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Abstract

A Probabilistic Similarity Framework for

Content-Based Image Retrieval

by Selim Aksoy

Chair of Supervisory Committee:

Professor Robert M. Haralick
Department of Electrical Engineering

Content-based retrieval from image databases has become a popular research area

where conventional database retrieval methods are not sufficient because they depend

on exact matches of keywords and require an enormous amount of human involve-

ment during manual annotation. Initial work on content-based retrieval focused on

using low-level features like color and texture for image representation, and a ge-

ometric framework of distances in the feature space for similarity. A challenging

problem in image retrieval is the fusion of information from multiple features and

similarity measures. In this dissertation, we pose the retrieval problem in a proba-

bilistic framework where the goal is to minimize the classification error in a setting of

two classes; the relevance and irrelevance classes of the query. We propose effective

solutions to different levels of the retrieval process within this framework. Feature

extraction and normalization is done by maximizing class separability, similarity is

measured using likelihood and posterior ratios, and post-processing is done using

graph-theoretic image grouping and a Bayesian relevance feedback architecture. A

key aspect of our framework is a two-level modeling of probability. The first level



uses parametric density models to compute class-conditional probabilities from fea-

ture vectors and can be interpreted as a mapping from the high-dimensional feature

space to the two-dimensional probability space. The second level includes training

simple linear classifiers in multiple probability spaces for multiple feature vectors and

corresponds to a modeling of “probability of probability” to compensate for errors

due to imperfect density modeling in the feature space. Furthermore, classifier com-

bination rules and a naive Bayesian network effectively fuse information from multiple

features and similarity models.

Performance evaluation was done using extensive experiments on three groundtruth

databases including aerial, satellite, texture and stock photo images. The proposed

probabilistic framework performed more robustly and significantly better than the

commonly used geometric framework and two competing algorithms from the liter-

ature. We obtained 8-20% relative improvement in precision over the cases where

the best feature vectors were used individually. Moreover, a few feedback iterations

resulted in an average precision of more than 94% for all three databases.
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Chapter 1

INTRODUCTION

1.1 Content-Based Image Retrieval

Image database retrieval has become a very popular research area in recent years

[85, 171, 187] due to the large amount of images that are generated by various appli-

cations and the advances in computation power, storage devices, scanning, network-

ing, image compression, desktop publishing and the World Wide Web. New tools are

required to help users create, manage, and retrieve images from on-line databases.

The value of these systems can greatly increase if they can provide the ability of

directly searching non-textual data, the “content” of the image, instead of searching

only on the associated textual information. The main purpose of a content-based

image database retrieval system is to effectively and efficiently use the information

stored in the image database.

In a typical content-based image retrieval application, the user has an image

and/or just a subject he or she is interested in and wants to find images from the

database that are similar or related to the example image. Possible application areas

include fashion design, museum catalogs, movie production, architectural design, re-

mote sensing, geographic information systems, scientific database management, logo

and trademark database management, law enforcement and criminal investigation,

commercial or personal picture archiving, and military and medical databases. There

are already some commercial systems as well as museums and other institutions al-

lowing content-based search in their large image collections [183, Chapter 8].
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Conventional database retrieval methods will not be sufficient to retrieve this kind

of data because they depend on file IDs, keywords, or text associated with the images.

They require an enormous amount of human involvement during manual annotation.

They do not allow queries based directly on the visual properties of the images. They

depend on the particular vocabulary used, and they do not provide queries for images

“similar” to a given image. In conventional databases, retrieval is based on an exact

match of the attribute values which do not have the ability to rank-order results by the

degree of similarity with the query image. Unfortunately, it is impossible to represent

the content of an image in a few words and also, different people may perceive the

same image differently.

Content-based retrieval emerged as an alternative research area to address this

problem in the early 90’s [171, 187]. To overcome the difficulties caused by the

manual annotations in text-based retrieval methods, images are indexed by their own

visual content, hence the name “content-based” retrieval. Queries can be based on

the use of measures that evaluate the similarity of two images based on pre-defined

criteria. In the general framework, first a feature extraction and/or object recognition

algorithm is used to extract information from an image during its insertion into the

database. After images are added to the database and features are extracted, queries

can be formed to allow users to retrieve images.

Queries for a content-based image database retrieval system can be based on

different features and can be from different classes like color, texture, shape, sketch,

spatial constraints, browsing (interactive) and attributes [85, 183]. Color queries

let users retrieve images containing specific colors as input by the user. The user

can specify percentages and locations of colors in the image. Grids can be used to

specify the color layout. Texture queries allow retrieving images containing a specific

texture. Similar to color, texture queries also include histograms or gridded texture

layouts selected from texture libraries. Shape queries may be automatic or semi-

automatic where the user helps the computer outline the shapes of interest in the
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image. Retrieval by sketch lets users draw some shapes and colors in an image and

then retrieves a similar image from the database. The spatial constraints category

deals with a class of queries based on spatial and topological relationships among the

objects in an image. These relationships may range from directional relationships to

adjacency, overlap, and containment involving a pair of objects or multiple objects.

Retrieval by browsing (interactive retrieval) is performed when users are not exactly

clear about their retrieval needs or are unfamiliar with the structure and types of

information available in the image database. All of these queries can be formed either

using some predefined options or using another image, which is also called query-by-

example.

1.2 Overview of Previous Work

Previous work in image retrieval can be roughly divided into the following categories

according to the order of processing:

• feature extraction,

• region finding,

• matching,

• feature combination,

• relevance feedback.

(Practical database retrieval systems also involve other issues like graphical user in-

terface design and indexing problems in very large databases [18, 23] but these are

out of the scope of this dissertation.)

Feature extraction has received the highest attention among all the other cate-

gories. Initial work on content-based retrieval focused on using low-level features like
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color and texture for image representation. Color features include histograms [192]

of RGB values or values of other color models, color moments [191], angles between

average color vectors [12], co-occurrences of colors [189], and invariant color models

[83]. Even though color is very important for visual perception of many images, it

cannot always distinguish objects as shown in Figure 1.1. (The first three rows in the

user interface show the best 12 matches and the last row shows the worst 4 matches

to the query. The user interface will be described in more detail in Section 1.5.4.)

Texture proved useful in many problems in computer vision like remote sensing

and inspection so it became an obvious choice as a feature for many image retrieval

systems. Examples include the Wold features [133], Laws’ texture energy maps [116],

wavelet coefficients [102], Gabor filters [136], spatial features [131], and edge maps

[213]. Similar to color, texture can also have problems in finding similarities between

images and can give many false alarms which are often harder to understand than

the ones for color. An illustration is given in Figure 1.1.

A relatively less popular approach is to use shape information. Since image seg-

mentation is a very hard problem, especially in complex images, it is very hard to

automatically compute accurate shape features. Some example uses of shape in im-

age retrieval include stiffness matrices [160], Fourier descriptors [169], elastic matching

[28], and deformable shape models [134]. Features that are developed for specific do-

mains are also used, e.g. facial features [16], fingerprint minutiae patterns [103], and

skin color features [73].

More recent approaches developed region-based query systems which involve image

segmentation based on color and texture but the region segmentation algorithms are

still too slow to be used in an image retrieval application. Some promising approaches

for region finding include clustering and grouping in spatial color-texture space [169],

segmentation in the color and texture space using expectation-maximization [38],

identifying the direction of changes in feature values [135], graph-based approaches

[184, 185, 71, 72], and non-parametric clustering [156].
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(a) An example query for airplanes using
color histograms (4/12)

(b) An example query for sunsets using color
histograms (4/12)

(c) An example query for sunsets using Ga-
bor texture features (3/12)

(d) An example query for sunsets using
Bayesian network (12/12)

Figure 1.1: Example queries using color and texture feature vectors. Using only color
cannot distinguish airplanes from eagles in (a) and sunsets from rooms and doors
with similar colors in (b). Using only texture gives worse results for this particular
sunset image in (c). Effective combination of color and texture (using a model that
will be proposed in this dissertation) can give significant improvements in (d). The
numbers in parentheses in sub-captions show the number of correct matches.
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After each image or region is associated with a feature vector, the next major step

is to use measures to find similarities between images. In systems where images or

regions are represented by feature vectors, the nearest neighbor rule [64] has been the

most popular choice. A distance measure is used to rank the database images in as-

cending order of their distances to the query image, which is assumed to correspond to

a descending order of similarity. Popular distance measures have been the Euclidean

(L2) distance [74, 160, 131, 188], the city-block (L1) distance [136, 188], the general

Minkowsky Lp distance [178], the weighted Euclidean distance [19, 172], the Cauchy

distance [180], and the Mahalanobis distance [160, 188]. Some systems which include

domain-specific features use similarity measures that are specific to those features.

These include histogram intersection [188], Chamfer measure for shape matching [31],

Hausdorff distance for object matching [168], tree search, self organizing maps [212],

and graph matching [98].

The nearest neighbor rule suffers from the fact that low-level features cannot

always map visually similar images into nearby locations in the feature space and

images that are quite irrelevant to the query image can be easily retrieved simply

because they are close to it in the feature space. It was shown that probabilistic

measures can be much more effective than the geometric distance-based approaches

[146, 145].

To overcome the limitations of low-level features, some systems allowed the user

to query the database using multiple feature vectors. Possible approaches include ap-

pending different feature vectors and treating the result as a big global feature vector

[131], letting the user weight different features [74, 15, 107], hierarchical classification

using different feature vectors at each level [201, 200, 68], taking linear or Boolean

combinations of distances computed using different feature vectors [24], neural net-

works [87, 86, 152, 153], Bayesian networks [177, 124, 204], and boosting multiple

classifiers that are trained on individual features [196]. Combining information from

multiple feature vectors can be quite useful as shown in Figure 1.1.
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Recently, relevance feedback is motivated from the success in document retrieval

[175] and has been a popular technique for improving retrieval performance. An initial

search in the database is done using the original query input by the user. Then, the

user labels some of the results as relevant and irrelevant and this information is

incorporated into the database search in terms of iterative retrievals.

Commonly used approaches for relevance feedback include the vector space model

[173, 47, 82], switching between multiple feature vectors and/or similarity measures

according to the comparisons between the rankings of the system and the rankings

of the user [174, 20], giving weights to each feature and/or similarity measure and

updating the weights according to the positive and negative feedback from the user

[172, 159, 170], self organizing feature maps [143], creating a probabilistic user model

[51, 50, 155], using a rule-based model [32], modifying the distance measure [43],

reorganizing the retrieval results [195, 44, 42], and feature density estimation [150,

141].

The following sections give the notation, motivation and problem definition for

the framework proposed in this dissertation. A more detailed literature review will

be given in Chapter 2.

1.3 Notation

The following notation is used throughout the dissertation.

ξi : i’th image in the database.

R : set of real numbers.

M ∈ R
(n×m) : matrix with n rows and m columns.

x ∈ R
(q×1) : vector with length q.

xi ∈ R
(q×1) : i’th vector in the sample for x.
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xi ∈ R : i’th component of the vector x.

x ∈ R : scalar.

xi ∈ R : i’th value in the sample for x.

z(i) : i’th element of z (can be image, vector or scalar) in time or in an ordered set.

C : set or class.

#C : number of elements in set C.

1.4 Motivation and Problem Definition

The image retrieval scenario addressed here begins with a query expressed by an

image. The user inputs one or more images to retrieve images from the database

that are similar to those input. The goal of this work is to develop similarity models

to improve retrieval performance. Since the problem of assigning similarity between

images is still not well-defined, there are many unjustified heuristics in the literature.

Most of the algorithms and decision criteria are developed by trial and error thresholds

with insufficient performance evaluation that use only a few examples. However,

a well-defined formulation is required to tune the algorithms, perform parameter

estimation, choose thresholds, etc.

Images that we have to deal with usually have a lot of structure. In the level where

the users usually form their queries a high-level alphabet and a complex grammar is

required. This alphabet will not likely be formed from keywords because manually

extracting all possible keywords from all images is not feasible. However, simple

low-level visual features are not effective enough alone to do retrieval with acceptable

results either. On the other hand, semantic-level object recognition is still an unsolved

problem in computer vision. Thus, the alphabet we use should be simple enough so
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that it can be easily computed and be generally applicable to a wide range of images.

Even though the individual elements of this alphabet may not be powerful enough to

represent complex images, a strong grammar can make use of their advantages and

achieve a better representation.

In this dissertation, we develop an effective solution to this problem using low-level

visual feature vectors as the elements of the alphabet and the pattern recognition and

Bayesian theory as the grammar for their combination. We approach the problem

by defining sub-problems that can be optimized or tuned in a theoretical framework,

and then combine these approaches to obtain the advantages of different algorithms.

Although there has been an enormous amount of work on developing features for

usually restricted domains of images, similarity measures have not received significant

attention. Besides, there is no generally applicable and effective framework to combine

multiple feature vectors and similarity measures.

We pose the retrieval problem in a classification framework. The goal is to mini-

mize the classification error in a two-class setting, where the classes are the relevance

class and the irrelevance class. Given a pair of images, one being the query image

and the other one being an image in the database, the pair should be assigned to the

relevance class if two images are similar and to the irrelevance class if they are not.

Unlike other approaches where an ambiguity exists about the images that do not

belong to any of the defined classes (city, forest, etc.), or where there are as many

classes as the number of images in the database, the binary setting of the relevance

and irrelevance classes completely and unambiguously partitions any database given

the query image. In our setting, the classes are defined relative to the query image,

not to the images in the database. Here we assume that similar images have similar

feature values and dissimilar images have relatively different feature values, and base

similarity between two images in terms of feature differences. For example, two images

of trees can be modeled by the relevance class if they have similar feature values

(i.e. small feature differences) as well as two images of sunsets which also belong to
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the relevance class because of their similar features. On the other hand, one image

with a tree and another image that includes a sunset belong to the irrelevance class

because of the differences in their feature values as well as an image of a horse and

a building image which are expected to have different features. Hence, the two-class

modeling can intuitively classify pairwise similarities between different images under

the assumption mentioned above.

Given the relevance class A, the irrelevance class B, the query image ξi and an im-

age ξj from the database, the classification error for the image pair (ξi, ξj) is computed

as

P (error) =0.5P ((ξi, ξj) assigned to B, (ξi, ξj) belongs to A)+

0.5P ((ξi, ξj) assigned to A, (ξi, ξj) belongs to B).
(1.1)

Pattern recognition literature provides many choices for a classifier. Since the Bayes

classifier gives the theoretical minimum classification error [78, 64], it is the ideal

choice for the classifier. Since it uses the posterior probabilities to make the decision,

the posterior probabilities are the ideal features for classification. This setting can

be interpreted as a mapping from the high-dimensional feature space to the two-

dimensional probability space. Similarity can then be computed as likelihood in the

probabilistic setting instead of computing distances in the geometric setting.

The Bayes classifier minimizes the classification error in Equation (1.1) using the

decision rule [64]

assign (ξi, ξj) to







class A if P (A|(ξi, ξj)) > P (B|(ξi, ξj))

class B otherwise,

(1.2)

i.e. it compares the a posteriori probabilities and assigns the input to the class whose

a posteriori probability is the largest. Therefore, these probabilities carry sufficient

information to set up the Bayesian classifier1. The Bayes error in this space is identical

1Since the sum of these probabilities is 1, they are linearly dependent. Thus, P (A|(ξi, ξj)) is
actually the smallest set for classification.
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to the Bayes error in the original feature space and no classification information is

lost.

In the two-class problem, the discriminant function is commonly represented in

the posterior ratio form

∆(ξi, ξj) =
P (A|(ξi, ξj))
P (B|(ξi, ξj))

(1.3)

which gives the decision rule

assign (ξi, ξj) to







class A if ∆(ξi, ξj) > 1

class B if ∆(ξi, ξj) ≤ 1.

(1.4)

If we assume that both of the classes are equally likely, i.e. P (A) = P (B), the

discriminant function becomes the likelihood ratio

∆(ξi, ξj) =
P ((ξi, ξj)|A)P (A)
P ((ξi, ξj)|B)P (B)

=
P ((ξi, ξj)|A)
P ((ξi, ξj)|B)

.

(1.5)

Then, the database images that are assigned to the relevance class A can be ordered

according to the likelihood ratio ∆(ξi, ξj) and the best matches to the query can

be found as the ones with the largest likelihood ratio (which gives exactly the same

ordering as the posterior probability for the relevance class under the equal priors

assumption, or when the priors are unknown but constant).

