Probabilistic Graphical Models Part II: Undirected Graphical Models

Selim Aksoy

Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr

CS 551, Spring 2012

- We looked at directed graphical models whose structure and parametrization provide a natural representation for many real-world problems.
- Undirected graphical models are useful where one cannot naturally ascribe a directionality to the interaction between the variables.

- An example model that satisfies:
 - $\blacktriangleright \ (A \perp C | \{B, D\})$
 - $\bullet \ (B \perp D | \{A, C\})$
 - No other independencies
- These independencies cannot be naturally captured in a Bayesian network.

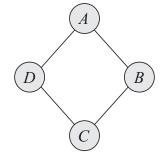


Figure 1: An example undirected graphical model.

- ► Four students are working together in pairs on a homework.
- Alice and Charles cannot stand each other, and Bob and Debbie had a relationship that ended badly.
- Only the following pairs meet: Alice and Bob; Bob and Charles; Charles and Debbie; and Debbie and Alice.
- The professor accidentally misspoke in the class, giving rise to a possible misconception.
- In study pairs, each student transmits her/his understanding of the problem.

- Four binary random variables are defined, representing whether the student has a misconception or not.
- ► Assume that for each X ∈ {A, B, C, D}, x¹ denotes the case where the student has the misconception, and x⁰ denotes the case where she/he does not.
- ► Alice and Charles never speak to each other directly, so A and C are conditionally independent given B and D.
- ► Similarly, *B* and *D* are conditionally independent given *A* and *C*.

An Example

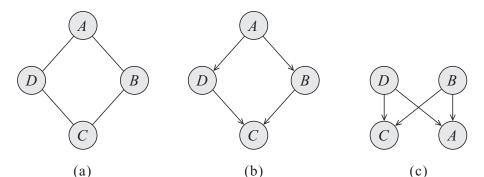


Figure 2: Example models for the misconception example. (a) An undirected graph modeling study pairs over four students. (b) An unsuccessful attempt to model the problem using a Bayesian network. (c) Another unsuccessful attempt.

- How to parametrize this undirected graph?
- ▶ We want to capture the affinities between related variables.
- Conditional probability distributions cannot be used because they are not symmetric, and the chain rule need not apply.
- Marginals cannot be used because a product of marginals does not define a consistent joint.
- ► A general purpose function: *factor* (also called *potential*).

Let D is a set of random variables.

- A factor ϕ is a function from Val(D) to \mathbb{R} .
- A factor is nonnegative if all its entries are nonnegative.
- The set of variables D is called the scope of the factor.
- ▶ In the example in Figure 2, an example factor is

 $\phi_1(A,B) : \operatorname{Val}(A,B) \mapsto \mathbb{R}^+.$

 Table 1: Factors for the misconception example.

$\phi_1(A,B)$			$\phi_2(B,C)$			$\phi_3(C,D)$			$\phi_4(D,A)$		
					100						
a^0	b^1	5	b^0	c^1	1	c^0	d^1	100	d^0	a^1	1
a^1	b^0	1	b^1	c^0	1	c^1	d^0	100	d^1	a^0	1
a^1	b^1	10	b^1	c^1	100	c^1	d^1	1	d^1	a^1	100

- ► The value associated with a particular assignment *a*, *b* denotes the affinity between these two variables: the higher the value φ₁(*a*, *b*), the more compatible these two values are.
- For ϕ_1 , if A and B disagree, there is less weight.
- For ϕ_3 , if *C* and *D* disagree, there is more weight.
- ► A factor is not normalized, i.e., the entries are not necessarily in [0, 1].

- The Markov network defines the local interactions between directly related variables.
- To define a global model, we need to combine these interactions.
- ▶ We combine the local models by multiplying them as

 $P(a, b, c, d) = \phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a).$

- However, there is no guarantee that the result of this process is a normalized joint distribution.
- Thus, it is normalized as

$$P(a, b, c, d) = \frac{1}{Z}\phi_1(a, b)\phi_2(b, c)\phi_3(c, d)\phi_4(d, a)$$

where

$$Z = \sum_{a,b,c,d} \phi_1(a,b)\phi_2(b,c)\phi_3(c,d)\phi_4(d,a).$$

 \triangleright Z is known as the partition function.

