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Introduction

I We will look at example uses of Bayesian networks and
Markov networks for the following applications:

I Alarm network for monitoring intensive care patients —
Bayesian networks

I Recommendation system — Bayesian networks
I Diagnostic systems — Bayesian networks
I Statistical text analysis — probabilistic latent semantic

analysis
I Scene classification — probabilistic latent semantic analysis
I Object detection — probabilistic latent semantic analysis
I Image segmentation — Markov random fields
I Contextual classification — conditional random fields
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Intensive Care Monitoring

Figure 1: The “alarm” network for monitoring intensive care patients. The
network has 37 variables and 509 parameters (full joint has 237).
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Recommendation Systems

I Given user preferences, the system can suggest
recommendations.

I Input: movie preferences of many users.
I Output: model correlations between movie features.

I Users that like comedy, often like drama.
I Users that like action, often do not like cartoons.
I Users that like Robert De Niro films, often like Al Pacino

films.
I Given user preferences, the system can predict the

probability that new movies match preferences.
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Diagnostic Systems

Figure 2: Diagnostic indexing for home health site at Microsoft. Users can
enter symptoms and can get recommendations.
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Statistical Text Analysis

I T. Hofmann, “Unsupervised learning by probabilistic latent
semantic analysis,” Machine Learning, vol. 42, no. 1–2,
pp. 177–196, January–February 2001.

I The probabilistic latent semantic analysis (PLSA) algorithm
has been originally developed for statistical text analysis to
discover topics in a collection of documents that are
represented using the frequencies of words from a
vocabulary.
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Statistical Text Analysis

I PLSA uses a graphical model for the joint probability of the
documents and their words in terms of the probability of
observing a word given a topic (aspect) and the probability
of a topic given a document.

I Suppose there are N documents having content coming
from a vocabulary with M words.

I The collection of documents is summarized in an N -by-M
co-occurrence table n where n(di, wj) stores the number of
occurrences of word wj in document di.

I In addition, there is a latent topic variable zk associated with
each observation, an observation being the occurrence of a
word in a particular document.
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Statistical Text Analysis
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Figure 3: The graphical model used by PLSA for modeling the joint
probability P (wj , di, zk).
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Statistical Text Analysis

I The generative model P (di, wj) = P (di)P (wj|di) for word
content of documents can be computed using the
conditional probability

P (wj|di) =
K∑
k=1

P (wj|zk)P (zk|di).

I P (wj|zk) denotes the topic-conditional probability of word wj

occurring in topic zk.

I P (zk|di) denotes the probability of topic zk observed in
document di.

I K is the number of topics.
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Statistical Text Analysis

I Then, the topic specific word distribution P (wj|zk) and the
document specific word distribution P (wj|di) can be used to
determine similarities between topics and documents.

I In PLSA, the goal is to identify the probabilities P (wj|zk)

and P (zk|di).
I These probabilities are learned using the EM algorithm.
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Statistical Text Analysis

I In the E-step, the posterior probability of the latent variables
are computed based on the current estimates of the
parameters as

P (zk|di, wj) =
P (wj|zk)P (zk|di)∑K
l=1 P (wj|zl)P (zl|di)

.

I In the M-step, the parameters are updated to maximize the
expected complete data log-likelihood as

P (wj|zk) =

∑N
i=1 n(di, wj)P (zk|di, wj)∑M

m=1

∑N
i=1 n(di, wm)P (zk|di, wm)

,

P (zk|di) =

∑M
j=1 n(di, wj)P (zk|di, wj)∑M

j=1 n(di, wj)
.
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Statistical Text Analysis

Figure 4: Four aspects (topics) to most likely generate the word “segment”,
derived from a K = 128 aspects model of a document collection consisting of
abstracts of 1568 documents on clustering. The displayed word stems are the
most probable words in the class-conditional distribution P (wj |zk), from top
to bottom in descending order.
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Statistical Text Analysis

Figure 5: Abstracts of four examplary documents from the collection along
with latent class posterior probabilities P (zk|di, w = “segment”) and word
probabilities P (w = “segment”|di).

CS 551, Spring 2014 c©2014, Selim Aksoy (Bilkent University) 13 / 38



Scene Classification

I P. Quelhas, F. Monay, J.-M. Odobez, D. Gatica-Perez,
T. Tuytelaars, “A Thousand Words in a Scene,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 29, no. 9, pp. 1575–1589, September 2007.

I The PLSA model is used for scene classification by
modeling images using visual words (visterms).

I The topic (aspect) probabilities are used as features as an
alternative representation to the word histograms.
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Scene Classification

Figure 6: Image representation as a collection of visual words (visterms).
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Scene Classification

Figure 7: 10 most probable images from a data set consisting of city and
landscape images for seven topics (aspects) out of 20.
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Object Detection

I H. G. Akcay, S. Aksoy, “Automatic Detection of Geospatial
Objects Using Multiple Hierarchical Segmentations,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 46,
no. 7, pp. 2097–2111, July 2008.