After defining the decision rule, the problem becomes finding effective models for

the class-conditional distributions. We divide the retrieval process into three levels:

• pre-processing level (feature extraction and normalization),

• similarity level (similarity computation between the query image and the images

in the database),

• post-processing level (iterative retrievals to improve the performance).
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This dissertation describes the solutions that we propose for these levels. Each level

includes several probabilistic models to estimate the class-conditional probabilities

P ((ξi, ξj)|A) and P ((ξi, ξj)|B). We also have criteria for optimization or selection

of each model in each level. We compare each model to other approaches in the

same level. Then, we describe a framework where these solutions can be combined to

make a final decision about the similarity between images. The overall system is also

compared to other content-based retrieval systems. The experiments show that clas-

sification performance is a good indicator of the retrieval performance. Designing the

retrieval system in our two-class classification framework achieves better performance

than the commonly used geometric framework which uses distances in the feature

space as the similarity measure.

An object/process diagram of the proposed system is given in Figure 1.2, where

rectangles represent objects and ellipses represent processes. Different sections of the

system will be presented in the following chapters.

1.5 Experimental Setup

1.5.1 Databases for Experiments

We use three different manually groundtruthed databases for performance evaluation:

1. ISL Database:

It includes images from the Fort Hood Data [76] that were supplied for the RA-

DIUS Project by the Digital Mapping Laboratory at the Carnegie Mellon Uni-

versity. These aerial images consist of visible light images of the Fort Hood area

in Texas. We used the images fhn711, fhn713, fhn715, fhn717 and fhn719,

and obtained 9,000 256×256 images with some of them overlapping by at most

half of their area. The second source for this database is the Remote Sensing

image collection from the LANDSAT and Defense Meteorological Satellite Pro-

gram (DMSP) Satellites. These include images of USA (800× 720), Chernobyl
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Images
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Figure 1.2: Object/process diagram for the proposed content-based image retrieval
system. Rectangles represent objects and ellipses represent processes.
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(512× 512), and the North Pole (608× 896), making a total of 1,410 256× 256

images.

We randomly selected 2000 images among the non-overlapping ones from the to-

tal of 10,410 and grouped them into 7 categories: parking lots (85 images), roads

(85 images), residential areas, (86 images), landscapes (85 images), LANDSAT

USA (85 images), DMSP North Pole (87 images) and LANDSAT Chernobyl (87

images). The final groundtruth database contains 600 images. Since these im-

ages are grayscale, we use only texture feature vectors for image representation.

All images in the groundtruth groups are given in Appendix A.

2. VisTeX Database:

MIT Media Laboratory’s Vision Texture Database [207] has been recently used

as a common dataset because it provides an easy-to-obtain groundtruth. We use

46 512× 512 images: Bark.0000, Bark.0001, Bark.0006, Bark.0008, Bark.0012,

Brick.0000, Brick.0002, Brick.0005, Fabric.0002, Fabric.0005, Fabric.0007, Fab-

ric.0009, Fabric.0011, Fabric.0013, Fabric.0015, Fabric.0017, Fabric.0019, Flow-

ers.0000, Flowers.0002, Flowers.0007, Food.0000, Food.0001, Food.0004, Food.

0005, Food.0006, Grass.0002, Leaves.0003, Leaves.0008, Leaves.0010, Leaves.0011,

Leaves.0014, Leaves.0016, Metal.0000, Metal.0002, Metal.0004, Misc.0000, Misc.

0002, Sand.0000, Sand.0005, Stone.0002, Stone.0005, Tile.0007, Water.0002,

Water.0003, Water.0004 and Wood.0002. Since each image has a relatively ho-

mogeneous texture, they are divided into 16 128× 128 non-overlapping images

that make a groundtruth of 736 images divided into 46 categories with 16 images

in each category. Smaller parts of this dataset were used in many experiments

in the literature (for example in the University of Illinois’ MARS project [172]).

We use both texture and color feature vectors for image representation for this

database. All images in the groundtruth groups are given in Appendix B.
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3. COREL Database:

COREL Photo Stock Library [48] includes CDs on many topics with 100 images

in each CD. It has recently become popular as a test dataset for content-based

retrieval experiments. However, due to the high level categorization in the

CDs, not many groundtruth-based quantitative evaluations were reported on

this dataset. We use 18 categories for a total of 1,575 images: air shows (82

images), Arabian horses (90 images), auto racing (88 images), bald eagles (80

images), cheetahs (91 images), coasts (92 images), divers and diving (92 images),

doors of San Francisco (89 images), English country gardens (85 images), fields

(85 images), fireworks (91 images), glaciers and mountains (85 images), land of

the pyramids (91 images), owls (85 images), polar bears (85 images), residential

interiors (91 images), roses (89 images) and sunsets/sunrises (84 images). Most

of these categories were used in the experiments in the MIT Media Lab (e.g.

[206]) and University of California at Berkeley’s Blobworld project (e.g. [37]).

Some of the images in each group were discarded because they are visually too

inconsistent with the rest of the category. A partial list of the images that

were discarded was obtained from Dr. Chad Carson from the University of

California at Berkeley. We use both texture and color feature vectors for image

representation for this database. All images in the groundtruth groups are given

in Appendix C.

1.5.2 Experimental Protocol

We use independent training and testing image sets for the experiments. For a par-

ticular database, we first randomly choose N images from each groundtruth group.

This set of images form the training dataset. The training image pairs for the rele-

vance class consist of all possible within-group pairings (N 2K pairings where K is the

number of groundtruth groups) and the training image pairs for the irrelevance class

consist of the same number of randomly selected between-group pairings. Randomly
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selected pairings of the images that are not in the training dataset are used for test-

ing the classification algorithms. These images are also used as queries in retrieval

experiments.

We use approximately one-third of all data for training and the remaining two-

thirds for testing. N is chosen to be 30 for the ISL Database, 6 for the VisTex Database

and 30 for the COREL Database. The following list summarizes the number of image

pairs used in the experiments:

• ISL Database

– 600 images in 7 categories (180,300 total possible image pairs),

– 6,300 training image pairs,

– 21,175 testing image pairs formed by images that are different from the

ones in training.

• VisTex Database

– 736 images in 46 categories (271,216 total possible image pairs),

– 1,656 training image pairs,

– 4,600 testing image pairs formed by images that are different from the ones

in training.

• COREL Database

– 1,575 images in 18 categories (1,241,100 total possible image pairs),

– 16,200 training image pairs,

– 27,378 testing image pairs formed by images that are different from the

ones in training.

All of these training and testing sets are symmetric, i.e. if the image pair (ξi, ξj) is in

a training (testing) set, the image pair (ξj, ξi) is also in that training (testing) set.



17

1.5.3 Performance Evaluation

Testing content-based retrieval systems and comparing their performances is an open

question. In most of the content-based retrieval literature, researchers presented

example queries to visually evaluate the performance of their systems. To compare

two content-based retrieval systems, we need experiments based on groundtruth data.

There are measures like precision, recall, misdetection rate and false alarm rate that

were already proposed in information retrieval and pattern recognition literature to

evaluate the results of such experiments. After computing these measures for each

content-based retrieval system, we will be able to compare them based on how well

they perform on the groundtruth data.

Two traditional measures for retrieval performance in the information retrieval

literature are precision and recall. Given a particular number of images retrieved,

precision is defined as the percentage of retrieved images that are actually relevant
(

retrieved and relevant
total number of retrieved

)

and recall is defined as the percentage of relevant images that

are retrieved
(

retrieved and relevant
total number of relevant

)

[175]. Given a query, high precision implies that

very few irrelevant images have been retrieved, and high recall implies that much of

what is relevant in the database has been retrieved. Lack of precision can be compared

to a type 2 error (false alarm) and deficiency in recall for a given search is comparable

to type 1 error (misdetection). For performance evaluation, one can plot precision

and recall as a function of the number of images retrieved as well as the precision vs.

recall curves for different numbers of images retrieved.

Much of the older work in content-based retrieval only gave illustrations of system

performance without any real evaluation. Some of the newer work include perfor-

mance measures like precision and recall but usually for small databases. Other

measures that were used to evaluate the performance are the number of retrievals

that have a specific target image among the set of retrieved images [107] and the av-

erage number of images required to converge to the desired specific target [49]. Some
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researchers first added noise to the database images and then used these noisy images

to search for the original version in the database. Then the accuracy is defined as the

average number of cases a noisy image can retrieve the original image [179]. These

measures evaluate the effectiveness of the system in finding a specific target image

instead of looking for visual similarities between the query image and the images in

the database. Besides, they are also application specific. However, obtaining a gen-

eral groundtruth dataset for content-based retrieval [198] is a very difficult task due

to the difficulties in assigning complex images into specific categories.

We use the similarity-based approach of measuring precision and recall on our

groundtruth databases for retrieval performance. We also use other well-known mea-

sures (like misdetection and false alarm) and define new measures (like consistency

and progress) to evaluate specific components of our system.

1.5.4 Graphical User Interface

The Graphical User Interface (GUI), which is shown in Figure 1.3, is developed in

MATLAB and can run with version 5.0 and higher. Most of the algorithms are

implemented in C and are integrated to the GUI using UNIX system calls. In addition,

we have a Java-based interface that supports a small subset of the algorithms. All

the quantitative performance evaluation experiments that will be presented in this

dissertation are done using UNIX shell scripts and the visual examples are created

using the MATLAB-based GUI.

The upper left image in the GUI window shows the query image. The GUI sup-

ports the input of a query image either by specifying its path and filename, or by

selection during random browsing of the database. The menus on the left allow the

user choose different databases, feature representations, similarity models and their

combinations. After a database search, the first three rows show 12 images that are

the most relevant to the query in descending order of similarity and the last row shows

4 images that are the most irrelevant to the query in descending order of dissimilar-
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ity. User can also click on the retrieved images to give feedback to the system. A left

mouse click represents positive feedback (and the image is marked green) and a right

mouse click represents negative feedback (and the image is marked red). Subsequent

clicks toggle the selections. The images selected as relevant by the user are also col-

lected in a separate window for later use. The details of the algorithms are given in

the rest of the dissertation.

1.6 Summary of Major Contributions

This dissertation contains original work in developing a classification framework for

image retrieval, feature normalization, probabilistic similarity models, clustering for

image grouping, combining multiple feature vectors and similarity measures, and

relevance feedback.

In particular, this dissertation contains

• a two-class classification framework and shows the strong relationship between

classification and retrieval. Therefore, one can do the design (parameter estima-

tion, model selection, choosing thresholds, etc.) in the classification framework

and expect better results in retrieval;

• a study of feature normalization methods and their effects on retrieval perfor-

mance. A class separability-based criterion is used to decide which normaliza-

tion method should be used for a particular database. It is shown that studying

the distribution of the features and using the results of this study significantly

improves the results compared to making only general or arbitrary assumptions;

• the development of probabilistic similarity models and a likelihood ratio-based

criterion to compute similarity between images. These models, which can be

considered as a mapping from the high-dimensional feature space to the two-

dimensional probability space allow us to do effective classification and retrieval
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(a) MATLAB-based interface (b) Java-based interface

Figure 1.3: Graphical user interfaces for the algorithms described in this dissertation.
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by training simple linear classifiers. We perform a two-level modeling of proba-

bility because density models for high-dimensional feature vectors are not per-

fect and do not give the true posterior probabilities (therefore, we cannot com-

pute the Bayes error). In two-level modeling, the first level includes models to

compute probabilities of feature vectors and the second level includes models to

compute probabilities of these probabilities to compensate for errors in modeling

in the first level. The probabilistic similarity measures performed significantly

better then the commonly used geometric framework where distances between

feature vectors are used for image similarity. We also describe a classification-

based criterion to choose the value of p in the commonly used Minkowsky Lp

metric;

• a graph-theoretic approach for image grouping and retrieval which formulates

the database search as a graph clustering problem. Furthermore, a model is

developed to estimate the probability of each image being relevant to the query

image given these clusters. It is shown that improvements in performance can

be obtained using the constraint that retrieved images should be consistent with

each other as well as being individually similar to the query image;

• a weighted distance approach to relevance feedback by weighting each feature

component separately where the weight updating problem is formulated in an

estimation and regression framework instead of the commonly used approach

where the weights are updated using heuristic methods;

• a unified framework to combine different feature representations and similarity

models. First, simple linear classifiers are trained to model probability in the

two-dimensional probability space and then classifier combination rules from

the pattern recognition literature are used to combine the decisions made by

individual classifiers to obtain a final measure of similarity. Furthermore, a
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naive Bayesian network is used to incorporate the uncertainty in the estimation

of probabilities and likelihood ratio values into the decision process. Extensive

experiments for both quantitative and qualitative performance evaluation show

that the proposed framework performs significantly better than two competing

algorithms from the content-based image retrieval literature;

• a Bayesian relevance feedback model which intuitively and effectively uses the

probabilities computed using different models to incorporate user’s feedback

to improve the performance. This feedback algorithm was more robust than

two competing algorithms and achieved 4-14% relative improvement in preci-

sion compared to the best performing competitor in the experiments on three

databases.

1.7 Dissertation Outline

The rest of the dissertation is organized as follows. A review of previous work in

content-based image retrieval is given in Chapter 2. Chapter 3 discusses the effects of

feature normalization and presents five normalization methods. Feature normaliza-

tion is required to approximately equalize ranges of the features and make them have

approximately the same effect in the computation of similarity. A class separability-

based criterion is described to decide which normalization method should be used for

a given dataset. Chapter 4 proposes a probabilistic approach to image retrieval. We

describe probabilistic similarity models that compute the likelihood of two images

being similar or dissimilar, one being the query image and the other one being an im-

age in the database. We use three different methods to estimate the class-conditional

probabilities used in the classifier. Effects of operating in the feature space versus

operating in the probability space are discussed. The performances of probabilistic

similarity methods are compared to the performances of the commonly used geo-

metric approaches like the nearest neighbor rule with the Minkowsky Lp metric in
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ranking the images in the database. Chapter 5 introduces a post-processing method,

a graph-theoretic clustering approach to image grouping and retrieval. We address

a common observation in retrieval results that sometimes images that are quite ir-

relevant to the query image are also retrieved simply because they are close to the

query image in the feature space. We propose a graph-theoretic approach for image

retrieval by formulating the database search as a graph clustering problem by adding

a constraint that the retrieved images should be close to each other as well as being

close to the query image in the feature space. Another post-processing method, a

weighted distance approach to relevance feedback is described in Chapter 6. Rele-

vance feedback tries to capture the high-level concept of similarity and subjectivity in

human perception by including the user in the retrieval loop. After formulating the

weight updating problem in an estimation and regression framework, we compute the

optimum weights that will be used to iteratively refine the effects of different feature

components in the database search. Given probabilistic models of similarity described

in previous chapters, Chapter 7 proposes a unified framework to combine multiple fea-

ture vectors and similarity models. Different classifier combination methods and a

naive Bayesian network classifier are described and are used to compute similarity and

incorporate relevance feedback in a Bayesian framework. Extensive classification and

retrieval experiments with both quantitative and qualitative performance evaluation

on three groundtruthed databases are presented in Chapter 8. The performances of

the proposed models are compared to the performances of two competing algorithms

from the content-based retrieval literature. The dissertation concludes with Chapter

9 where the proposed algorithms are summarized and future research directions are

discussed.

Two of the texture feature extraction methods in Chapter 3 were published in

[2, 3, 4, 7, 9]. Parts of Chapters 3 and 4 were published in [8, 10]. Part of Chapter 5

was published in [5, 6]. Part of Chapter 6 was published in [11]. Part of Chapter 4

and materials in Chapters 7 and 8 are in preparation for publication.
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Chapter 2

LITERATURE REVIEW

2.1 Feature Extraction

Initial work on content-based retrieval focused on using low-level features like color

and texture for image representation. Feature extraction methods in the literature

can be divided into the following categories:

Text-based features

• Keywords

• Annotations

• Attributes Global features

• Color

• Texture

Region/object-based

features

• Color

• Texture

• Shape

»»»»»»»
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General features
Domain-specific

features

• Faces

• Fingerprints

• Skin

• Horses
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Visual features
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Feature Extraction

As being one of the first approaches that use color for image retrieval, Swain

and Ballard [192] proposed to use color histograms. Stricker and Orengo [191] used

color moments with the motivation that most of the information in a histogram can be

summarized using low-order moments. Androutsos et al. [12] used the angles between

the average color vectors, and Smith and Li [189] used a color-based co-occurrence

approach for color-based image retrieval. Gevers and Smeulders [83] developed color

models that were invariant to the viewpoint, geometry of the object and illumination
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conditions.

