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Introduction

» We looked at directed graphical models whose structure
and parametrization provide a natural representation for
many real-world problems.

» Undirected graphical models are useful where one cannot
naturally ascribe a directionality to the interaction between
the variables.
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Introduction

» An example model that satisfies:
» (AL CHB,D})
» (B LD|{A,C})
» No other independencies

» These independencies cannot be

naturally captured in a Bayesian

network. Figure 1: An example
undirected graphical model.
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An Example

» Four students are working together in pairs on a homework.

» Alice and Charles cannot stand each other, and Bob and
Debbie had a relationship that ended badly.

» Only the following pairs meet: Alice and Bob; Bob and
Charles; Charles and Debbie; and Debbie and Alice.

» The professor accidentally misspoke in the class, giving rise
to a possible misconception.

» In study pairs, each student transmits her/his understanding
of the problem.

CS 551, Spring 2012 ©2012, Selim Aksoy (Bilkent University)



An Example

» Four binary random variables are defined, representing
whether the student has a misconception or not.

» Assume that for each X € {A, B,C, D}, x' denotes the
case where the student has the misconception, and z*
denotes the case where she/he does not.

» Alice and Charles never speak to each other directly, so A
and C are conditionally independent given B and D.

» Similarly, B and D are conditionally independent given A
and C.
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An Example

© © G’ @)

(a) (b) (c)
Figure 2: Example models for the misconception example. (a) An undirected
graph modeling study pairs over four students. (b) An unsuccessful attempt
to model the problem using a Bayesian network. (¢) Another unsuccessful

attempt.
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Parametrization

» How to parametrize this undirected graph?
» We want to capture the affinities between related variables.

» Conditional probability distributions cannot be used
because they are not symmetric, and the chain rule need
not apply.

» Marginals cannot be used because a product of marginals
does not define a consistent joint.

» A general purpose function: factor (also called potential).
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Parametrization

» Let D is a set of random variables.

» A factor ¢ is a function from Val(D) to R.
» A factor is nonnegative if all its entries are nonnegative.
» The set of variables D is called the scope of the factor.

» In the example in Figure 2, an example factor is

61(A, B) : Val(A, B) — R*.
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Parametrization

Table 1: Factors for the misconception example.

KA, B) | 6:(B.C) | 6(C,D) | (D, A)
a® 0 308 & 100 | d° 1[d° o 100
a® bt 5100 ! 11 db 100 | d® a' 1
at 0 1| 1lct d° 100 | db a° 1
a' bt 10 | b ¢ 100 | &t dP 1|d" a' 100
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Parametrization

» The value associated with a particular assignment a, b
denotes the affinity between these two variables: the higher
the value ¢, (a,b), the more compatible these two values
are.

» For ¢y, if A and B disagree, there is less weight.

» For ¢3, if C' and D disagree, there is more weight.

» A factor is not normalized, i.e., the entries are not
necessarily in [0, 1].
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Parametrization

» The Markov network defines the local interactions between
directly related variables.

» To define a global model, we need to combine these
interactions.

» We combine the local models by multiplying them as

P(a,b,c,d) = ¢1(a,b)ps(b, c)ps(c, d)ps(d, a).
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Parametrization

» However, there is no guarantee that the result of this
process is a normalized joint distribution.

» Thus, it is normalized as

P(ab,c,d) = 5 01(a,0)03(b, os(c, ) (d, )

where

Z =Y ¢1(a,b)pa(b,c)ds(c.d)pa(d, a).

a,b,c,d

» 7 is known as the partition function.
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Parametrization

Table 2: Joint distribution for the misconception example.

Assignment Unnormalized Normalized
a® B0 O 40 300, 000 0.04
a® B0 0 gt 300, 000 0.04
a® B0 a0 300, 000 0.04
a® B0 b gt 30 4.110~6
a® bt 0 g0 500 6.910°
a® bt 0 gt 500 6.910°
a® bt 40 5,000, 000 0.69
a® bt b at 500 6.910°
at B0 O a® 100 1.4107°
at b0 O gt 1,000, 000 0.14
at B0 b a® 100 1.4107°
at B0 b gt 100 1.4107°
at ot 0 40 10 1.410~6
at bt O gt 100, 000 0.014
at bt a0 100, 000 0.014
ot bt b at 100, 000 0.014
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Parametrization

» There is a tight connection between the factorization of the
distribution and its independence properties.

» For example, P |= (X L Y|Z) if and only if we can write P
in the form P(X') = (X, Z)p2(Y, Z).
» From the example in Figure 2,

P(A, B,C, D) = Z61(A, B)62(B, C)65(C, D)on(D, A),

we can infer that

PE=ALCKB, D},
PE B L D|{ACY).
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Parametrization

» Factors do not correspond to either probabilities or to
conditional probabilities.

» |t is harder to estimate them from data.

» One idea for parametrization could be to associate
parameters directly with the edges in the graph.

» This is not sufficient to parametrize a full distribution.
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Parametrization

» A more general representation can be obtained by allowing
factors over arbitrary subsets of variables.

» Let X, Y, and Z be three disjoint sets of variables, and let
»(X,Y) and ¢2(Y, Z) be two factors.