I We used the PLSA technique for object detection to model
the joint probability of the segments and their features in
terms of the probability of observing a feature given an
object and the probability of an object given the segment.
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Object Detection

k−means−−−−−−→
quantization

histogram−−−−−→
of pixels

Figure 8: After image segmentation, each segment is modeled using the
statistical summary of its pixel content (e.g., quantized spectral values).
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Object Detection
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Figure 9: (a) PLSA graphical model. The filled nodes indicate observed
random variables whereas the unfilled node is unobserved. The red arrows
show examples for the measurements represented at each node. (b) In
PLSA, the object specific feature probability, P (xj |tk), and the segment
specific object probability, P (tk|si), are used to compute the segment specific
feature probability, P (xj |si).
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Object Detection

I After learning the parameters of the model, we want to find
good segments belonging to each object type.

I This is done by comparing the object specific feature
distribution P (x|t) and the segment specific feature
distribution P (x|s).

I The similarity between two distributions can be measured
using the Kullback-Leibler (KL) divergence D(p(x|s)‖p(x|t)).

I Then, for each object type, the segments can be sorted
according to their KL divergence scores, and the most
representative ones for that object type can be selected.
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Object Detection

(a) Image (b) Buildings (c) Roads (d) Vegetation (e) Water

Figure 10: Examples of object detection.
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Object Detection

(a) Image (b) Buildings (c) Roads (d) Vegetation

Figure 11: Examples of object detection.
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Image Segmentation

I Z. Kato, T.-C. Pong, “A Markov random field image
segmentation model for color textured images,” Image and
Vision Computing, vol. 24, no. 10, pp. 1103–1114, October
2006.

I Markov random fields are used as a neighborhood model
for image segmentation by classifying pixels into different
pixel classes.
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Image Segmentation

I The goal is to assign each pixel into a set of labels w ∈ Ω.

I Pixels are modeled using color and texture features.

I Pixel features are modeled using multivariate Gaussians,
p(x|w).

I A first-order neighborhood system is used as the prior for
the labeling process.

CS 551, Spring 2014 c©2014, Selim Aksoy (Bilkent University) 24 / 38



Image Segmentation

Figure 12: The Markov random field used as the first-order neighborhood
model for the labeling process.
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Image Segmentation

I The prior is modeled as

p(w) =
1

Z
exp

(
−
∑
c∈C

Vc(wc)

)

where Vc denotes the clique potential of clique c ∈ C having
the label configuration wc.

I Each clique corresponds to a pair of neighboring pixels.

I The potentials favor similar classes in neighboring pixels as

Vc = δ(ws, wr) =

+1 if ws 6= wr,

−1 otherwise.
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Image Segmentation

I The prior is proportional to the length of the region
boundaries. Thus, homogeneous segmentations will get a
higher probability.

I The final labeling for each pixel is done by maximizing the
posterior probability

p(w|x) ∝ p(x|w)p(w).
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Image Segmentation

Figure 13: Example segmentation results.
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Image Segmentation

Figure 14: Example Markov random field models used in the literature. (a)
First-order neighborhood system. (b) Non-regular planar graph associated to
an image partition. (c) Quad-tree.
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Contextual Classification

I A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora,
S. Belongie, “Objects in Context,” IEEE International
Conference on Computer Vision, 2007.

I Semantic context among objects is used for improving
object categorization.
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Contextual Classification

Figure 15: Idealized context based object categorization system: an original
image is perfectly segmented into objects; each object is categorized; and
object’s labels are refined with respect to semantic context in the image.
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Contextual Classification

Figure 16: Object categorization framework: S1, . . . , Sk is the set of k
segments for an image; L1, . . . , Ln is a ranked list of n labels for each
segment; O1, . . . , Om is a set of m object categories in the image.
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Contextual Classification

I A conditional random field (CRF) framework is used to
incorporate semantic context into the object categorization.

I Given an image I and its segmentation S1, . . . , Sk, the goal
is to find segment labels c1, . . . , ck such that they agree with
the segment contents and are in contextual agreement with
each other.

CS 551, Spring 2014 c©2014, Selim Aksoy (Bilkent University) 33 / 38



Contextual Classification

I This interaction is modeled as a probability distribution

p(c1, . . . , ck|S1, . . . , Sk) =
B(c1, . . . , ck)

∏k
i=1A(i)

Z(φ, S1, . . . , Sk)

with

A(i) = p(ci|Si) and B(c1, . . . , ck) = exp

(
k∑

i,j=1

φ(ci, cj)

)
,

where Z(·) is the partition function.
I The semantic context information is modeled using context

matrices that are symmetric, nonnegative matrices that
contain the co-occurrence frequency among object labels in
the training set.
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Contextual Classification

Figure 17: An example conditional random field. Squares indicate feature
functions and circles indicate variable nodes. Arrows represent single node
potentials due to feature functions, and undirected edges represent pairwise
potentials. Global context is represented by h.
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Contextual Classification

Figure 18: An example context matrix.
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Contextual Classification

Figure 19: Example results where context improved the categorization
accuracy. Left to right: original segmentation, categorization w/o contextual
constraints, categorization w/ contextual constraints, ground truth.
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Contextual Classification

Figure 20: Example results where context reduced the categorization
accuracy. Left to right: original segmentation, categorization w/o contextual
constraints, categorization w/ contextual constraints, ground truth.

CS 551, Spring 2014 c©2014, Selim Aksoy (Bilkent University) 38 / 38


	Introduction
	Intensive Care Monitoring
	Recommendation Systems
	Diagnostic Systems
	Statistical Text Analysis
	Scene Classification
	Object Detection
	Image Segmentation
	Contextual Classification