Texture has been one of the most important characteristics which have been used

to classify and recognize objects and scenes [88, 90, 197]. In the MIT Photobook

Project, Pentland et al. [160] used 2-D Wold-based decompositions that were de-

scribed in [133] to measure periodicity, directionality and randomness as texture de-

scriptions in the Texture Photobook. In the Los Alamos National Lab.’s CANDID

Project, Kelly et al. [116] used Laws’ texture energy maps to extract textural fea-

tures from pulmonary CT images and introduced a global signature based on a sum

of weighted Gaussians to model the texture. They also used these Gaussian distribu-

tions to visualize which pixels contribute more to the similarity score. In [117] they

applied these methods to LANDSAT TM data. Barros et al. [17] tried to retrieve

multi-spectral satellite images by first clustering image pixels according to their spec-

tral values using a modified k-means clustering procedure, then using the spectral

distribution information as features for each connected region. Jacobs et al. [102]

used Haar wavelet decompositions and a distance measure that compared how many

wavelet coefficients that two images had in common for image retrieval. They used

only a few significant wavelet coefficients and also quantized them to improve the

speed of the system. Manjunath and Ma [136] used Gabor filter-based multiresolu-

tion representations to extract texture information. They used means and standard

deviations of Gabor transform coefficients, computed at different scales and orienta-

tions, as features. Gabor filters performed better than the pyramid-structured wavelet

transform, tree-structured wavelet transform and the multiresolution simultaneous

autoregressive model (MR-SAR) in the tests performed on the Brodatz database. In

[133], Liu and Picard treated images as 2-D homogeneous random fields and used

the Wold theory to decompose them into three mutually orthogonal components.

These components corresponded to the perceptually important “periodicity”, “di-

rectionality” and “randomness” properties. They compared the features that they

compute from the 2-D Wold model to other models, namely the shift-invariant prin-
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cipal component analysis, the multiresolution simultaneous autoregressive model, the

tree-structured wavelet transform and Tamura et al.’s [194] features that were used

in [74]. The Wold-based features performed better than others in terms of average

recall for a Brodatz texture dataset. Li et al. [131] used 21 different spatial fea-

tures like gray level differences (mean, contrast, angular second moments, directional

derivatives, etc.), co-occurrence matrices, moments, autocorrelation functions, frac-

tals and Robert’s gradient on the Brodatz image set and on remote sensing images.

The spatial features they extracted outperformed some transform-based features like

the discrete cosine transform, Gabor filters, quadrature mirror filters and uniform

subband coding. Zhou et al. [213] used a water-filling algorithm to extract structural

information from edge maps.

Systems that use shape information include MIT’s Photobook Project [160] which

used the Karhunen-Loeve transform to select eigenvectors to represent variations from

the prototypical appearance as appearance-specific descriptions in the Appearance

Photobook and modeled the connections in a shape using stiffness matrices produced

by the finite element method as shape descriptions in the Shape Photobook. Rui

et al. [169] proposed a modified Fourier descriptor which was both robust to noise

and invariant to geometric transformations. Moment invariants have also been used

as region-based moments which are invariant to transformations based on Hu’s work

[95]. Del Bimbo et al. [28] retrieved images containing specified 2-D shapes using an

elastic matching technique. Nastar [149] used the image shape spectrum for shape-

based retrieval. Liu and Sclaroff [134] first over-segmented images and then tried to

find groupings of these segments to fit deformable shape models. The fitting cost

function included a region color compatibility term, region/model area overlap term,

and a deformation term. They presented examples on banana, leaf and fish images.

Some researchers tried to develop features for a specific application domain. These

include the face features by Bach et al. [16], fingerprint minutiae patterns by Jain

and Hong [103], and the skin color features by Fleck et al. [73]. The latter system
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developed a procedure for finding naked people in color images using a flesh filter that

looked for large areas of skin color. They further used a geometric analyzer to group

regions in certain spatial relationships that were typical of limbs connected to torsos.

Jain et al. [104] used both face and fingerprint features to prune the database in an

automatic person identification system.

2.2 Region-Based Query Systems

More recent approaches developed region-based query systems which involve image

segmentation based on color and texture but the region segmentation algorithms

are still too slow to be used in an image retrieval application. Requirements for

segmentation accuracy are quite different for shape features and other features. For

shape features, an accurate segmentation is highly desirable but a coarse segmentation

may be sufficient to find regions to compute other features.

Rui et al. [169] proposed a segmentation algorithm based on clustering and group-

ing in spatial color-texture space. The user defined where the object of interest was

and the algorithm tried to group regions into meaningful objects. Carson et al. [38] de-

veloped a region-based query system called “Blobworld” by first grouping pixels into

regions based on color and texture using expectation-maximization and minimum

description length principles, then by describing these regions using color, texture,

location and shape properties. Ma and Manjunath [135] described a system called

“Netra” that also used color, texture, shape and spatial location information. They

developed an “edge flow model” that identified the direction of changes in the feature

values to segment the image into non-overlapping segments and computed the color,

texture, shape and location information for each region. The two latter approaches

performed automatic segmentation. Other approaches for image segmentation include

graph-based approaches [184, 185, 71, 72] and a non-parametric clustering approach

[156].
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2.3 Image Matching

After each image or region is associated with a feature vector, the next major step is

to use measures to find similarities between images. Researchers have used different

methods to match the query image to one or more of the database images. These

methods can be divided into the following categories:

Database Management

Systems

• SQL

Distance-based measures

• City-block (L1)

• Euclidean (L2)

• Weighted Euclidean

• Mahalanobis

Domain-specific measures

• Histogram intersection

• Shape measures

• Tree search

• Neural networks

• Graph matching
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Similarity measures
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Matching

Text-based retrieval systems with relational databases [69] used SQL queries to

find matches between images [193, 183]. The main disadvantage of SQL queries is

that they can only support exact matches between manually assigned keywords.

In systems where images are represented by feature vectors, distance-based meth-

ods are used as similarity measures to perform content-based retrieval. A distance

measure is used to rank the database images in ascending order of their distances to

the query image, which is assumed to correspond to a descending order of similarity.

Each image is assumed to be represented as a point by its feature vector in the high-

dimensional feature space and the nearest neighbor rule is used to retrieve images.

Popular distance measures have been the Euclidean (L2) distance [74, 160, 131, 188],

the city-block (L1) distance [136, 188], the general Minkowsky Lp distance [178],

the weighted Euclidean distance [19, 172], the Cauchy distance [180], and the Ma-
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halanobis distance [160, 188]. Some systems which include domain-specific features

used similarity measures that are specific to those features. These include histogram

intersection [188], Chamfer measure for shape matching [31], Hausdorff distance for

object matching [168], tree search, self organizing maps [212] and graph matching

[98].

The nearest neighbor rule is straightforward given the feature vectors but it is lim-

ited in the sense that it cannot make use of training data for higher-level similarities

and features cannot always map visually similar images into nearby locations in the

feature space. Moghaddam and Pentland [146] first projected image feature vectors

to a subset of their principal components, then estimated the distribution of these

feature vectors using a multivariate Gaussian or a mixture of Gaussians, and finally

used these estimates to perform maximum likelihood detection of faces, facial features

and hands. In [145], they based similarity on image difference vectors, used principal

components projection to reduce dimensionality, defined the class-conditional den-

sities to be Gaussian, and used the a posteriori probabilities as similarity measures

for face recognition. They showed that the probabilistic approach was much more

powerful than the geometric distance-based approach.

Recently, Rubner et al. [167] used the earth mover’s distance which computed

the distance between two distributions that were represented by signatures. The

signatures were sets of weighted features that captured the distributions. The earth

mover’s distance was defined as the minimum amount of work needed to change one

signature into the other. The notion of “work” was based on the user-defined ground

distance which was the distance between two feature vectors. Useful properties of the

earth mover’s distance were that the sizes of two signatures could be different and

also the sum of weights of one signature could be different than the sum of weights

of the other, i.e. it allowed partial matches.
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2.4 Feature Combination

It soon became apparent that no single feature vector can achieve significant perfor-

mance for all images. Some systems allowed the user to query the database using

multiple feature vectors. One simple method to combine multiple feature vectors was

to append different vectors and treat the result as a big global feature vector [131].

In the IBM’s QBIC Project, Niblack et al. [74] used features like color, texture and

shape that were computed for each object in an image as well as for each image.

In [13], they developed semi-automatic tools to aid manual outlining of the objects

during database population. The Virage image search engine [15] allowed retrieval

based on color, composition, texture, and structure measures. Jain and Vailaya [107]

described a system for content-based retrieval of trademark images using a weighted

combination of color and shape features. Smith [188] developed a system that used

color, texture and spatial location information for image retrieval. Vailaya and Jain

[201, 200] compared the effectiveness of different features like color histogram, color

coherence vector, discrete cosine transform coefficients, edge direction histogram and

edge direction coherence vector in classifying images into two classes: city and land-

scape, using a weighted nearest neighbor classifier. Edge-based features performed

better than the others. They suggested building a hierarchical classifier that uses

multiple two-class classifiers for image grouping. Berman and Shapiro [24] developed

the Flexible Image Database System to perform fast indexing using linear or Boolean

combinations of multiple color and texture feature vectors.

Vailaya et al. [200] used a hierarchical classifier to first classify images into the

city or landscape classes using edge information, then to classify landscape images

into forests, mountains and sunset/sunrise classes using color information. Dy et al.

[68] used a similar approach by two-level classifiers. They tried to classify a query

using features that best differentiate the major classes and then specialized the query

to that class by using the features that best distinguish the images within the chosen
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major class.

Neural networks have also been used as a tool for feature combination. Haering et

al. [87, 86] used a neural network with features like color, roughness, directionality,

co-occurrence features, Fourier features, Gabor features and fractal features as input

and trained it to detect deciduous trees. Oh et al. [152, 153] also used neural network

classifiers to combine different features in a handwriting recognition application.

Bayesian networks were also used as another class of algorithms that used clas-

sifiers to combine different features. Schroder et al. [177] used a naive Bayesian

classifier to link user interests and signal models to iteratively learn user-specific land

cover types in a remote sensing image archive. Kumar and Desai [124] used a discrete

variable Bayesian network to identify types of the segments of an image. Vasconcelos

and Lippman [204] used the fact that movie production usually has specific conven-

tions and structure, and used a Bayesian framework to incorporate this structure in

video summarization and classification.

Recently, Tieu and Viola [196] used boosting for image retrieval. They first ex-

tracted a very large number of highly selective features and then used boosting to

train classifiers that used only a small subset of these features according to positive

and negative query images.

A more detailed review about feature combination is given in Chapter 7.

2.5 Relevance Feedback

Recently, relevance feedback has been a popular technique for improving retrieval

performance. It was first applied as a post-processing method in the document re-

trieval literature [175]. The main idea is to include the human user in the retrieval

loop. An initial search in the database is done using the original query input by the

user. Upon being presented the results of this search, the user labels some of the

results as relevant and irrelevant according to his/her information needs. The goal is
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to incorporate this feedback information into the database search in terms of iterative

retrievals. Possible methods for relevance feedback can be summarized as:

Text-based retrieval

• Term selection

• Term weighting

• Creating user model

Feature-based retrieval

• Vector space model

• Choosing

– Features

– Similarity measures

– Search engines

• Weighting

– Features

– Similarity measures

• Others

– Self organizing maps

– Creating user model

– Reorganizing retrieval results

– Feature density estimation

(((((((((((((((
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Post-processing

In the document retrieval literature, relevance feedback is usually done by modi-

fying the input keywords (also called terms or attributes) according to the keywords

associated with the relevant documents. Crestani [53] used neural networks to per-

form relevance feedback. The goal was to learn from the users’ feedback and modify

the query terms. The input of the neural network was the original query terms and

the terms pertinent to the set of relevant documents, and the output was the terms

of the modified query. These terms were selected from the set of all possible terms

which were ranked based on the weights obtained from the output of a 3-layer feed-
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forward neural network trained using the back-propagation learning algorithm. Biron

et al. [29] investigated two symbolic approaches to information retrieval: Genetic

algorithms where the query was represented as a weighted Boolean function of the

terms, and an approach which tried to use knowledge of users’ past browsing behavior

to enhance the representation of documents in order to influence future retrieval. The

set of relevant documents, selected by the user, were used by Ribeiro-Neto and Assis

[162] to tune the original query. This was achieved by formulating the modified query

as a conjunction of the original query and the pertinent attributes extracted from

the relevant set. The newly formulated query was then normalized through transfor-

mation to its disjunctive form. Finally the negated terms were eliminated to avoid

instability of the system. Deogun et al. [57] used “user-oriented clustering” where

documents which were judged as jointly relevant (marked together as relevant in user

feedback) frequently by users were placed in the same cluster. This approach also

used keywords for document representation. In [25], they introduced a graph-based

representation where the nodes of the graph were the clusters and the arcs between the

nodes represented the weights. The data was clustered in a given number of clusters

based on the minimization of the sum of weights, which were measures of similarities

between the clusters. The weights were modified with each accumulated informa-

tion from the user. Voigt [208] presented a document browsing agent that assumed

that documents that were viewed long enough were relevant for the user so that they

would be more easily accessible in the next browsing session. Here the relevancy was

defined between documents and users, not between documents themselves. The main

disadvantage of this approach was that it heavily depended on the assumption that

“information that was relevant at some point in time would still be important in the

future”, and manually set thresholds on viewing time were used to determine rele-

vancy. Croft [54] described a document retrieval system where the relevance feedback

used “term selection” (choosing keywords from relevant documents to add to the list

of original keywords) and “term weighting” (assigning relative importance to them).
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Although some of these approaches performed effectively for document retrieval,

they are not directly applicable to content-based image retrieval. The complexity of

the visual characterization of images and the large number of images in a database

make manual keyword assignment process infeasible. However, initial work on rele-

vance feedback for image retrieval tried to apply techniques from information (specif-

ically document) retrieval literature. One of the most commonly used approaches is

the vector space model [173, 47, 82] where a new query vector is formed as a weighted

linear combination of the feature vectors of the original query, images in the relevance

set (with a positive weight) and images in the irrelevance set (with a negative weight).

Rui et al. [173] applied well established text retrieval techniques to image retrieval.

Two factors, “component importance” and “inverse collection importance”, were pro-

posed for images in accordance to the factors “term frequency” and “inverse document

frequency” in text retrieval. The vector space model was used for relevance feedback.

They also used Gaussian normalization to put equal emphasis to each feature com-

ponent, and then used the inverse of the standard deviation of each component for

the images in the relevant feedback set as weights. They concluded that the approach

adopted from text retrieval performed better than Gaussian normalization but the

latter was more robust to unknown feature components. Chua et al. [47] described

relevance feedback techniques for color-based image retrieval. First, they found sig-

nificant colors in the images, then, they selected the ones that frequently occur in

relevant images fed back by the user. These selected colors were used as the new

query. They also used color coherence histograms as feature vectors and formed new

queries as weighted combinations of the color coherence histograms for the original

query and the relevant images (vector space model). Gevers and Smeulders [82] also

used the vector space model.

Keywords for each image are also used [186, 52] in the same way they are used in

document retrieval. The new query keywords are formed by taking the union of all the

keywords for the original query and the images in the retrieval set. The keywords in
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the irrelevance set are sometimes removed from this large set of keywords. Simonnot

and Smail [186] used a model where a video was decomposed into three levels and

keywords were assigned to each level. User gave positive and negative weights to

these predefined keywords. Boolean queries were performed for pre-selection in the

database and final matching was done using the vector space model. Cox et al. [52]

used hidden semantic attributes in the PicHunter system. The attributes were called

“hidden” because the user did not specify any keywords during searching, they were

just used by the system for image similarity. The main disadvantage of this system

was that the attributes had to be assigned to each image manually.