» We define the factor product ¢, x ¢, to be a factor
Y :Val(X,Y,Z) — R as follows:

w(Xu Y7 Z) - ¢1(X7 Y)¢2<Y7 Z)

» The key aspect is the fact that the two factors ¢, and ¢, are
multiplied in way that matches up the common part Y.
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Parametrization

a' | bt ¢! 10505=025
a' | b'| ¢2]0.50.7=035
a' | b2 | ¢! 1 0.8:0.1=0.08
a | p| o5 a' | b2 | ¢?10802=0.16
a'| p2] 08 bl ]os a? | b'| ¢! 0.1-05=0.05
a®| bl 0.1 b | 2|07 :> a* | b ¢2]0.1:07=0.07
a*| b2| 0 b2 | ol a® | b2l 001=0
a®| b'| 03 b2 | 2|02 a* | b2 % 002=0
a®| b2 09 @ | b ! ]0305=015
@ | b ¢?]0307=021
a | b2 ¢! 1090.1=0.09
a | b2| ¢?10902=0.18

Figure 3: An example of factor product.

CS 551, Spring 2012 ©2012, Selim Aksoy (Bilkent University)



Parametrization

» Note that the factors are not marginals.
» In the misconception model, the marginal over A, B is

a® ] 0.13 a® b0 | 30
a? b1 0.69 but the factor is @ b5
a' B |0.14 at B | 1
at bt ] 0.04 at bt |10
» A factor is only one contribution to the overall joint
distribution.

» The distribution as a whole has to take into consideration
the contributions from all of the factors involved.
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Gibbs Distributions

» We can use the more general notion of factor product to
define an undirected parametrization of a distribution.

» A distribution Py is a Gibbs distribution parametrized by a
set of factors ® = {¢1(D),...,¢x(Dg)} if it is defined as
follows:

Po(X1,.... X)) = %@(Dl) X . % bre(Dy)

where

is the partition function.
» The D, are the scopes of the factors.
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Gibbs Distributions

» If our parametrization contains a factor whose scope
contains both X and Y, we would like the associated
Markov network structure H to contain an edge between X
and Y.

» We say that a distribution Py with
O = {¢1(Dy),...,0x(Dg)} factorizes over a Markov
network H if each D,k =1,..., K, is a complete subgraph
of H.

» The factors that parametrize a Markov network are often
called clique potentials.
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Gibbs Distributions

» We can reduce the number of factors by allowing factors
only for maximal cliques.

» However, the parametrization using maximal clique
potentials generally obscures structure that is present in the
original set of factors.

(a) (b)
Figure 4: The cliques in two simple Markov networks. (a) {A, B}, {B,C},
{C,D},and {D, A}. (b) {A,B,D} and {B,C, D}.
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Reduced Markov Networks

» If we observe some values, U = u, in the factor value table,
we can eliminate the entries which are inconsistent with
U=nu.

» Let H be a Markov network over X and U = u a context.
The reduced Markov network H[u] is a Markov network
over the nodes W = X — U, where we have an edge X—Y
if there is an edge X—Y in H.
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Reduced Markov Networks

(©)
Figure 5: A reduced Markov network example. (a) Original set of factors. (b)
Reduced to the context G = ¢. (¢) Reduced to the context G = ¢, 5 = s.
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Reduced Markov Networks

» Conditioning on a context U in Markov networks eliminates
edges from the graph.

» In a Bayesian network, conditioning on evidence can create
new dependencies.

CS 551, Spring 2012 ©2012, Selim Aksoy (Bilkent University)



Reduced Markov Networks

» Markov Random Fields:
» Pairwise Markov network.
» They are simple.
» Interactions on edges are an important special case that
often arises in practice.

CS 551, Spring 2012 ©2012, Selim Aksoy (Bilkent University)



Markov Network Independencies

» Let H be a Markov network and let X;—...—X} be a path
in H.

» Let Z C X be a set of observed variables.

» The path X,—...—X} is active given Z if none of the X’s,
1= Jk,isin Z.

A set of nodes Z separates X and Y in H, denoted
sep;,(X;Y|Z), if there is no active path between any node
X eXandY €Y given Z.

We define the global independencies associated with H to
be

v

v

I(H)={(X LY|Z):sepy(X;Y|Z)}.

CS 551, Spring 2012 ©2012, Selim Aksoy (Bilkent University)



Learning Undirected Models

» Like in Bayesian networks, once the joint distribution is
generated, any kind of question can be answered using
conditional probabilities and marginalization.

» However, a key distinction between Markov networks and
Bayesian networks is normalization.

» Markov networks use a global normalization constant called
the partition function.

» Bayesian networks involve local normalization within each
conditional probability distribution.
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Learning Undirected Models

» The global factor couples all of the parameters across the
network, preventing us from decomposing the problem and
estimating local groups of parameters separately.

» The global parameter coupling has significant
computational ramifications.

» Even the simple maximum likelihood parameter estimation
with complete data cannot be solved in closed form.
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Learning Undirected Models

» We generally have to resort to iterative methods such as
gradient ascent.

» The good news is that the likelihood objective is concave,
so the methods are guaranteed to converge to the global
optimum.

» The bad news is that each of the steps in the iterative
algorithm requires that we run inference on the network,
making even simple parameter estimation a fairly expensive
process.
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