	Assig	nment		Unnormalized	Normalized		
a^0	b^0	c^0	d^0	300,000	0.04		
a^0	b^0	c^0	d^1	300,000	0.04		
a^0	b^0	c^1	d^0	300,000	0.04		
a^0	b^0	c^1	d^1	30	4.110^{-6}		
a^0	b^1	c^0	d^0	500	6.910^{-5}		
a^0	b^1	c^0	d^1	500	6.910^{-5}		
a^0	b^1	c^1	d^0	5,000,000	0.69		
a^0	b^1	c^1	d^1	500	6.910^{-5}		
a^1	b^0	c^0	d^0	100	1.410^{-5}		
a^1	b^0	c^0	d^1	1,000,000	0.14		
a^1	b^0	c^1	d^0	100	1.410^{-5}		
a^1	b^0	c^1	d^1	100	1.410^{-5}		
a^1	b^1	c^0	d^0	10	1.410^{-6}		
a^1	b^1	c^0	d^1	100,000	0.014		
a^1	b^1	c^1	d^0	100,000	0.014		
a^1	b^1	c^1	d^1	100,000	0.014		

Table 2: Joint distribution for the misconception example.

Parametrization

- There is a tight connection between the factorization of the distribution and its independence properties.
- ► For example, $P \models (\mathbf{X} \perp \mathbf{Y} | \mathbf{Z})$ if and only if we can write P in the form $P(\mathcal{X}) = \phi_1(\mathbf{X}, \mathbf{Z})\phi_2(\mathbf{Y}, \mathbf{Z})$.
- From the example in Figure 2,

$$P(A, B, C, D) = \frac{1}{Z}\phi_1(A, B)\phi_2(B, C)\phi_3(C, D)\phi_4(D, A),$$

we can infer that

$$P \models A \perp C | \{B, D\}),$$
$$P \models B \perp D | \{A, C\}).$$

- Factors do not correspond to either probabilities or to conditional probabilities.
- It is harder to estimate them from data.
- One idea for parametrization could be to associate parameters directly with the edges in the graph.
- ► This is not sufficient to parametrize a full distribution.

- A more general representation can be obtained by allowing factors over arbitrary subsets of variables.
- ► Let X, Y, and Z be three disjoint sets of variables, and let $\phi_1(X, Y)$ and $\phi_2(Y, Z)$ be two factors.
- We define the factor product $\phi_1 \times \phi_2$ to be a factor $\psi : Val(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) \mapsto \mathbb{R}$ as follows:

 $\psi(\mathbf{X}, \mathbf{Y}, \mathbf{Z}) = \phi_1(\mathbf{X}, \mathbf{Y})\phi_2(\mathbf{Y}, \mathbf{Z}).$

► The key aspect is the fact that the two factors φ₁ and φ₂ are multiplied in way that matches up the common part Y.

Parametrization

-				
	a^1	b^1	c^1	$0.5 \cdot 0.5 = 0.25$
	a^1	b^1	c^2	$0.5 \cdot 0.7 = 0.35$
	a^1	b^2	c^1	$0.8 \cdot 0.1 = 0.08$
a^1 b^1 0.5	a^1	b^2	c^2	$0.8 \cdot 0.2 = 0.16$
a^1 b^2 0.8 b^1 c^1 0.5	a^2	b^1	c^1	$0.1 \cdot 0.5 = 0.05$
a^2 b^1 0.1 b^1 c^2 0.7	a^2	b^1	c^2	$0.1 \cdot 0.7 = 0.07$
a^2 b^2 0 b^2 c^1 0.1	a^2	b^2	c^1	$0 \cdot 0.1 = 0$
$a^3 b^1 0.3$ $b^2 c^2 0.2$	a^2	b^2	c^2	$0 \cdot 0.2 = 0$
$a^3 b^2 0.9$	a^3	b^1	c^1	$0.3 \cdot 0.5 = 0.15$
	a^3	b^1	c^2	$0.3 \cdot 0.7 = 0.21$
	a^3	b^2	c^1	$0.9 \cdot 0.1 = 0.09$
	a^3	b^2	c^2	$0.9 \cdot 0.2 = 0.18$

Figure 3: An example of factor product.

- Note that the factors are not marginals.
- \blacktriangleright In the misconception model, the marginal over A,B is

a^0	b^0	0.13		a^0	b^0	30
a^0	b^1	0.69	but the factor is	a^0	b^1	5
a^1	b^0	0.14		a^1	b^0	1
a^1	b^1	0.04		a^1	b^1	10

- A factor is only one contribution to the overall joint distribution.
- The distribution as a whole has to take into consideration the contributions from all of the factors involved.