Some systems made use of the feedback by switching between multiple feature

vectors and/or similarity measures according to the comparisons between the rankings

of the system and the rankings of the user. Rui et al. [174] developed a system that,

given a set of similarity measures, selected the similarity measure which minimized

the sum of the differences between the ranks of the retrieved images and the ranks of

the relevant images selected by the user. They also proposed an alternative to hard

switching between different similarity measures; using a weighted sum of all similarity

measures. Benitez et al. [20] used relevance feedback to rank features of search engines

and later to select the set of features from a given search engine that gave the best

results for a given query. All the search engines were initially given similar weights

and then these weights were increased or decreased based on the images they retrieved

and their relevance to the user.

Another popular approach is to give weights to each feature and/or similarity

measure and update the weights according to the positive and negative feedback from

the user [172, 159, 170]. The MARS system [172] supported a multimedia object

model where multiple image representations with dynamically updated weights were

used. An object was represented in terms of visual features such as color, texture, and

shape in one level, and specific implementations of these feature types such as color

histograms, co-occurrence matrices, Fourier descriptors in the next level. The system
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computed the overall similarity between images using a weighted linear combination

of different representations at each level. Weights at each level were updated indepen-

dently according to the user feedback in terms of positive and negative scores for each

image. Rui and Huang [170] criticized that weight updating was usually done heuris-

tically and formulated an optimization problem by minimizing the weighted sum of

distances for the training images. They used the generalized Euclidean distance (a

Mahalanobis-like distance but a weight matrix was used instead of the covariance

matrix) for feature vector distances. Then, a weighted sum of distances was used as

the final similarity. As solutions to the optimization problem, the new query vector is

the weighted average of the training feature vectors, the new weight matrix was the

inverse of the weighted covariance matrix, and the new weights for the distances were

inversely proportional to the total distance of the training images. Their experiments

on COREL images showed that this formulation performed better than the vector

space model and another approach that used the generalized Euclidean distance.

Other approaches include using self organizing feature maps [143], creating a prob-

abilistic user model [51, 50, 155], using a rule-based model [32], modifying the distance

measure [43], reorganizing the retrieval results [195, 44, 42] and feature density es-

timation [150, 141]. Minka and Picard [143] used machine learning in terms of self

organizing feature maps to automatically select and combine available features based

on positive and negative examples from the user. PicHunter [51] used a series of

display/action iterations to help the user find a specific target image in the database.

A Bayesian framework was developed, where the probability that each image in the

database being equal to the target image was updated after every iteration. A user

model to compute these probabilities was constructed according to the experiments

with different subjects. Performance was measured in terms of the number of itera-

tions required to find the specific target image. In [50], the feedback was in the form

of relative judgments between displayed images. Using this feedback, the system tried

to minimize the amount of iterations to find the target image using a nondetermin-
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istic comparison searching algorithm. Park and Lee [155] used relevance feedback to

capture the users’ interest and then to create a user profile. The user profile was

used to filter the documents in the database. Bouet and Djeraba [32] used a rule

based approach to select the discriminatory features according to the user feedback

to refine the query. Conditional probabilities and implication intensities were used

to evaluate the rules in the form “What is the probability to get ‘b’ proposition true

when ‘a’ proposition is true?”. The main disadvantage was that the rules depended

on manually set thresholds. Chen et al. [43] used relevance feedback to prune and

reorganize the search space. The reorganization was done by a modification of the

distance measure in a way to take into consideration the relevant set (worm hole

distance). After this reorganization, the search space became warped around the rel-

evant set in such a way that the distance between two documents from the relevant

set in this space was zero. In [195, 44], they clustered the relevant shots in a video

were to find natural groupings of them. A dendogram (binary tree) was formed from

these shots, which was then cut to produce a fixed number of clusters. The most

similar shots to the centroids of the clusters were found and were presented using the

similarity pyramid proposed in [42]. Nastar et al. [150] tried to estimate the distri-

bution of relevant images from the examples provided by the user by simultaneously

minimizing the probability of retrieving irrelevant images. The density estimation

was done by first assuming that the feature components were independent and had

Gaussian distributions. Then, the parameters for each Gaussian were determined ac-

cording to an error term defined as a combination of relevant images not covered and

irrelevant images covered by the Gaussian. A new query feature vector was generated

by drawing random values from the estimated densities for each feature. In [141],

they used likelihood values to retrieve images where the class-conditional distribu-

tions for the relevance and irrelevance classes were estimated using a Parzen window

estimator with a Gaussian kernel at the points that corresponded to images that were

labeled relevant and irrelevant by the user. Experiments were shown on the Columbia
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database and feedback improved results over iterations.

Relevance feedback is currently a very hot topic in image retrieval. Researchers are

trying to develop feedback methods to combine information from different feature vec-

tors and improve the performance. Practical database retrieval systems also involve

other issues like graphical user interface design and indexing problems in very large

databases. Barros et al. [18] investigated the effect of triangle inequality using single

keys and pairs of keys in reducing the number of comparisons to search the database.

Berman and Shapiro [23] first extended the triangle inequality to multiple distance

measures and then investigated the performances of different key selection algorithms

like random selection, selection according to density variance, selection according to

separation, a greedy thresholding algorithm and clustering. Data structures like hash

tables, k-d trees, R-trees, R+-trees, R∗-trees, SS-trees, SR-trees, MVP-trees and M-

trees for indexing are also available [187, 183]. Additional literature review about

specific problems are given in the following chapters.
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Chapter 3

FEATURE EXTRACTION AND NORMALIZATION

3.1 Introduction

As discussed in Section 1.4, the first level of the retrieval process is image repre-

sentation as pre-processing. Low-level features have been the most popular image

representation methods because they are usually well-defined and therefore can be

easily computed from raw image data. As reviewed in Chapter 2, many features have

been proposed in the literature and complex image retrieval systems use features that

are generated by many different feature extraction algorithms with different kinds of

sources. However, not all of these features have the same range. Popular distance

measures, for example the Euclidean distance, implicitly assign more weighting to

features with large ranges than those with small ranges. Feature normalization is

required to approximately equalize ranges of the features and make them have ap-

proximately the same effect in the computation of similarity. In most of the database

retrieval literature, the normalization methods were usually not mentioned or only

the Gaussian assumption was used [136, 131, 150, 172]. The Mahalanobis distance

[63] also involves normalization in terms of the covariance matrix and produces results

related to likelihood when the features have a Gaussian distribution.

This chapter discusses five normalization methods; linear scaling to unit range,

linear scaling to unit variance, transformation using the cumulative distribution func-

tion, rank normalization and normalization by fitting distributions. The goal is to

independently normalize each feature component to the [0,1] range. Effectiveness of

different normalization methods are measured in two ways. As being part of the
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classification framework proposed in Section 1.4, this chapter presents results using

the class separability criterion. In the following chapter, effectiveness will be inves-

tigated in combination with different similarity measures. A normalization method

is preferred over the others according to these empirical results. Even though there

is no single best normalization method for all databases, normalization after fitting

distributions is usually among the best and class separability appears to be an ef-

fective measure for choosing the normalization method that gives the best retrieval

performance.

In this dissertation we use low-level features computed globally for the whole image

as its representation. A more complex representation can be to use segmentation

methods to find hypothetically meaningful regions in the image and base the queries

on these regions. Our main goal is to develop similarity methods so only global

low-level features are considered in the rest of this dissertation. However, all of the

algorithms that will be proposed can be directly applicable to features computed from

regions.

The rest of the chapter first summarizes the features we use, then, describes the

details of the normalization methods, and finally, presents experiments on choosing

the best normalization methods for different feature vectors for the given databases.

3.2 Feature Extraction

Each image is represented by multiple feature vectors in our system. The following

texture and color features are implemented:

1. Line-angle-ratio statistics (LAR)

Line-angle-ratio statistics [2, 4, 7, 9] use a texture histogram computed from the

spatial relationships between lines as well as the properties of their surroundings.

Spatial relationships are represented by the angles between intersecting line

pairs and properties of the surroundings are represented by the ratios of the
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mean gray levels inside and outside the regions spanned by those angles. The

texture histogram is computed by first performing vector quantization to form

non-uniform cells in the feature space, and then by counting the number of

angle-ratio pairs that are assigned to each cell. Line-angle-ratio statistics result

in a 20-dimensional feature vector.

2. Co-occurrence variances (COOC)

Variances of gray level spatial dependencies [2, 3, 4, 7, 9] use second-order statis-

tics of gray levels of pixels and are computed from the co-occurrence matrices

for different spatial relationships. First, co-occurrence matrices are computed

for five different pixel distances and four orientations, then, the variances (also

called contrast) are computed from these matrices to form a 20-dimensional

feature vector.

3. Gabor features (GABOR)

A successful application of Gabor texture features were used in the University

of California at Santa Barbara’s Netra project [136]. The image is first filtered

by a Gabor filter bank of 5 scales and 6 orientations, and then the means and

variances of the filtered image values are computed to form a 60-dimensional

feature vector.

4. Moments features (MOMENTS)

Moments features were used by a group at Tampere University of Technology as

textural features for image retrieval [41]. The image is first filtered by moment

filters of up to 3rd order (which makes 9 2-dimensional filters), and then a

36-dimensional vector of the means, variances, medians and absolute median

deviations of the filtering results are used for image representation.

5. Tamura features (TAMURA)
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Tamura’s texture features were used in IBM’s QBIC project [74]. These features

were developed as computational approximations to the visual texture proper-

ties found to be important in psychology studies. QBIC uses a 4-dimensional

vector which consists of the coarseness, contrast, directionality and dominant

orientation features.

6. Color histograms (COLHIST)

Color histogram has been the most commonly used color feature representation.

It estimates the joint probability of the intensities of the three color channels

[192]. We use the HSV color space [84] and compute a 3 × 3 × 3 histogram

which results in a 27-dimensional feature vector for each image in the VisTex

Database. A 4× 4× 4 histogram is used as a 64-dimensional feature vector for

the COREL Database.

Alternatively, all the features computed using the feature extraction algorithms

listed above can be collected in a big feature vector and an optimum partition of this

vector can be used as sub-vectors. This approach is computationally expensive but an

optimum partition found as part of the classification problem can improve the overall

results. In the rest of the dissertation, the feature vectors computed as above are used

for image representation but all of the proposed algorithms are directly applicable for

alternative partitions of feature vectors.

3.3 Feature Normalization

The following methods can be used to independently normalize each feature compo-

nent to the [0,1] range.
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3.3.1 Linear Scaling to Unit Range (Norm.1)

Given a lower bound l and an upper bound u for a feature component x ∈ R,

x̃ =
x− l
u− l (3.1)

results in x̃ being in the [0,1] range.

A problem may arise when the unnormalized feature vector of a query image has

one or more of the feature values out of the [u, l] range. To avoid an out of range

[0,1] after normalization, we can truncate the out-of-range values to either 0 or 1.

Therefore, the normalization rule for the mapping x ∈ [l, u]→ x̃ ∈ [0, 1] becomes

x̃ =







0 if x < l

x−l
u−l

if l ≤ x ≤ u

1 if x > u.

(3.2)

3.3.2 Linear Scaling to Unit Variance (Norm.2)

Another normalization procedure is to transform the feature component x ∈ R to a

random variable with zero mean and unit variance as

x̃ =
x− µ
σ

(3.3)

where µ and σ are the sample mean and the sample standard deviation of that feature

respectively [105].

If we assume that each feature has a Gaussian distribution, the probability of x̃

being in the [-1,1] range is 68%. An additional shift and rescaling as

x̃ =
x−µ
3σ

+ 1

2
(3.4)

guarantees 99% of x̃ to be in the [0,1] range. We can then truncate the out-of-range

components to either 0 or 1.
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3.3.3 Transformation Using the Cumulative Distribution Function (Norm.3)

Given a random variable x ∈ R with cumulative distribution function Fx(x), the

random variable x̃ resulting from the transformation x̃ = Fx(x) will be uniformly

distributed in the [0,1] range [154].

3.3.4 Rank Normalization (Norm.4)

Given the sample for a feature component for all images as x1, . . . , xn ∈ R, first we

find the order statistics x(1), . . . , x(n) and then replace each image’s feature value by

its corresponding normalized rank as

x̃i =
rank
x1,...,xn

(xi)− 1

n− 1
(3.5)

where xi is the feature value for the i’th image. This procedure uniformly maps all

feature values to the [0,1] range. When there are more than one image with the same

feature value, especially after quantization, they are assigned the average rank for

that value.

3.3.5 Normalization After Fitting Distributions (Norm.5)

The transformations in Section 3.3.2 assumed that a feature has a Gaussian(µ, σ2)

distribution. The sample values can be used to find better estimates for the feature

distributions. Then, these estimates can be used to find normalization methods based

particularly on these distributions. Huang and Mumford [96] also tried to fit distri-

butions to single pixel statistics, derivative statistics, joint pixel statistics and joint

wavelet feature statistics using the minimum mean square error as the fitting crite-

rion. However, they only tried to develop models and did not use this information in

normalization.

The following sections describe how to fit Gaussian, Lognormal, Exponential and

Gamma densities to a random sample. We also give the difference distributions
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because the image similarity measures use feature differences. After estimating the

parameters of a distribution, the cut-off value that includes 99% of the feature values is

found and the sample values are scaled and truncated so that each feature component

have the same range. Given the cut-off value δx, the normalization rule for the

mapping x ∈ [0,∞)→ x̃ ∈ [0, 1] is

x̃ =







x
δx

if 0 ≤ x ≤ δx

1 if x > δx.

(3.6)

Since the original feature values are positive, we use only the positive section of

the Gaussian density after fitting. Lognormal, Exponential and Gamma densities are

defined for random variables with only positive values. Other distributions that are

commonly encountered in the statistics literature are the Uniform, χ2 and Weibull

(which are special cases of Gamma), Beta (which is defined only for [0,1]) and Cauchy

(whose moments do not exist). Although these distributions can also be used by first

estimating the parameters and then finding the cut-off values, we will show that the

distributions used in this chapter can quite generally model features from different

feature extraction algorithms.

To measure how well a fitted distribution resembles the sample data (goodness-

of-fit), we use the Kolmogorov-Smirnov test statistic [36, 161] which is defined as

the maximum value of the absolute difference between the cumulative distribution

function estimated from the sample and the one calculated from the fitted distri-

bution. After estimating the parameters for different distributions, we compute the

Kolmogorov-Smirnov statistic for each distribution and choose the one with the small-

est value as the best fit to our sample. This is done for each feature component

independently.
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Fitting a Gaussian(µ, σ2) Density

Let x1, . . . , xn ∈ R be a random sample from a population with density 1√
2πσ

e−(x−µ)2/2σ2 ,

−∞ < x < ∞, −∞ < µ < ∞, σ > 0. The likelihood function for the parameters µ

and σ2 is

L(µ, σ2|x1, . . . , xn) =
1

(2πσ2)n/2
e−

∑n
i=1(xi−µ)2/2σ2 . (3.7)

To find the values of µ and σ2 that maximize this likelihood function, we take its

logarithm as

logL(µ, σ2|x1, . . . , xn) = −
n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑

i=1

(xi − µ)2 (3.8)

and equate the derivatives to 0 as

∂

∂µ
logL(µ, σ2|x1, . . . , xn) =

1

σ2

n∑

i=1

(xi − µ) = 0 (3.9)

∂

∂σ2
logL(µ, σ2|x1, . . . , xn) = −

n

2σ2
+

1

2σ4

n∑

i=1

(xi − µ)2 = 0. (3.10)

Then, the maximum likelihood estimators (MLE) of µ and σ2 can be derived as

µ̂ =
1

n

n∑

i=1

xi and σ̂2 =
1

n

n∑

i=1

(xi − µ̂)2. (3.11)

The cut-off value δx that includes 99% of the feature values can be found as

P (x ≤ δx) = P

(
x− µ̂
σ̂
≤ δx − µ̂

σ̂

)

= 0.99

=⇒ δx = µ̂+ 2.4σ̂.

(3.12)

Let x and y be two i.i.d. random variables with a Gaussian(µ, σ2) distribution.

Using moment generating functions, we can easily show that their difference z = x−y
has a Gaussian(0, 2σ2) distribution. The cut-off value δz that includes 99% of the

feature differences can be found as

P (|z| ≤ δz) = P

(∣
∣
∣
∣

z√
2σ̂

∣
∣
∣
∣
≤ δz√

2σ̂

)

= 0.99

=⇒ δz = 3
√
2σ̂.

