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Introduction

I We looked at directed graphical models whose structure
and parametrization provide a natural representation for
many real-world problems.

I Undirected graphical models are useful where one cannot
naturally ascribe a directionality to the interaction between
the variables.
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Introduction

I An example model that satisfies:
I (A ⊥ C|{B,D})
I (B ⊥ D|{A,C})
I No other independencies

I These independencies cannot be
naturally captured in a Bayesian
network.
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Figure 1: An example
undirected graphical model.
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An Example

I Four students are working together in pairs on a homework.

I Alice and Charles cannot stand each other, and Bob and
Debbie had a relationship that ended badly.

I Only the following pairs meet: Alice and Bob; Bob and
Charles; Charles and Debbie; and Debbie and Alice.

I The professor accidentally misspoke in the class, giving rise
to a possible misconception.

I In study pairs, each student transmits her/his understanding
of the problem.
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An Example

I Four binary random variables are defined, representing
whether the student has a misconception or not.

I Assume that for each X ∈ {A,B,C,D}, x1 denotes the
case where the student has the misconception, and x0

denotes the case where she/he does not.

I Alice and Charles never speak to each other directly, so A
and C are conditionally independent given B and D.

I Similarly, B and D are conditionally independent given A
and C.
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An Example

C

(a) (b) (c)

A

D BBD

A

C

BD

A

C

Figure 2: Example models for the misconception example. (a) An undirected
graph modeling study pairs over four students. (b) An unsuccessful attempt
to model the problem using a Bayesian network. (c) Another unsuccessful
attempt.
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Parametrization

I How to parametrize this undirected graph?

I We want to capture the affinities between related variables.

I Conditional probability distributions cannot be used
because they are not symmetric.

I Marginals cannot be used because a product of marginals
does not define a consistent joint.

I A general purpose function: factor (also called potential).
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Parametrization

I Let D is a set of random variables.
I A factor φ is a function from Val(D) to R.
I A factor is nonnegative if all its entries are nonnegative.
I The set of variables D is called the scope of the factor.

I In the example in Figure 2, an example factor is

φ1(A,B) : Val(A,B) 7→ R+.
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Parametrization

Table 1: Factors for the misconception example.

φ1(A,B) φ2(B,C) φ3(C,D) φ4(D,A)

a0 b0 30 b0 c0 100 c0 d0 1 d0 a0 100

a0 b1 5 b0 c1 1 c0 d1 100 d0 a1 1

a1 b0 1 b1 c0 1 c1 d0 100 d1 a0 1

a1 b1 10 b1 c1 100 c1 d1 1 d1 a1 100
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Parametrization

I The value associated with a particular assignment a, b
denotes the affinity between these two variables: the higher
the value φ1(a, b), the more compatible these two values
are.

I For φ1, if A and B disagree, there is less weight.

I For φ3 , if C and D disagree, there is more weight.

I A factor is not normalized, i.e., the entries are not
necessarily in [0, 1].
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Parametrization

I The Markov network defines the local interactions between
directly related variables.

I To define a global model, we need to combine these
interactions.

I We combine the local models by multiplying them as

P (a, b, c, d) = φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a).
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Parametrization

I However, there is no guarantee that the result of this
process is a normalized joint distribution.

I Thus, it is normalized as

P (a, b, c, d) =
1

Z
φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a)

where
Z =

∑
a,b,c,d

φ1(a, b)φ2(b, c)φ3(c, d)φ4(d, a).

I Z is known as the partition function.
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Parametrization

Table 2: Joint distribution for the misconception example.

Assignment Unnormalized Normalized
a0 b0 c0 d0 300,000 0.04

a0 b0 c0 d1 300,000 0.04

a0 b0 c1 d0 300,000 0.04

a0 b0 c1 d1 30 4.110−6

a0 b1 c0 d0 500 6.910−5

a0 b1 c0 d1 500 6.910−5

a0 b1 c1 d0 5,000,000 0.69

a0 b1 c1 d1 500 6.910−5

a1 b0 c0 d0 100 1.410−5

a1 b0 c0 d1 1,000,000 0.14

a1 b0 c1 d0 100 1.410−5

a1 b0 c1 d1 100 1.410−5

a1 b1 c0 d0 10 1.410−6

a1 b1 c0 d1 100,000 0.014

a1 b1 c1 d0 100,000 0.014

a1 b1 c1 d1 100,000 0.014
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Parametrization

I Note that the factors are not marginals.

