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Introduction

» Density estimation with parametric models assumes that
the forms of the underlying density functions are known.

» However, common parametric forms do not always fit the
densities actually encountered in practice.

» In addition, most of the classical parametric densities are
unimodal, whereas many practical problems involve
multimodal densities.

» Non-parametric methods can be used with arbitrary
distributions and without the assumption that the forms of
the underlying densities are known.
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Non-parametric Density Estimation

» Suppose that n samples x4, ..., x, are drawn i.i.d.
according to the distribution p(x).
» The probability P that a vector x will fall in a region R is

given by
P:/p(x')dx'.
R

» The probability that £ of the n will fall in R is given by the
binomial law

P = (Z) PF(1— P)"*,

» The expected value of k is E[k] = nP and the MLE for P is
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Non-parametric Density Estimation

» If we assume that p(x) is continuous and R is small enough
so that p(x) does not vary significantly in it, we can get the
approximation

[ pe1ix = px)v
R

where x is a point in R and V' is the volume of R.
» Then, the density estimate becomes

p(x) =~ k/7n
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Non-parametric Density Estimation

» Let n be the number of samples used, R,, be the region
used with n samples, V,, be the volume of R, k, be the
number of samples falling in R,,, and p,(x) = ’“;/" be the
estimate for p(x).

» If p,(x) is to converge to p(x), three conditions are required:

lim V, =0

n—oo

lim k, = o0
n—oo
k,
lim — = 0.
n—oo M
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Histogram Method

» A very simple method is to
partition the space into a
number of equally-sized
cells (bins) and compute a x

v

histogram. Figure 1: Histogram in one
dimension.

» The estimate of the density at a point x becomes

p(x) = %

where n is the total number of samples, k is the number of
samples in the cell that includes x, and V' is the volume of
that cell. 7
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Histogram Method

» Although the histogram method is very easy to implement, it
is usually not practical in high-dimensional spaces due to
the number of cells.

» Many observations are required to prevent the estimate
being zero over a large region.
» Modifications for overcoming these difficulties:

» Data-adaptive histograms,
» Independence assumption (naive Bayes),
» Dependence trees.
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Non-parametric Density Estimation

» Other methods for obtaining the regions for estimation:
» Shrink regions as some function of n, such as V,, = 1//n.
This is the Parzen window estimation.
» Specify k,, as some function of n, such as k,, = /n. This is
the k-nearest neighbor estimation.
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Figure 2: Methods for estimating the density at a point, here at the center of
each square.
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Parzen Windows

» Suppose that ¢ is a d-dimensional window function that
satisfies the properties of a density function, i.e.,

¢(u) >0 and /(pudu:

» A density estimate can be obtained as
Z X — X3
v, "\

where h,, is the window width and V,, = hd.
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Parzen Windows

» The density estimate can also be written as

1 n 1 .
pn(x) = - Z dn(x —x;) where §,(x) = RA
i=1 n n

A
HEALRS
QL
A

Figure 3: Examples of two-dimensional circularly symmetric Parzen
windows functions for three different values of h,,. The value of h,, affects
both the amplitude and the width of 4,,(x).
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Parzen Windows

» If h, is very large, p,(x) is the superposition of n broad functions,
and is a smooth “out-of-focus” estimate of p(x).

» If by, is very small, p,,(x) is the superposition of n sharp pulses
centered at the samples, and is a “noisy” estimate of p(x).

» As h,, approaches zero, J,,(x — x;) approaches a Dirac delta
function centered at x;, and p,,(x) is a superposition of delta
functions.

Figure 4: Parzen window density estimates based on the same set of five
samples using the window functions in the previous figure.
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Figure 5: Parzen window estimates of a univariate Gaussian density using
different window widths and numbers of samples where p(u) = N(0,1) and

hn = 1/ /7.
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Figure 6: Parzen window estimates of a bivariate Gaussian density using
different window widths and numbers of samples where p(u) = N(0,I) and

hn = h1 /7.
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Figure 7: Estimates of a mixture of a uniform and a triangle density using
different window widths and numbers of samples where p(u) = N(0,1) and

hn = 1/ /7.
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Parzen Windows

» Densities estimated using Parzen windows can be used with the
Bayesian decision rule for classification.

» The training error can be made arbitrarily low by making the
window width sufficiently small.

» However, the goal is to classify novel patterns so the window
width cannot be made too small.

Figure 8: Decision boundaries in 2-D. The left figure uses a small window
width and the right figure uses a larger window width.
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k-Nearest Neighbors

A potential remedy for the problem of the unknown “best”
window function is to let the estimation volume be a function
of the training data, rather than some arbitrary function of
the overall number of samples.

v

» To estimate p(x) from n samples, we can center a volume
about x and let it grow until it captures k,, samples, where
k, is some function of n.

» These samples are called the k-nearest neighbors of x.

» If the density is high near x, the volume will be relatively
small. If the density is low, the volume will grow large.
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Figure 9: k-nearest neighbor estimates of two 1-D densities: a Gaussian
and a bimodal distribution.
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k-Nearest Neighbors

» Posterior probabilities can be estimated from a set of n
labeled samples and can be used with the Bayesian
decision rule for classification.

» Suppose that a volume V' around x includes k£ samples, k;
of which are labeled as belonging to class w;.

» As estimate for the joint probability p(x, w;) becomes

pn(X; w;) = Vv
and gives an estimate for the posterior probability
Pafufx) = 220K

Zj:l pa(x,wy)  k
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Non-parametric Methods

continuous x

use as | quantize
A __k/n A :
plx) = Hr p(x) = pmf using

relative frequencies
(histogram method)

fixed window, variable window,
variable k fixed k
(Parzen windows) (k-nearest neighbors)
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Non-parametric Methods

» Advantages:

» No assumptions are needed about the distributions ahead of
time (generality).

» With enough samples, convergence to an arbitrarily
complicated target density can be obtained.

» Disadvantages:

» The number of samples needed may be very large (number
grows exponentially with the dimensionality of the feature
space).

» There may be severe requirements for computation time and
storage.
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Figure 10: Anillustration of the histogram approach to density estimation, in
which a data set of 50 points is generated from the distribution shown by the
green curve. Histogram density estimates are shown for various values of the
cell volume (A).
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Figure 11: lllustration of the Parzen density model. The window width (h)
acts as a smoothing parameter. If it is set too small (top), the result is a very
noisy density model. If it is set too large (bottom), the bimodal nature of the
underlying distribution is washed out. An intermediate value (middle) gives a
good estimate.
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Figure 12: lllustration of the k-nearest neighbor density model. The
parameter k governs the degree of smoothing. A small value of & (top) leads
to a very noisy density model. A large value (bottom) smoothes out the
bimodal nature of the true distribution.

CS 551, Spring 2019 ©2019, Selim Aksoy (Bilkent University)



Circular data

Estimate with mixture of 5 Gaussians
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Figure 13: Density estimation examples for 2-D circular data.
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Banana shaped data Estimate with mixture of 3 Gaussians
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Figure 14: Density estimation examples for 2-D banana shaped data.
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