computational
complexity

differential calculus,
gradient search

multidimensional integration

interpretability point estimate weighted average of models
prior information assume the parametric

model p(x|θ)
assume the models p(θ) and
p(x|θ) but the resulting distri-
bution p(x|D) may not have
the same form as p(x|θ)

I If there is much data (strongly peaked p(θ|D)) and the prior
p(θ) is uniform, then the Bayes estimate and MLE are
equivalent.
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Classification Error

I To apply these results to multiple classes, separate the
training samples to c subsets D1, . . . ,Dc, with the samples
in Di belonging to class wi, and then estimate each density
p(x|wi,Di) separately.

I Different sources of error:
I Bayes error: due to overlapping class-conditional densities

(related to the features used).
I Model error: due to incorrect model.
I Estimation error: due to estimation from a finite sample (can

be reduced by increasing the amount of training data).
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