(3.13)
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Fitting a Lognormal(µ, σ2) Density

Let x1, . . . , xn ∈ R be a random sample from a population with density 1√
2πσ

e−(log x−µ)
2/2σ2

x
,

x ≥ 0, −∞ < µ <∞, σ > 0. The likelihood function for the parameters µ and σ2 is

L(µ, σ2|x1, . . . , xn) =
1

(2πσ2)n/2
e−

∑n
i=1(log xi−µ)2/2σ2

∏n
i=1 xi

. (3.14)

To find the values of µ and σ2 that maximize this likelihood function, we take its

logarithm as

logL(µ, σ2|x1, . . . , xn) = −
n

2
log(2π)− n

2
log σ2 − 1

2σ2

n∑

i=1

(log xi − µ)2 −
n∑

i=1

log xi

(3.15)

and equate the derivatives to 0 as

∂

∂µ
logL(µ, σ2|x1, . . . , xn) =

1

σ2

n∑

i=1

(log xi − µ) = 0 (3.16)

∂

∂σ2
logL(µ, σ2|x1, . . . , xn) = −

n

2σ2
+

1

2σ4

n∑

i=1

(log xi − µ)2 = 0. (3.17)

Then, the MLEs of µ and σ2 can be derived as

µ̂ =
1

n

n∑

i=1

log xi and σ̂2 =
1

n

n∑

i=1

(log xi − µ̂)2. (3.18)

In other words, we can take the natural logarithm of each sample point and treat the

new data as a sample from a Gaussian(µ, σ2) distribution [39].

The cut-off value δx that includes 99% of the feature values can be found as

P (x ≤ δx) = P (log x ≤ log δx) = P

(
log x− µ̂

σ̂
≤ log δx − µ̂

σ̂

)

= 0.99

=⇒ δx = eµ̂+2.4σ̂.

(3.19)

Fitting an Exponential(λ) Density

Let x1, . . . , xn ∈ R be a random sample from a population with density 1
λ
e−x/λ,

x ≥ 0, λ > 0. The likelihood function for the parameter λ is

L(λ|x1, . . . , xn) =
1

λn
e−

∑n
i=1 xi/λ. (3.20)
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To find the value of λ that maximizes this likelihood function, we take its logarithm

as

logL(λ|x1, . . . , xn) = −n log λ−
1

λ

n∑

i=1

xi (3.21)

and equate its derivative to 0 as

∂

∂λ
logL(λ|x1, . . . , xn) = −

n

λ
+

1

λ2

n∑

i=1

xi = 0. (3.22)

Then, the MLE of λ can be derived as

λ̂ =
1

n

n∑

i=1

xi. (3.23)

The cut-off value δx that includes 99% of the feature values can be found as

P (x ≤ δx) = 1− e−δx/λ̂ = 0.99

=⇒ δx = −λ̂ log 0.01.
(3.24)

Let x and y be two i.i.d. random variables with an Exponential(λ) distribution.

Their joint distribution is

pxy(x, y) =
1

λ2
e−(x+y)/λ, x ≥ 0, y ≥ 0. (3.25)

To find the distribution of their difference z = x − y, we define a second random

variable as w = x. Then the joint distribution of z and w becomes

pzw(z, w) = pxy(w,w − z) =
1

λ2
e−(2w−z)/λ, z ≤ w, w ≥ 0. (3.26)

The marginal distribution of z can be found as

pz(z) =

∫ ∞

−∞
pzw(z, w)dw

=

∫ ∞

max{0,z}

1

λ2
e−(2w−z)/λdw

=







1
2λ
ez/λ if z < 0

1
2λ
e−z/λ if z ≥ 0

=
1

2λ
e−|z|/λ , −∞ < z <∞.

(3.27)
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Similar to the previous case, the MLE of λ can be derived as

λ̂ =
1

n

n∑

i=1

|zi|. (3.28)

The cut-off value δz that includes 99% of the feature differences can be found as

P (|z| ≤ δz) = 1− e−δz/λ̂ = 0.99

=⇒ δz = −λ̂ log 0.01.
(3.29)

Fitting a Gamma(α, β) Density

Let x1, . . . , xn ∈ R be a random sample from a population with density 1
Γ(α)βα

xα−1e−x/β,

x ≥ 0, α, β > 0. Since closed forms for the MLEs of the parameters α and β do not

exist1, we use the method of moments (MOM) estimators [39]. The first two sample

moments are

m1 =
1

n

n∑

i=1

xi and m2 =
1

n

n∑

i=1

x2i . (3.30)

To find the MOM estimates for α and β, we equate the first two population moments

E[x] = αβ and E[x2] = αβ2 + α2β2 (3.31)

to the sample moments and solve the following system of equations

1

n

n∑

i=1

xi = αβ (3.32)

1

n

n∑

i=1

x2i = αβ2 + α2β2. (3.33)

The MOM estimators for α and β can be derived as

α̂ =

(
1
n

∑n
i=1 xi

)2

(
1
n

∑n
i=1 x

2
i

)
−
(
1
n

∑n
i=1 xi

)2 , (3.34)

β̂ =

(
1
n

∑n
i=1 x

2
i

)
−
(
1
n

∑n
i=1 xi

)2

(
1
n

∑n
i=1 xi

) (3.35)

1MLEs of Gamma parameters can be derived in terms of the “Digamma” function and can be
computed numerically [36, 161].
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and can be easily computed using the sample mean and the sample variance.

It can be shown [39] that when x ∼ Gamma(α, β) with an integer α, P (x ≤ δx) =

P (y ≥ α) where y ∼ Poisson(δx/β). Then the cut-off value δx that includes 99% of

the feature values can be found as

P (x ≤ δx) =
∞∑

y=α̂

e−δx/β̂
(δx/β̂)

y

y!
= 1−

α̂−1∑

y=0

e−δx/β̂
(δx/β̂)

y

y!
= 0.99

=⇒
α̂−1∑

y=0

e−δx/β̂
(δx/β̂)

y

y!
= 0.01.

(3.36)

Johnson et al. [112] represents equation (3.36) as

P (x ≤ δx) = e−δx/β̂

∞∑

j=0

(δx/β̂)
α̂+j

Γ(α̂+ j + 1)
(3.37)

Another way to find δx is to use the Incomplete Gamma function [1, p.260],[161, sec.

6.2] as

P (x ≤ δx) = Iδx/β̂(α̂). (3.38)

Note that α̂ does not have to be an integer in (3.38).

Let x and y be two i.i.d. random variables with a Gamma(α, β) distribution. The

distribution of z = x− y can be found as [190, p.356]

pz(z) =
z(2α−1)/2

(2β)(2α−1)/2

1

π1/2
1

βΓ(α)
Kα−1/2(z/β) , −∞ < z <∞ (3.39)

where Km(u) is the modified Bessel function of the second kind of order m (m ≥ 0,

integer) [190, p.419],[161, sec. 6.6].

Histograms and fitted distributions for some example features are given in Figure

3.1. Each feature is modeled by its best fit according to the Kolmogorov-Smirnov

statistic. These plots show that many features from different feature extraction algo-

rithms can be modeled by the distributions that we presented in Section 3.3.5.
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Figure 3.1: Feature histograms and fitted distributions for example features. An
Exponential model (solid line) is used for the line-angle-ratio features and Normal
(solid line), Lognormal (dash-dot line) and Gamma (dashed line) models are used for
others. Vertical lines show the 99% cut-off point for each distribution.
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3.4 Choosing the Best Normalization Method

We use two empirical methods to choose the best performing normalization method

for a particular data set. The first one compares retrieval performances which are

evaluated using average precision and recall computed from the groundtruth. The

second one is based on class separability. Two classical approaches to linear data

transformations, the principal components analysis and the discriminant analysis,

use scatter matrices to find projections that efficiently represent or efficiently separate

the data respectively. Therefore, scatter information is an important measure of class

separability [64, 78].

Assume we have n data vectors x1, . . . ,xn ∈ R
(q×1) and m classes C1, . . . , Cm. Let

n1, . . . , nm be the number of data vectors assigned to these m classes. A within-

class scatter matrix measures the scatter of data vectors around their respective class

means. Given a scatter matrix Si ∈ R
(q×q) for the i’th class Ci as

Si =
∑

x∈Ci

(x− µi)(x− µi)T (3.40)

where µi =
1
ni

∑

x∈Ci x, the within-class scatter matrix SW is computed as

SW =
m∑

i=1

Si. (3.41)

On the other hand, the between-class scatter matrix SB ∈ R
(q×q) is the scatter of

the class means around the total mean

SB =
m∑

i=1

ni(µi − µ0)(µi − µ0)T (3.42)

where µ0 is the total mean and is given by µ0 =
1
n

∑m
i=1 niµi. The total scatter matrix

ST ∈ R
(q×q) is the scatter of all data vectors regardless of their class assignments and

is computed as

ST =
∑

x

(x− µ0)(x− µ0)T = SW + SB. (3.43)
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We need a scalar measure of the “size” of a scatter matrix. The simplest scalar

measure of a scatter matrix is its trace. The trace measures the square of the scat-

tering radius because it is proportional to the sum of the variances in the coordinate

directions. One possible measure is the trace of SW. Similarly, the determinant mea-

sures the square of the scattering volume since it is proportional to the product of

the variances in the directions of the principal axis. Hence, another possible measure

is the determinant of SW. Both measures often give the same results but the latter is

invariant to changes in the scale of the axes, so it is preferable over the former [64]. It

is also known that the eigenvalues of SW
−1SB are invariant under nonsingular linear

transformations of the data. Therefore, an appealing criterion becomes

ς = ln |SW−1(SW + SB)| (3.44)

where | · | represents the determinant. ς gives a number which is large when the

between-class scatter is large and the within-class scatter is small. (SW
−1SB cannot

be used directly because SB will be singular if either m or n−m is less than or equal

to the dimensionality.)

3.5 Experiments

The normalization methods described in Section 3.3 were used to normalize the com-

ponents of the feature vectors in all databases and class separability was computed for

each case. The results are given in Table 3.1. In these experiments, each groundtruth

group was considered a class for a particular database. The results show that there

was no single best method. However, normalization after fitting distributions was

usually among the best three methods. Other experiments that used all possible fit-

ted distributions (not only the best fits) showed that the ordering of fitting-based

normalization methods according to class separability was also consistent with their

ordering according to fitting accuracy in terms of the Kolmogorov-Smirnov statistic.

We will show in the following chapter that these results are also consistent with the
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Table 3.1: Class separability for each normalization method where each groundtruth
group is considered a class. The normalization methods used in the experiments are
linear scaling to unit range (Norm.1), linear scaling to unit variance (Norm.2), trans-
formation using the cumulative distribution function (Norm.3), rank normalization
(Norm.4), and normalization after fitting distributions (Norm.5). The best method,
i.e. the one resulting in the largest class separability, for each feature vector for each
database is marked by a box and will be used as the normalization method for that
feature vector in the rest of the dissertation.

Class separability ln |SW−1(SW + SB)|
Database Feature Norm.1 Norm.2 Norm.3 Norm.4 Norm.5

ISL LAR+COOC 7.5744 7.3806 6.5429 6.5879 7.5110
GABOR 10.7486 10.7645 10.1630 10.1749 10.9418
MOMENTS 5.5497 5.5781 5.1550 5.1566 5.5718
TAMURA 2.8758 2.8664 2.7003 2.6926 2.8758

VisTex LAR+COOC 28.4957 26.7647 22.0479 21.9172 27.3390
GABOR 42.3886 41.9468 43.0962 43.1182 42.0865
MOMENTS 18.4746 18.2974 15.5114 15.4498 18.6321
TAMURA 5.7108 5.8555 5.7230 5.7498 5.6916
COLHIST 35.6390 39.7095 37.2992 40.5325 35.6190

COREL LAR+COOC 6.4210 6.7886 6.4931 6.2059 6.9714
GABOR 8.7609 8.9270 8.6802 8.6691 8.9490
MOMENTS 5.7522 5.7815 5.2468 5.2597 5.7577
TAMURA 2.4694 2.4809 2.3717 2.0291 2.4693
COLHIST 12.2795 13.8496 13.6783 12.4768 12.2848

retrieval performance results. Therefore, class separability appears to be an effective

measure for choosing the normalization method that gives the best retrieval perfor-

mance and this fact strengthens our motivation for a classification-based framework

for image retrieval. The best normalization method for each feature vector for each

database will be used as the normalization method for that vector in the rest of the

dissertation.
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Chapter 4

SIMILARITY MEASURES

4.1 Introduction

Initial work on content-based retrieval focused on using low-level features like color

and texture for image representation. After each image is associated with a feature

vector and these vectors are normalized, distance measures that compute distances

between these feature vectors are used to find similarities between images with the

assumption that images that are close to each other in the feature space are also

visually similar. A distance measure is used to rank the database images in ascending

order of their distances to the query image, which is assumed to correspond to a

descending order of similarity.

A similarity measure for content-based retrieval should be efficient enough to

match similar images as well as being able to discriminate dissimilar ones. Feature

vectors usually exist in a very high-dimensional space. Due to this high dimensional-

ity, their parametric characterization is usually not studied, and non-parametric ap-

proaches like the nearest neighbor rule are used for retrieval. In geometric similarity

measures like the nearest neighbor rule, no assumption is made about the probability

distribution of the features and similarity is based on the distances between feature

vectors in the feature space. Given this fact, Euclidean distance has been the most

widely used distance measure [74, 160, 131, 188]. Other popular measures have been

the weighted Euclidean distance [19, 172], the city-block (L1) distance [136, 188],

the general Minkowsky Lp distance [178], the Cauchy distance [180], and the Maha-

lanobis distance [160, 188]. The L1 distance was also used under the name “histogram
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intersection” [188]. Berman and Shapiro [21] used polynomial combinations of prede-

fined distance measures to create new distance measures. Moghaddam and Pentland

[146, 145] used multivariate Gaussians to estimate the feature vector or feature differ-

ence vector distributions in the principal components space and used these estimates

to perform maximum likelihood detection of faces, facial features and hands, and

maximum a posteriori detection for face recognition. They showed that probabilistic

similarity performed much better than the geometric similarity with distances.

This chapter presents a probabilistic approach for image retrieval with the mo-

tivation and problem definition given in Section 1.4. We describe likelihood-based

similarity measures that compute the likelihood of two images being similar or dis-

similar, one being the query image and the other one being an image in the database.

First, we define two classes, the relevance class and the irrelevance class, and then

derive the likelihood values from a Bayesian classifier. We use three different meth-

ods to estimate the class-conditional probabilities used in the classifier. The first

method uses a multivariate Gaussian assumption, the second one uses independently

fitted distributions for each feature, and the last one uses mixtures of Gaussians. The

performances of these methods are compared to the performances of the commonly

used geometric approaches in the form of the Lp metric (e.g., city-block (L1) and

Euclidean (L2) distances) in ranking the images in the database. We also describe a

classification-based criterion to select the best performing p for the Lp metric.

This probabilistic setting can also be interpreted as a mapping from the high-

dimensional feature space to the two-dimensional probability space. We examine the

effects of operating in the feature space versus operating in the probability space by

training nine different classifiers in both spaces. This corresponds to a two-level mod-

eling of probability. In the first level, class-conditional probabilities are computed for

the feature vectors. Since these probabilities are only estimates of the true probabil-

ities, the classifiers trained in the probability space implicitly perform a second level

modeling of probabilities to compensate for errors in modeling probabilities in the
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feature space. Similarity in the probability space corresponds to likelihoods of the

two classes and similarity in the feature space corresponds to distances between fea-

ture vectors. We show that the probabilistic similarity measures perform significantly

better than the geometric similarity measures, and simple linear classifiers can be

effectively trained in the two-dimensional probability space while complex non-linear

classifiers have to be designed in the high-dimensional feature space.

The rest of the chapter is organized as follows. First, the probability models

for computing the likelihood values are described in Section 4.2. Then, the nearest

neighbor rule with the Minkowsky Lp metric is described in Section 4.3. Section 4.4

discusses operating in the feature space versus operating in the probability space.

Finally, extensive experiments for both classification and retrieval performance eval-

uation are given in Section 4.5. The effects of the normalization methods that were

described in Chapter 3 are also studied in coordination with the similarity measures

described in this chapter.