I In the misconception model, the marginal over A,B is
a0 b0 0.13

a0 b1 0.69

a1 b0 0.14

a1 b1 0.04

but the factor is

a0 b0 30

a0 b1 5

a1 b0 1

a1 b1 10

I A factor is only one contribution to the overall joint
distribution.

I The distribution as a whole has to take into consideration
the contributions from all of the factors involved.
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Parametrization

I There is a tight connection between the factorization of the
distribution and its independence properties.

I In undirected models, conditional independence is given by
graph separation.

I X ⊥ Y|Z if there is no path from any node in X to any node
in Y after removing all variables in Z.

I In other words, all paths between nodes in X and Y pass
through at least one of the nodes in Z.

I Thus, the Markov blanket of a variable is its neighbors in
the graph (i.e., a node is independent of the rest of the
nodes in the graph given its immediate neighbors).
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Parametrization

I Markov blanket tells that nodes that are not neighbors are
conditionally independent given the remainder of the nodes.

I Factorization should be chosen in such a way that nodes
that are not neighbors are not in the same factor.

I In other words, whatever factorization we pick, we know that
only connected nodes can be arguments of a single local
function.
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Parametrization

I Clique: A subset of nodes such that there is an edge
between all pairs of nodes (i.e., a fully connected subset).

I Maximal clique: A clique that cannot include any further
node from the graph without ceasing to be a clique.

I We factorize an undirected graphical model as

P (X1, . . . , Xn) =
1

Z

∏
c∈C

φc(Xc),

where C is the set of all maximal cliques in the graph, Xc is
the set of nodes in clique c, φc(Xc) is the potential function
defined over Xc, and Z is the partition function

Z =
∑

X1,...,Xn

∏
c∈C

φc(Xc).
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Hammersley-Clifford Theorem

I The Hammersley-Clifford theorem tells us that the family of
distributions defined by the conditional independence
semantics on the graph and the family defined by products
of potential functions on cliques are the same.

I Tricky point: the potential functions are arbitrary real valued,
but strictly positive.

I Notice the crucial difference between graphs, which tell us
independencies that are true no matter what local functions
we choose, and numerical functions which could introduce
some extra independencies, once we know them.
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Boltzmann Distributions

I Constraining clique potentials to be positive can be
inconvenient.

I We often represent the clique potentials with their logs as

φc(Xc) = exp{−Hc(Xc)}

by using arbitrary real valued energy functions Hc(Xc).
I This gives the joint a nice additive structure

P (X1, . . . , Xn) =
1

Z

∏
c∈C

exp{−Hc(Xc)} =
1

Z
exp

{
−
∑
c∈C

Hc(Xc)

}
.

I This way of defining a probability distribution based on
energies is the Boltzmann distribution from statistical
physics.
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Reduced Markov Networks

I If we observe some values, U = u, in the factor value table,
we can eliminate the entries which are inconsistent with
U = u.

I Let H be a Markov network over X and U = u a context.
The reduced Markov network H[u] is a Markov network
over the nodes W = X−U, where we have an edge X—Y

if there is an edge X—Y in H.
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Reduced Markov Networks
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Figure 3: A reduced Markov network example. (a) Original set of factors. (b)
Reduced to the context G = g. (c) Reduced to the context G = g, S = s.
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Reduced Markov Networks

I Conditioning on a context U in Markov networks eliminates
edges from the graph.

I In a Bayesian network, conditioning on evidence can create
new dependencies.
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Learning Undirected Models

I Like in Bayesian networks, once the joint distribution is
generated, any kind of question can be answered using
conditional probabilities and marginalization.

I However, a key distinction between Markov networks and
Bayesian networks is normalization.

I Markov networks use a global normalization constant called
the partition function.

I Bayesian networks involve local normalization within each
conditional probability distribution.
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Learning Undirected Models

I The global factor couples all of the parameters across the
network, preventing us from decomposing the problem and
estimating local groups of parameters separately.

I The global parameter coupling has significant
computational ramifications.

I Even the simple maximum likelihood parameter estimation
with complete data cannot be solved in closed form.
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Learning Undirected Models

I We generally have to resort to iterative methods such as
gradient ascent.

I The good news is that the likelihood objective is concave,
so the methods are guaranteed to converge to the global
optimum.

I The bad news is that each of the steps in the iterative
algorithm requires that we run inference on the network,
making even simple parameter estimation a fairly expensive
process.

CS 551, Fall 2019 c©2019, Selim Aksoy (Bilkent University) 25 / 25


	Introduction
	Parametrization
	Reduced Markov Networks
	Learning Undirected Models