Gibbs Distributions

- We can use the more general notion of factor product to define an undirected parametrization of a distribution.
- A distribution P_Φ is a *Gibbs distribution* parametrized by a set of factors Φ = {φ₁(D₁),...,φ_K(D_K)} if it is defined as follows:

$$P_{\Phi}(X_1,\ldots,X_n) = \frac{1}{Z}\phi_1(\mathbf{D}_1) \times \ldots \times \phi_K(\mathbf{D}_K)$$

where

$$Z = \sum_{X_1, \dots, X_n} \phi_1(\mathbf{D}_1) \times \dots \times \phi_K(\mathbf{D}_K)$$

is the partition function.

• The D_i are the scopes of the factors.

- If our parametrization contains a factor whose scope contains both X and Y, we would like the associated Markov network structure H to contain an edge between X and Y.
- We say that a distribution P_Φ with Φ = {φ₁(D₁),...,φ_K(D_K)} factorizes over a Markov network H if each D_k, k = 1,..., K, is a *complete subgraph* of H.
- The factors that parametrize a Markov network are often called *clique potentials*.

Gibbs Distributions

- We can reduce the number of factors by allowing factors only for *maximal cliques*.
- However, the parametrization using maximal clique potentials generally obscures structure that is present in the original set of factors.

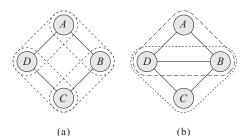


Figure 4: The cliques in two simple Markov networks. (a) $\{A, B\}$, $\{B, C\}$, $\{C, D\}$, and $\{D, A\}$. (b) $\{A, B, D\}$ and $\{B, C, D\}$.

- If we observe some values, U = u, in the factor value table, we can eliminate the entries which are inconsistent with U = u.
- Let H be a Markov network over X and U = u a context. The reduced Markov network H[u] is a Markov network over the nodes W = X − U, where we have an edge X—Y if there is an edge X—Y in H.

Reduced Markov Networks

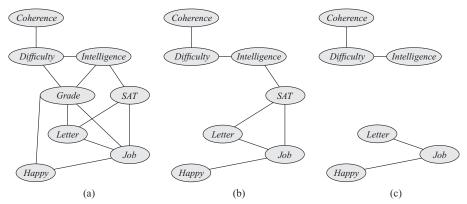


Figure 5: A reduced Markov network example. (a) Original set of factors. (b) Reduced to the context G = g. (c) Reduced to the context G = g. S = s.

- Conditioning on a context U in Markov networks eliminates edges from the graph.
- In a Bayesian network, conditioning on evidence can create new dependencies.

- Markov Random Fields:
 - Pairwise Markov network.
 - They are simple.
 - Interactions on edges are an important special case that often arises in practice.

Markov Network Independencies

- ► Let H be a Markov network and let X₁—...—X_k be a path in H.
- Let $\mathbf{Z} \subseteq \mathcal{X}$ be a set of observed variables.
- ► The path X₁—...—X_k is active given Z if none of the X_i's, i = 1,...,k, is in Z.
- ► A set of nodes Z separates X and Y in H, denoted sep_H(X; Y|Z), if there is no active path between any node X ∈ X and Y ∈ Y given Z.
- We define the global independencies associated with H to be

$$\mathcal{I}(\mathcal{H}) = \{ (\mathbf{X} \perp \mathbf{Y} | \mathbf{Z}) : \text{sep}_{\mathcal{H}}(\mathbf{X}; \mathbf{Y} | \mathbf{Z}) \}.$$

Learning Undirected Models

- Like in Bayesian networks, once the joint distribution is generated, any kind of question can be answered using conditional probabilities and marginalization.
- However, a key distinction between Markov networks and Bayesian networks is normalization.
- Markov networks use a global normalization constant called the partition function.
- Bayesian networks involve local normalization within each conditional probability distribution.

Learning Undirected Models

- The global factor couples all of the parameters across the network, preventing us from decomposing the problem and estimating local groups of parameters separately.
- The global parameter coupling has significant computational ramifications.
- Even the simple maximum likelihood parameter estimation with complete data cannot be solved in closed form.

Learning Undirected Models

- We generally have to resort to iterative methods such as gradient ascent.
- The good news is that the likelihood objective is concave, so the methods are guaranteed to converge to the global optimum.
- The bad news is that each of the steps in the iterative algorithm requires that we run inference on the network, making even simple parameter estimation a fairly expensive process.