4.2 Probabilistic Similarity Measures

As mentioned in Section 1.4, the choice for the Bayes classifier comes from the fact

that it minimizes the classification error given that we know the true class-conditional

distributions and the prior probabilities. However, these distributions are not exactly

known in practice but can be estimated from training data.

Equation (1.5) defined the likelihood ratio as the discriminant function for clas-

sification. Given two images with q-dimensional feature vectors x and y, and their

feature difference vector d = x− y ∈ R
(q×1), the likelihood ratio is defined as

∆(d) =
p(d|A)
p(d|B) . (4.1)

In the following sections, we describe three models to estimate the class-conditional

distributions. The motivation for estimating p(d|A) and p(d|B) in terms of feature

difference vectors comes from the assumption that similarity between images can be
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based on the closeness of their feature values, i.e. similar images have similar feature

values (therefore, difference vectors have a small scatter) and dissimilar images have

relatively different feature values (difference vectors have a large scatter).

4.2.1 Multivariate Gaussian (MVG)

We assume that the feature difference vectors for the relevance class have a multivari-

ate Gaussian density with mean µA and covariance matrix ΣA, i.e.

p(d|A) = p(d|µA,ΣA) =
1

(2π)q/2|ΣA|1/2
e−(d−µA)TΣ−1A (d−µA)/2. (4.2)

Similarly, the feature difference vectors for the irrelevance class are assumed to have

a multivariate Gaussian density with sample mean µB and sample covariance matrix

ΣB, i.e.

p(d|B) = p(d|µB,ΣB) =
1

(2π)q/2|ΣB|1/2
e−(d−µB)TΣ−1B (d−µB)/2. (4.3)

The likelihood ratio in Equation (4.1) becomes

∆(d) =
p(d|µA,ΣA)

p(d|µB,ΣB)
. (4.4)

Given training feature difference vectors d1, . . . ,dn ∈ R
(q×1) for a class, the sample

mean and the sample covariance for that class can be computed using the multivariate

versions of the MLEs given in Section 3.3.5 as

µ̂ =
1

n

n∑

i=1

di and Σ̂ =
1

n

n∑

i=1

(di − µ̂)(di − µ̂)T . (4.5)

To simplify the computation of the likelihood ratio in Equation (4.4), we take its

logarithm, eliminate some constants, and use

∆′(d) = (d− µA)
TΣ−1

A (d− µA)− (d− µB)
TΣ−1

B (d− µB) (4.6)

to rank the database images in ascending order of these values which corresponds to

a descending order of similarity. This ranking is equivalent to ranking in descending

order using the likelihood values in Equation (4.4).
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4.2.2 Independently Fitted Distributions (FIT)

A common assumption with data in high dimensions is to treat feature components

as independent. When this assumption is used, marginal distributions can be fitted

to individual feature components and their multiplication gives the joint likelihood

values.

Let f be a feature difference component with training values f1, . . . , fn ∈ R. Since

we are using feature differences, we need symmetric distributions1 with both positive

and negative ranges. Among the distributions [70] that satisfy this criterion, we fit f

either a Gaussian distribution 1√
2πσ

e−(f−µ)2/2σ2 , −∞ < µ <∞, σ > 0, with maximum

likelihood estimates (MLEs)

µ̂ =
1

n

n∑

i=1

fi and σ̂2 =
1

n

n∑

i=1

(fi − µ̂)2, (4.7)

or a Double Exponential distribution (a.k.a. the Laplace distribution) 1
2λ
e−|f−µ|/λ,

−∞ < µ <∞, λ > 0, with MLEs

µ̂ = median(f1, . . . , fn) and λ̂ =
1

n

n∑

i=1

|fi − µ̂|, (4.8)

or a Logistic distribution e−(f−µ)/τ

τ(1+e−(f−µ)/τ )2
, −∞ < µ < ∞, τ > 0, with method of

moments estimators (MOMs)

µ̂ =
1

n

n∑

i=1

fi and τ̂ 2 =
3

π2

(

1

n

n∑

i=1

f 2i − µ̂2
)

(4.9)

according to the Kolmogorov-Smirnov statistic described in Section 3.3.5. We ob-

served that most of the best fits were Gaussians. This can be explained by a weak ap-

plication of the Central Limit Theorem which states that the summation of a number

of independent random variables is asymptotically Gaussian. If the random variables

1Similarity relationship is symmetric. I.e. if image ξi is similar to image ξj , image ξj is equally
similar to image ξi. Therefore, we are using symmetric training and testing image pair sets in the
experiments (see Section 1.5.2).
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are i.i.d. with a smooth distribution, a very small number of terms in the summation

is sufficient for a good approximation [154]. Although the number of variables in our

case is only two, a Gaussian was chosen as the best fit for most of the cases.

After the fitted distributions are obtained for a feature difference vector d =

(d1, . . . ,dq)
T ∈ R

(q×1), the joint distribution for the relevance class is given as

p(d|A) = p(d|µAt, σ
2
At, t ∈ TA, µAu, λAu, u ∈ UA, µAv, τAv, v ∈ VA)

=
∏

t∈TA

1
√

2πσ2At

e
− (dt−µAt)

2

2σ2
At

∏

u∈UA

1

2λAu

e
− |du−µAu|

λAu

∏

v∈VA

e−(dv−µAv)/τAv

τAv(1 + e−(dv−µAv)/τAv)2

(4.10)

where TA, UA and VA are the sets of indices for components with best fits as Gaussians,

Double Exponentials and Logistics respectively. Similarly, the joint distribution for

the irrelevance class is given as

p(d|B) = p(d|µBt, σ
2
Bt, t ∈ TB, µBu, λBu, u ∈ UB, µBv, τBv, v ∈ VB)

=
∏

t∈TB

1
√

2πσ2Bt
e
− (dt−µBt)

2

2σ2
Bt

∏

u∈UB

1

2λBu
e
− |du−µBu|

λBu

∏

v∈VB

e−(dv−µBv)/τBv

τBv(1 + e−(dv−µBv)/τBv)2

(4.11)

where TB, UB and VB are the sets of indices for components with best fits as Gaussians,

Double Exponentials and Logistics respectively. The likelihood ratio in Equation (4.1)

becomes

∆(d) =
p(d|µAt, σ

2
At, t ∈ TA, µAu, λAu, u ∈ UA, µAv, τAv, v ∈ VA)

p(d|µBt, σ2Bt, t ∈ TB, µBu, λBu, u ∈ UB, µBv, τBv, v ∈ VB)
. (4.12)

Instead of computing the complete likelihood ratio, we take its logarithm, eliminate



61

some constants, and use

∆′(d) =
1

2

∑

t∈TA

(dt − µAt)
2

σ2At

+
∑

u∈UA

|du − µAu|
λAu

+

∑

v∈VA

[
(dv − µAv)

τAv

+ 2 log(1 + e−(dv−µAv)/τAv)

]

−

1

2

∑

t∈TB

(dt − µBt)2
σ2Bt

−
∑

u∈UB

|du − µBu|
λBu

−

∑

v∈VB

[
(dv − µBv)

τBv
+ 2 log(1 + e−(dv−µBv)/τBv)

]

(4.13)

to rank the database images.

The assumption of independent features is used quite often to simplify computa-

tions although features are usually correlated. Whitening [78] is a linear transform

that can be used to make the components of a vector uncorrelated with variances equal

to unity. The eigenvalue decomposition of the sample covariance matrix can be used

for whitening. After finding the eigenvalues λ1, . . . , λq and eigenvectors ν1, . . . ,νq of

the covariance matrix Σ of the random variable x ∈ R
(q×1), the transformation

y = Λ−1/2ΦT (x− µ) (4.14)

with µ being the sample mean of x, Λ = diag(λ1, . . . , λq) being the diagonal eigenvalue

matrix and Φ = (ν1, . . . ,νq) being the eigenvector matrix such that ΣΦ = ΦΛ,

results in the random variable y with zero mean and unit covariance matrix.

The distribution of each uncorrelated feature component can then be estimated

after applying the whitening transform2. Uncorrelatedness can be considered as a

weaker form of independence because independence implies uncorrelatedness but the

reverse is not true unless the random variable is a Gaussian. In other words, uncor-

relatedness corresponds to independence in second order statistics.

2A special case of this is the multivariate Gaussian when all components are fit marginal Gaussians
because a multivariate Gaussian is invariant to orthogonal transformations.
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Another linear transform, called the Independent Component Analysis (ICA) [99,

64], tries to find the axes on which data is independent in as many statistical orders

as possible. ICA can be formulated in terms of the model

x =My + µ (4.15)

where the components of the random variable x (i.e. the observed variables) are as-

sumed to be generated from the components of the random variable y (i.e. the latent

variables) according to the mixing matrixM. µ is the mean of the observed variables.

Given the observations for x, the goal is to estimate M and y. Then, the transfor-

mation y = M−1(x− µ) can be used and the joint distribution can be estimated by

multiplying the estimates of the marginal distributions of the components of y.

ICA algorithms differ in terms of the criterion function to measure the indepen-

dence of the components. The unmixing matrix M−1 can then be found by min-

imizing the given criterion. Welling and Weber [209] modeled the distributions of

independent components with one-dimensional mixtures of Gaussians and developed

an Expectation-Maximization (EM) algorithm to estimate both the mixing matrix

and the mixture parameters.

Hyvarinen and Oja [100] related independentness to non-Gaussianity. In the case

of Gaussian variables, we can estimate the mixing matrix up to an orthogonal trans-

formation because Gaussian random variables are invariant to orthogonal transforma-

tion and the resulting symmetric Gaussian densities do not contain any information

of higher than second-order. To maximize the non-Gaussianity of the variables under

transformation, they suggested using measures like kurtosis (which is zero for Gaus-

sian variables but is non-zero for most of the others), negentropy (because a Gaussian

variable has the largest entropy among all random variables with equal variances),

and approximations of negentropy using cosine-hyperbolic or some other exponential

functions. Another possible criterion to measure independence is the minimization of

mutual information which is equivalent to the Kullback-Leibler distance between the
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joint density and the product of the marginal densities. Whitening can be used as a

pre-processing step both for reducing the number of parameters to be estimated and

for dimensionality reduction.

We used the FastICA algorithm [100] that is based on fixed-point iterations for

finding a maximum of non-Gaussianity which is measured by an approximation of

negentropy using tangent-hyperbolic functions. However, the results were not bet-

ter than the case where the distributions for individual components were estimated

without applying the transformation. Even though ICA was successfully applied to

particular signals like sound signals [209], and in problems like blind source separa-

tion, financial data analysis and electroencephalogram (EEG) data [99, 100], it did

not perform well for our high-dimensional feature vectors because of overfitting prob-

lems. Hyvarinen et al. [101] discussed a similar problem of overfitting where different

ICA algorithms produced estimates of the source signals that were zero everywhere

except single spikes and bumps when the training samples were insufficient. They

pointed out that this problem is much more likely to occur if the source signals are

not i.i.d. in time and have strong time-dependencies. In the experiments in Section

4.5, we estimate the distributions of individual feature components using normalized

raw data without any pre-processing.

4.2.3 Mixtures of Gaussians (GMIX)

Parametric density estimation methods assume a specific form for the density func-

tion, like a multivariate Gaussian in Section 4.2.1, and the problem reduces to finding

the estimates of the parameters of this specific form. However, the assumed form

can be quite different from the true density. On the other hand, non-parametric ap-

proaches usually require a large amount of training data and computations can be

quite demanding when the data size increases. To combine the advantages of both

parametric and non-parametric approaches, we can use mixture models [30] which

are semi-parametric models that are not restricted to a particular form but also have
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a fixed number of parameters independent of the size of the data set. This section

describes a combination of the Expectation-Maximization (EM) and Minimum De-

scription Length (MDL) algorithms for the estimation of mixtures of Gaussians.

Let X = {x1, . . . ,xn} be a set of vectors independent and identically distributed

(i.i.d.) in R
(q×1) with distribution p(x|Θ). The likelihood function for the parameter

set Θ is

L(Θ|X ) = p(X|Θ) =
n∏

i=1

p(xi|Θ). (4.16)

The maximum likelihood estimate of Θ is the one that maximizes L(Θ|X ), or of-

ten logL(Θ|X ) because it may be analytically easier. A mixture model is a linear

combination of m densities,

p(x|Θ) =
m∑

j=1

αjpj(x|θj), αj ≥ 0,
m∑

j=1

αj = 1 (4.17)

where Θ = (α1, . . . , αm,θ1, . . . ,θm). The log-likelihood function becomes

logL(Θ|X ) = log
n∏

i=1

p(xi|Θ) =
n∑

i=1

log

(
m∑

j=1

αjpj(xi|θj)
)

. (4.18)

We cannot obtain an analytical solution for Θ by simply setting the derivatives of

logL(Θ|X ) to zero because of the logarithm of the sum. However, the Expectation-

Maximization (EM) algorithm provides a solution to this problem by simplifying the

likelihood function by assuming the existence of and values for additional but hidden

parameters [26]. We will first present the abstract form of the EM algorithm and

then give the solution for a Gaussian mixture.

Expectation-Maximization (EM) Algorithm

In addition to the observed data X , we assume that a complete data set Z = (X ,Y) =
{(x1,y1), . . . , (xn,yn)} exists i.i.d. with a joint density function

p(z|Θ) = p(x,y|Θ) = p(y|x,Θ)p(x|Θ) (4.19)
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where Y is the hidden data.

The EM algorithm first finds the expected value of the complete data log-likelihood

logL(Θ|X ,Y) = log p(X ,Y|Θ) with respect to the unknown data Y given the ob-

served data X and the current parameter estimates Θ. We define

Q(Θ,Θ(i−1)) = E
[

log p(X ,Y|Θ)|X ,Θ(i−1)
]

(4.20)

where Θ(i−1) is the current set of parameter estimates that are used to evaluate the

expectation andΘ is the set of parameters that are optimized to increase the objective

function Q. The E-step (expectation step) of the algorithm consists of the evaluation

of the expectation in Equation (4.20) as

E
[

log p(X ,Y|Θ)|X ,Θ(i−1)
]

=

∫

log p(X ,y|Θ)p(y|X ,Θ(i−1))dy. (4.21)

The M-step (maximization step) of the algorithm maximizes the expectation in Equa-

tion (4.20) to find

Θ(i) = argmax
Θ

Q(Θ,Θ(i−1)). (4.22)

These two steps are repeated iteratively. Each iteration is guaranteed to increase the

log-likelihood and the algorithm is guaranteed to converge to a local maximum of the

likelihood function [140].

For a mixture model, we assume the hidden data Y to be Y = {yi}ni=1 where yi

corresponds to which mixture component generated the data vector xi, i.e. yi = k

if the i’th data vector was generated by the k’th mixture component. Then, the

log-likelihood becomes

logL(Θ|X ,Y) = log p(X ,Y|Θ)

=
n∑

i=1

log(p(xi|yi,θi)p(yi|θi))

=
n∑

i=1

log(αyipyi(xi|θyi
)).

(4.23)
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Assume we have the initial parameter estimatesΘ(g) = (α
(g)
1 , . . . , α

(g)
m , θ

(g)
1 , . . . , θ

(g)
m ),

p(yi|xi,Θ(g)) =
α
(g)
yi pyi(xi|θ(g)yi

)

p(xi|Θ(g))
=

α
(g)
yi pyi(xi|θ(g)yi

)
∑m

j=1 α
(g)
j pj(xi|θ(g)j )

(4.24)

and

p(y|X ,Θ(g)) =
n∏

i=1

p(yi|xi,Θ(g)). (4.25)

Then, Q(Θ,Θ(g)) takes the form [26]

Q(Θ,Θ(g)) =
∑

y

log p(X , y|Θ)p(y|X ,Θ(g))

=
m∑

j=1

n∑

i=1

log(αjpj(xi|θj))p(j|xi,Θ(g))

=
m∑

j=1

n∑

i=1

log(αj)p(j|xi,Θ(g)) +
m∑

j=1

n∑

i=1

log(pj(xi|θj))p(j|xi,Θ(g))

(4.26)

where αj and pj(xi|θj) are from the mixture model in Equation (4.17) and p(j|xi,Θ(g))

is given in Equation (4.24). We can then maximize the two sets of summations for

αj and θj independently because they are not related.

To find the expression for αj with the constraint that
∑m

j=1 αj = 1, we introduce

a Lagrange multiplier and take the derivative as

∂

∂αj

[
m∑

j=1

n∑

i=1

log(αj)p(j|xi,Θ(g)) + λ

(
m∑

j=1

αj − 1

)]

= 0 (4.27)

which gives

αj =
1

n

n∑

i=1

p(j|xi,Θ(g)). (4.28)

EM for Mixture of Gaussians

We can obtain analytical expressions for θj for the special case of a Gaussian mixture

where θj = (µj ,Σj) and

pj(x|θj) = pj(x|µj ,Σj) =
1

(2π)q/2|Σj |1/2
e−(x−µj)

TΣ−1
j

(x−µj)/2, j = 1, . . . ,m.

(4.29)
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The second term in Equation (4.26) becomes

m∑

j=1

n∑

i=1

log(pj(xi|θj))p(j|xi,Θ(g)) =

m∑

j=1

n∑

i=1

(

−1

2
log(|Σj|)−

1

2
(xi − µj)TΣ−1

j (xi − µj)
)

p(j|xi,Θ(g)).

(4.30)

Equating its derivative with respect to µj to zero gives

µj =

∑n
i=1 p(j|xi,Θ(g))xi
∑n

i=1 p(j|xi,Θ(g))
. (4.31)

The estimate for Σj can also be obtained as the solution to the maximization of

Equation (4.26). We consider five models for the covariance matrix Σj :

1. Σj = σ2I, all components having the same spherical covariance matrix:

σ2 =
1

nq

m∑

j=1

n∑

i=1

p(j|xi,Θ(g))‖xi − µj‖2. (4.32)

2. Σj = σ2j I, each component having an individual spherical covariance matrix:

σ2j =

∑n
i=1 p(j|xi,Θ(g))‖xi − µj‖2

q
∑n

i=1 p(j|xi,Θ(g))
. (4.33)

3. Σj = diag({σ2
jk}qk=1), each component having an individual diagonal covariance

matrix:

σ2jk =

∑n
i=1 p(j|xi,Θ(g))(xik − µjk)

2

∑n
i=1 p(j|xi,Θ(g))

. (4.34)

4. Σj = Σ, each component having the same full covariance matrix:

Σ =
1

n

m∑

j=1

n∑

i=1

p(j|xi,Θ(g))(xi − µj)(xi − µj)T . (4.35)
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5. Σj , each component having an individual full covariance matrix, the uncon-

strained case:

Σj =

∑n
i=1 p(j|xi,Θ(g))(xi − µj)(xi − µj)T

∑n
i=1 p(j|xi,Θ(g))

. (4.36)

Equations (4.28), (4.31) and (4.32) - (4.36) perform both expectation and maximiza-

tion steps simultaneously. There are also other possibilities for the covariance matri-

ces which can be further parameterized in terms of their eigenvalue decompositions.

Celeux and Govaert [40] presented either closed forms or iterative solutions for those

cases.

The iterations for the EM algorithm proceed by using the current estimates as

the initial estimates for the next iteration. The k-means algorithm [64] can be used

to determine the initial configuration. The priors are computed from the proportion

of examples belonging to each cluster. The means are the cluster centroids. The

covariance matrices are calculated as the sample covariance of the points associated

with each cluster. As a stopping criterion for the EM algorithm, we can use a threshold

for the number of iterations or we can stop if the change in log-likelihood between

two iterations is less than another threshold.

Minimum Description Length

The EM algorithm requires the number of mixture components to be given. Our goal

is to find the best Gaussian mixture that describes the training data. One possible

choice as the goodness-of-fit is the log-likelihood, as used above. However, when

we perform a maximum likelihood estimation of the mixture, there is no bound in

the complexity of the model. The likelihood will keep increasing as the number of

components increase; the limit being a component for each training vector. On the

other hand, smaller models are known to have better generalization ability [30].

The Minimum Description Length (MDL) Principle [163, 164, 114, 59, 60] tries to

find a compromise between the model complexity (still having a good data approxi-
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mation) and the complexity of the data approximation (while using a simple model).

Under the MDL principle, the best model is the one that minimizes the sum of the

model’s complexity L(M) and the efficiency of the description of the training data

with respect to that model L(X|M), i.e.

L(X ,M) = L(M) + L(X|M). (4.37)

According to Shannon, the shortest code-length to encode data X with a distribution

p(X|M) under modelM is given by

L(X|M) = − logL(M|X ) = − log p(X|M) (4.38)

where L(M|X ) is the likelihood function for model M given the sample X . The

model complexity is measured as the number of bits required to describe the model

parameters. According to Rissanen [163, 164], the code-length to encode κM real-

valued parameters characterizing n data points is

L(M) =
κM
2

log n (4.39)

where κM is the number of free parameters in model M and n is the size of the

sample used to estimate those parameters.

For a Gaussian mixture model with m components having covariance matrices as

given in the previous section, the total number of free parameters for each case are:

1. Σj = σ2I:

κM = (m− 1) +mq + 1 (4.40)

2. Σj = σ2j I:

κM = (m− 1) +mq +m (4.41)

3. Σj , diagonal:

κM = (m− 1) +mq +mq (4.42)
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4. Σj = Σ:

κM = (m− 1) +mq +
q(q + 1)

2
(4.43)

5. Σj , full:

κM = (m− 1) +mq +m
q(q + 1)

2
(4.44)

where q is the dimension of the data vectors. The first term describes the mixture

weights {αj}mj=1, the second term describes the means {µj}mj=1 and the third term

describes the covariance matrices {Σj}mj=1. Hence, the best m can be found as

m∗ = argmin
m

[

1

2
κM log n−

n∑

i=1

log

(
m∑

j=1

αjpj(xi|µj ,Σj)

)]

. (4.45)

Equation (4.37) can also be used to choose the most appropriate covariance model

to a given data. The results for the maximum likelihood estimation of a mixture of

Gaussians are summarized in Table 4.1. Example fits for two-dimensional synthetic

data are given in Figure 4.1. Models 4 and 5 with full covariance matrices gave the

correct number, 3, of the components in the synthetic mixture.

A possible problem for the EM algorithm described above is that there may exist

parameter values for which the likelihood goes to infinity [30]. This problem occurs

when there are small groups of data points which are close to each other and this

may make some of the Gaussian components collapse onto these points. In these

cases, the covariance matrix in Equation (4.29) is singular. Several techniques for

dealing with the problems of singularities have been proposed [30]. One approach is

to constrain the components to have equal covariance matrices, i.e. models 1 and 4

above. Alternatively, variance flooring [142] imposes lower bounds for the variance

parameters. If a variance value drops below its corresponding floor value during EM

iterations, it is set back to that floor value.

We also consider applying principal components analysis (PCA) to the high-

dimensional vectors and fitting mixtures in the low-dimensional projected space. PCA
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Figure 4.1: Example fits for a sample from a mixture of three bivariate Gaussians.
Plots show description length vs. number of components and also fitted Gaussians
as ellipses at one standard deviations. Models used are 1: Σj = σ2I, 2: Σj = σ2j I, 3:
Σj = diag({σ2

jk}qk=1), 4: Σj = Σ, 5: Σj , full. Using MDL with model 5 could capture
the true number of components and model 5 also gave the smallest description length.
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Table 4.1: Maximum likelihood estimates and numbers of free parameters for a mix-
ture of m Gaussians p(x|Θ) =

∑m
j=1 αjpj(x|µj ,Σj) for the sample x1, . . . ,xn ∈

R
(q×1).

Variable Estimate (M-step) # of free parameters

p(j|xi,Θ(g))
α
(g)
j pj(xi|µ(g)j

,Σ
(g)
j

)
∑m

k=1 α
(g)
k pk(xi|µ(g)k

,Σ
(g)
k

)

αj

∑n
i=1 p(j|xi,Θ

(g))

n
(m− 1)

µj

∑n
i=1 p(j|xi,Θ

(g))xi
∑n

i=1 p(j|xi,Θ
(g))

mq

Σj = σ2I σ2 =
∑m

j=1

∑n
i=1 p(j|xi,Θ

(g))‖xi−µj‖2
nq

1

Σj = σ2j I σ2j =
∑n

i=1 p(j|xi,Θ
(g))‖xi−µj‖2

q
∑n

i=1 p(j|xi,Θ
(g))

m

Σj = diag({σ2
jk}qk=1) σ2jk =

∑n
i=1 p(j|xi,Θ

(g))(xik−µjk
)2

∑n
i=1 p(j|xi,Θ

(g))
mq

Σj = Σ Σ =
∑m

j=1

∑n
i=1 p(j|xi,Θ

(g))(xi−µj)(xi−µj)
T

n
q(q+1)

2

Σj , full Σj =
∑n

i=1 p(j|xi,Θ
(g))(xi−µj)(xi−µj)

T

∑n
i=1 p(j|xi,Θ

(g))
m q(q+1)

2

tries to find a linear projection that best represents the data in a least-squares sense.

The best k-dimensional projection directions are the eigenvectors corresponding to

the k largest eigenvalues of the sample covariance matrix. One way of choosing the

best k is to do an exhaustive search but this requires a lot of computation for each

k value and for each number of components so we use the following approach. Since

we are using both a multivariate Gaussian and a mixture of Gaussians models to es-

timate the distribution of the same training data, we want these two models to have

equal number of parameters both for a fair comparison and also to avoid overfitting

for the mixture model. The multivariate Gaussian model has q + q(q + 1)/2 free

parameters, the mixture model with different diagonal covariance matrices for each

component has m− 1 + 2mk free parameters, the mixture model with the same full

covariance matrix for each component has m− 1 +mk + k(k + 1)/2 free parameters

and the mixture model with different full covariance matrices for each component has

m−1+mk+mk(k+1)/2 free parameters. Therefore, k values that make all of these
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models have the same number of parameters can be found as

k =







min{−2m+2+3q+q2

4m
, q} if Σj is different and diagonal

−1
2
−m+ 1

2

√

9− 4m+ 4m2 + 12q + 4q2 if Σj is same and full

−3m+
√

m2+8m+12mq+4mq2

2m
if Σj is different and full

(4.46)

where q is the dimension of the data vectors and m is the number of components.

After finding the number of components for Gaussian mixtures for the relevance

and irrelevance classes using MDL separately, the class-conditional distributions be-

come

p(d|A) = p(d|αA1, . . . , αAmA ,µA1, . . . ,µAmA
,ΣA1, . . . ,ΣAmA

)

=

mA∑

j=1

αAj

(2π)k/2|ΣAj|1/2
e−(d−µAj)

TΣA
−1
j

(d−µAj)/2
(4.47)

for the relevance class and

p(d|B) = p(d|αB1, . . . , αBmB ,µB1, . . . ,µBmB
,ΣB1, . . . ,ΣBmB

)

=

mB∑

j=1

αBj
(2π)k/2|ΣBj|1/2

e−(d−µBj)
TΣB

−1
j

(d−µBj)/2
(4.48)

for the irrelevance class where mA and mB are the number of components in the

mixtures for the relevance and irrelevance classes respectively. The likelihood ratio in

Equation (4.1) becomes

∆(d) =
p(d|αA1, . . . , αAmA ,µA1, . . . ,µAmA

,ΣA1, . . . ,ΣAmA
)

p(d|αB1, . . . , αBmB ,µB1, . . . ,µBmB
,ΣB1, . . . ,ΣBmB

)
(4.49)

and we can then use

∆′(d) = log

mB∑

j=1

αBjpBj(d|µBj ,ΣBj)− log

mA∑

j=1

αAjpAj(d|µAj ,ΣAj) (4.50)

to rank the database images. No further simplification is available except using

Cholesky decompositions [161] of the covariance matrices.
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The previous sections described different density models to estimate the class-

conditional probabilities in the likelihood ratio in Equation (4.1) to compute similar-

ities between the query image and the images in the database. The following section

describes the commonly used geometric similarity measures.

4.3 Geometric Similarity Measures

The nearest neighbor rule has been the most commonly used similarity measure in

image retrieval. It is a geometric similarity measure where each image n in the

database is assumed to be represented by its feature vector yn in the q-dimensional

feature space. Given the feature vector x for the input query, the goal is to find the

y’s which are the closest neighbors of x according to a distance measure ρ. Then, the

k-nearest neighbors of x will be retrieved as the most relevant ones.

The problem of finding the k-nearest neighbors can be formulated as follows.

Given the set Y = {yn|yn ∈ R
(q×1), n = 1, . . . , N} and feature vector x ∈ R

(q×1), find

the set of images U ⊆ {1, . . . , N} such that |U| = k and

ρ(x,yu) ≤ ρ(x,yv) , ∀u ∈ U , v ∈ {1, . . . , N}\U (4.51)

where N being the number of images in the database. Then, images in the set U are

retrieved as the result of the query.

4.3.1 The Minkowsky Lp Metric

The Minkowsky Lp metric [151] is one of the most popular similarity measures used

in image retrieval. The original Minkowsky Lp metric is defined for p ≥ 1. We

show below that a modified version of the original metric also becomes a metric for

0 < p < 1.

Definition 1 Lp metric for p ≥ 1:
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ρp(x,y) =

(
q
∑

i=1

|xi − yi|p
)1/p

(4.52)

where x,y ∈ R
(q×1) and xi and yi are the i’th components of the vectors x and y

respectively.

Lemma 1 (x+ y)p ≤ xp + yp for 0 < p < 1, x, y ∈ R, x, y > 0 .

Proof:

Let f(x, y) = xp + yp − (x+ y)p.

∂f

∂x
= pxp−1 − p(x+ y)p−1 = p[xp−1 − (x+ y)p−1] > 0

∂f

∂y
= pyp−1 − p(x+ y)p−1 = p[yp−1 − (x+ y)p−1] > 0

f(x, 0) = f(0, y) = 0 (Boundary conditions).

Therefore, f(x, y) ≥ 0 for x > 0 and y > 0.

Definition 2 Lp metric for 0 < p < 1:

ρp(x,y) =

q
∑

i=1

|xi − yi|p. (4.53)

i) Positivity: ρp(x,y) ≥ 0 and if x = y, then ρp(x,y) = 0.

ii) Strictly positivity: If ρp(x,y) = 0, |xi − yi| = 0 ∀i, i.e. xi = yi ∀i.

iii) Symmetry: ρp(x,y) = ρp(y,x).
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iv) Triangle inequality:

ρp(x,y) =

q
∑

i=1

|xi − yi|p

=

q
∑

i=1

|xi − zi + zi − yi|p

≤
q
∑

i=1

(|xi − zi|+ |zi − yi|)p

≤
q
∑

i=1

(|xi − zi|p + |zi − yi|p) (Using Lemma 1)

=

q
∑

i=1

|xi − zi|p +
q
∑

i=1

|zi − yi|p

= ρp(x, z) + ρp(z,y)

We use the form in Equation (4.53) to rank the database images since the power

1/p in Equation (4.52) does not affect the ranks. We will describe how we choose

which p to use in the following section.

4.3.2 Choosing p

Commonly used forms of the Lp metric are the city-block (L1) distance and the Eu-

clidean (L2) distance. Note that the L1 metric implicitly assumes that the components

of the feature difference vector are i.i.d. Double Exponentials and L2 metric implicitly

assumes that they are i.i.d. Gaussians. Sclaroff et al. [178] used Lp metrics with a

selection criterion based on the relevance feedback from the user. The best Lp metric

for each query was chosen as the one that minimized the mean distance between the

relevant images. However, no study of the performance of this selection criterion was

presented.

Within our classification framework, we use a linear classifier to choose the best

p value for the Lp metric. Given training sets of feature vector pairs (x,y) for the

relevance and irrelevance classes, first, the distances ρp are computed as in Equation
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(4.53). Then, from the histograms of ρp for the relevance class A and the irrelevance

class B, a threshold θ is selected for classification. This corresponds to a likelihood

ratio test where the class-conditional densities are estimated by the histograms.

After the threshold is selected, the classification rule becomes

assign (x,y) to







class A if ρp(x,y) < θ

class B if ρp(x,y) ≥ θ.

(4.54)

We use a minimum error decision rule with equal priors, i.e. the threshold is the

intersecting point of the two histograms. The best p value is then chosen as the one

that minimizes the classification error which is defined as 0.5 misdetection + 0.5 false

alarm.

4.4 Feature Space vs. Probability Space

Sample size is very important in building classifiers. Duin [65] discussed the effects of

the curse of dimensionality and sample size on classification error. Although it was

traditionally thought that it is necessary to fill the feature space with more objects

than its dimensionality to obtain a classifier that can generalize well, he argued that

it is possible to build reliable classifiers in very small sample size problems. He used

a kernel mapping to map the high-dimensional feature space to a low-dimensional

kernel space. This mapping allowed building simple linear classifiers in the kernel

space that corresponded to complex non-linear classifiers in the feature space when

non-linear kernels were used. An important observation was that when the number of

features was less than the sample size, there was statistical adaptation where the set

of parameters could be estimated accurately, then, the generalization error became

maximum when the sample size became equal to the number of features where the

structure became too complex (too many parameters) and statistical adaptation was

poor (too poor noise averaging), but after that, better results could be obtained

because of structural adaptation. In [158], Pekalska and Duin used prototype objects
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for dimensionality reduction where each object was represented by its distances to the

prototype objects and constructed decision rules based on the distances of training

objects to the prototype objects. They concluded that it was possible to build reliable

classifiers in low-dimensional spaces even though the feature space was sparse.

As discussed in Section 1.4, the proposed probabilistic setting can also be inter-

preted as a mapping from the high-dimensional feature space to the two-dimensional

probability space. Therefore, classification can be done either in the feature space

using the feature difference vector d, or in the probability space using the class-

conditional probabilities p(d|A) and p(d|B) as new features estimated using the mod-

els that were described in the previous sections.

Levels of classification in the probability space and the feature space are summa-

rized in Figures 4.2 and 4.3 respectively. The pattern recognition literature [78, 64,

106] provides many choices for a classifier. We use nine classifiers [66, 67]:

1. Linear classifier assuming Gaussian densities with equal covariance matrices for

both classes,

2. Quadratic classifier also assuming Gaussian densities but with different covari-

ance matrices for each class,

3. Fisher’s linear classifier where the posterior probabilities are computed by nor-

malizing the distances to the discriminant using a sigmoid,

4. Logistic linear classifier which is computed by maximizing the likelihood crite-

rion using the sigmoid function,

5. Scaled nearest mean classifier assuming spherical covariance matrices for each

class and assigning each object to the class of the closest mean where the poste-

rior probabilities are computed by normalizing the distances to the means using

a sigmoid,
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Figure 4.2: Levels of classification in the probability space for a system with I feature
vectors, J similarity models and K classifiers. x values represent the measurements
in each level, d values represent the feature difference vectors and p values are prob-
abilities. In the feature vector level, there are I measurements xi, 1 ≤ i ≤ I. Then,
J similarity models map each xi to the measurements xij , 1 ≤ j ≤ J , which con-
tain the class-conditional probabilities. Finally, for each xij , K classifiers output the
measurements xijk, 1 ≤ k ≤ K, which contain the posterior probabilities.

6. The nearest neighbor classifier where the posterior probabilities are proportional

to the distances between the object and the closest objects from each class,

7. Parzen classifier with a Gaussian kernel for each object,

8. Binary decision tree classifier where the posterior probabilities are estimated

using the class frequencies in the end nodes,

9. Feed-forward neural network classifier with three hidden units that were trained

using back-propagation where the posterior probabilities are computed from the

normalized output values.

In a system with I feature representations (feature vectors), J similarity models

and K classifiers, there are I × J ×K possible configurations for classification in the

probability space and I × K possible configurations for classification in the feature
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Figure 4.3: Levels of classification in the feature space for a system with I feature
vectors and K classifiers. x values represent the measurements in each level, d values
represent the feature difference vectors and p values are probabilities. For each of the
I measurements xi, 1 ≤ i ≤ I, in the feature vector level, K classifiers output the
measurements xik, 1 ≤ k ≤ K, which contain the posterior probabilities.

space. Similarity can then be computed as likelihood in the probabilistic setting as in

Section 4.2 instead of computing distances in the geometric setting as in Section 4.3.

The class-conditional probabilities computed using parametric density models in

the high-dimensional feature space are only estimates of the true probabilities (be-

cause of imperfect density modeling, quantization, dimensionality, etc.). The classi-

fiers trained in the two-dimensional space of class-conditional probabilities impose a

second level modeling of probability, i.e. “probability of probability”, to compensate

for errors in modeling probabilities in the feature space. This two-level modeling is

illustrated with one- and two-dimensional synthetic data generated using mixtures of

three univariate and bivariate Gaussians in Figures 4.4 and 4.5 respectively. Classi-

fication error is first computed in the original signal space using a linear Gaussian

classifier. Then, this error is compared to the error computed using a new classifier in

the space formed by the class-conditional probabilities. Even though the final proba-

bility of error was still higher than the true Bayes error, it was always smaller in the

probability space than in the original signal space in experiments done using different

sample sizes.
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Figure 4.4: Classification in signal and probability spaces for synthetic data generated
using mixtures of three univariate Gaussians for both the relevance and irrelevance
classes. A linear Gaussian classifier is used for classification in both spaces. Clas-
sification errors (Pe) for true and estimated distributions are given in parentheses.
Two-level probability modeling always gave a smaller error.
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Figure 4.5: Classification in signal and probability spaces for synthetic data gener-
ated using mixtures of three bivariate Gaussians for both the relevance and irrelevance
classes. A linear Gaussian classifier is used for classification in both spaces. Classi-
fication errors (Pe) for estimated distributions are given in parentheses. Two-level
probability modeling always gave a smaller error.
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Similar approaches for multi-level modeling in the literature usually require com-

plex classifiers because they are trained directly in the feature space. For exam-

ple, Chou and Shapiro [45] developed a hierarchical multiple classifier algorithm

where component classifiers were trained on clusters of training data and then super-

classifiers were trained on the outputs of the component classifiers. However, even

though they could reduce the amount of training by clustering the input features,

complex classifiers like neural networks and decision trees had to be used for both

component and super-classifiers because of the high-dimensional input data, as op-

posed to our case where simple models (e.g. multivariate Gaussian, linear Gaussian

classifiers) can be trained by doing both dimensionality reduction and probability

modeling simultaneously. Huang and Suen [97] also used a two-level combination of

neural network classifiers for handwritten numerals. Bilmes and Kirchhoff [27] devel-

oped directed graphical models to combine the outputs of two classifiers. They argued

that classifier combination is a statistical process where directed graphical models are

a rich language to describe its underlying assumptions. They used models with five

variables; a variable for the target class, two hidden variables for the outputs of two

classifiers and two variables for the inputs of those classifiers. They used discrete prob-

ability tables to estimate the conditional probabilities for the relationships between

the variables. In experiments where the individual classifiers were neural networks,

they found that some of the combination rules with more relaxed independence as-

sumptions gave better performances than the sum and product rules. Duin and Tax

[67] also used a two-level classifier combination. First, classifiers like Gaussian, near-

est neighbor, Parzen, neural network and decision tree classifiers were trained in the

original feature space. Then, Gaussian, nearest mean and nearest neighbor classifiers

were trained using the outputs of the previous classifiers. They compared the perfor-

mances of these second level of classifiers to the performances of fixed combination

rules (e.g. product, sum), and observed that combination using the second level of

classifiers worked well for combining classifiers which were not primarily designed to
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give posterior probabilities (e.g. neural networks). Other approaches for classifier

combination include training classifiers in the original feature space and then using

fixed combination rules (e.g. product, sum, majority voting) to combine the outputs

of these classifiers [126, 119, 127, 58, 120, 118] but those approaches correspond to

only one level of modeling in the framework of Figures 4.2 and 4.3. We will investigate

classifier combination in more detail in Chapter 7.

The improvements obtained by the two-level modeling proposed in this section

are more significant than the cases for the synthetic data in Figures 4.4 and 4.5 when

the initial signal (feature) space has a much higher dimension. The experiments are

discussed in the following section.

4.5 Experiments

4.5.1 Classification Performance

Figures 4.6 - 4.8 show plots of the class-conditional log-probabilities for the rele-

vance and irrelevance classes under different models for different databases. Each

plot corresponds to xij , 1 ≤ i ≤ 5, 1 ≤ j ≤ 3 in Figure 4.2. LAR, COOC, GABOR,

MOMENTS, TAMURA and COLHIST are the feature representations described in

Section 3.2, and MVG, FIT and GMIX are the probability models described in this

chapter. For the mixture of Gaussians (GMIX) model, we constrained each compo-

nent to have either different diagonal covariance matrices, or the same full covariance

matrix, or different full covariance matrices. The number of components was chosen

using the Minimum Description Length (MDL) criterion. The plots in Figure 4.6 are

given for the training set of the ISL Database. From a total of 600 images in 7 groups

in the groundtruth, 30 randomly selected images from each group were used for train-

ing and 55 randomly selected images from each group were used for testing. The plots

in Figure 4.7 are given for the training set of the VisTex Database. From a total of 736

images in 46 groups in the groundtruth, 6 randomly selected images from each group
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were used for training and 10 randomly selected images from each group were used for

testing. The plots in Figure 4.8 are given for the training set of the COREL Database.

From a total of 1,575 images in 18 groups in the groundtruth, 30 randomly selected

images from each group were used for training and 39 randomly selected images from

each group were used for testing. The protocol for training and testing image pair

generation was described in Section 1.5.2. All results in this section are given for the

normalization methods that performed the best in terms of class separability for each

feature representation as discussed in Section 3.4. Other normalization methods gave

similar results but are omitted due to space considerations.

Nine classifiers were trained in the two-dimensional probability space and the de-

cision boundaries for some of them are also shown in the figures. We can see that

some of the feature vector and similarity model combinations result in a better sep-

aration between the training relevance class (red) and irrelevance class (blue) points.

To compare the classification performance in the probability space and the feature

space, we also trained classifiers in the feature space and computed classification er-

rors for testing sets. Classification performances in terms of classification error for

training and testing datasets using different classifiers and different feature vectors

in the probability and feature spaces are given in Tables 4.2, 4.3 and 4.4 for the ISL

Database, VisTex Database and COREL Database respectively. Each number in the

first four main columns corresponds to xijk, 1 ≤ i ≤ 5, 1 ≤ j ≤ 3, 1 ≤ k ≤ 9 in Figure

4.2. Each number in the last main column corresponds to xik, 1 ≤ i ≤ 5, 1 ≤ k ≤ 9

in Figure 4.3.

Simple classifiers like the Logistic linear or Gaussian quadratic classifiers per-

formed often as well as and sometimes better than the complex Parzen, decision

tree and neural network classifiers in the probability space. Linear classifiers in the

probability space also performed much better than the non-linear classifiers in the

feature space although the non-linear classifiers performed better than linear ones

in the feature space. This is a very useful result because it allows us to do effec-
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Figure 4.6: Class-conditional log-probabilities for different feature vectors and simi-
larity models for the ISL Database. X-axis shows log-probabilities for the relevance
class and y-axis shows log-probabilities for the irrelevance class. Red dots represent
training data for the relevance class and blue dots represent training data for the ir-
relevance class. Solid black line is the Gaussian linear classifier, solid green line is the
Gaussian quadratic classifier, and dash-dot black line is the logistic linear classifier.
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Figure 4.7: Class-conditional log-probabilities for different feature vectors and similar-
ity models for the VisTex Database. X-axis shows log-probabilities for the relevance
class and y-axis shows log-probabilities for the irrelevance class. Red dots represent
training data for the relevance class and blue dots represent training data for the
irrelevance class. Solid black line is the Gaussian linear classifier, solid green line is
the Gaussian quadratic classifier, dash-dot black line is the logistic linear classifier,
and dash-dot green line is the neural network classifier.
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Figure 4.8: Class-conditional log-probabilities for different feature vectors and similar-
ity models for the COREL Database. X-axis shows log-probabilities for the relevance
class and y-axis shows log-probabilities for the irrelevance class. Red dots represent
training data for the relevance class and blue dots represent training data for the ir-
relevance class. Solid black line is the Gaussian linear classifier, solid green line is the
Gaussian quadratic classifier, and dash-dot black line is the logistic linear classifier.



89

Table 4.2: Classification performance in terms of classification error for training and testing datasets using different
classifiers and different feature vectors in the probability and feature spaces for the ISL Database. The best performing
classifiers (that gave the smallest classification errors) for particular feature vectors and similarity models are marked
by boxes.

Classification error in probability space Classification error
MVG FIT GMIX in feature space

Feature Classifier Training Testing Training Testing Training Testing Training Testing

LAR+COOC Gaussian linear classifier 0.105397 0.211759 0.314048 0.313365 0.238333 0.324557 0.479444 0.495207

Gaussian quadratic classifier 0.080079 0.177473 0.340714 0.328194 0.232460 0.349233 0.103889 0.203849

Fisher’s linear classifier 0.105397 0.211759 0.314048 0.313365 0.238333 0.324557 0.479444 0.495207

Logistic linear classifier 0.067063 0.169327 0.313968 0.311452 0.233889 0.325950 0.479444 0.495230
Scaled nearest mean classifier 0.348810 0.376623 0.337698 0.316222 0.351825 0.365407 0.484762 0.495514

GABOR Gaussian linear classifier 0.078810 0.117898 0.245238 0.248076 0.077222 0.123424 0.476111 0.493955

Gaussian quadratic classifier 0.017937 0.096269 0.293889 0.288784 0.021587 0.098323 0.023889 0.151405
Fisher’s linear classifier 0.078810 0.117898 0.245238 0.248076 0.077222 0.123424 0.476111 0.493955

Logistic linear classifier 0.016111 0.090697 0.244762 0.246659 0.019444 0.092326 0.476190 0.493979
Scaled nearest mean classifier 0.199921 0.302621 0.262143 0.260142 0.189365 0.301015 0.484841 0.490697

MOMENTS Gaussian linear classifier 0.161349 0.227013 0.251587 0.256246 0.161905 0.236198 0.479841 0.496293

Gaussian quadratic classifier 0.129286 0.218819 0.253889 0.263943 0.149683 0.233412 0.128413 0.238229
Fisher’s linear classifier 0.161349 0.227013 0.251587 0.256246 0.161905 0.236198 0.479841 0.496293

Logistic linear classifier 0.120635 0.217096 0.249841 0.255325 0.131905 0.232940 0.479841 0.496316
Scaled nearest mean classifier 0.326587 0.364604 0.286190 0.299032 0.316667 0.361511 0.487222 0.492963

TAMURA Gaussian linear classifier 0.268730 0.288028 0.283571 0.295986 0.290635 0.310484 0.483968 0.493341

Gaussian quadratic classifier 0.288810 0.306824 0.274841 0.294050 0.478730 0.480567 0.257778 0.275466
Fisher’s linear classifier 0.268730 0.288028 0.283571 0.295986 0.290635 0.310484 0.483968 0.493341

Logistic linear classifier 0.255317 0.272113 0.281905 0.294900 0.256587 0.274711 0.483968 0.493341
Scaled nearest mean classifier 0.324444 0.337851 0.313413 0.336151 0.315714 0.332326 0.484921 0.493412
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Table 4.3: Classification performance in terms of classification error for training and testing datasets using different
classifiers and different feature vectors in the probability and feature spaces for the VisTex Database. The best
performing classifiers for particular feature vectors and similarity models are marked by boxes.

Classification error in probability space Classification error
MVG FIT GMIX in feature space

Feature Classifier Training Testing Training Testing Training Testing Training Testing

LAR+COOC Gaussian linear classifier 0.220109 0.247826 0.196860 0.204022 0.146135 0.200109 0.431461 0.463370
Gaussian quadratic classifier 0.123792 0.157609 0.202899 0.206739 0.162440 0.217391 0.142512 0.210109
Fisher’s linear classifier 0.220109 0.247826 0.196860 0.204022 0.146135 0.200109 0.431461 0.463370

Logistic linear classifier 0.112319 0.151848 0.174819 0.186522 0.150664 0.186848 0.431159 0.463696
Scaled nearest mean classifier 0.269626 0.293913 0.206824 0.224783 0.256341 0.296522 0.424215 0.452609

Nearest neighbor classifier 0.000000 0.224457 0.000000 0.264457 0.000000 0.246087 0.000000 0.200000
Parzen classifier 0.100543 0.170000 0.150664 0.191630 0.091787 0.194348 0.067029 0.197500

Binary decision tree classifier 0.000000 0.228587 0.000000 0.274783 0.000000 0.243043 – –

Neural network classifier 0.119263 0.156304 0.174215 0.189674 0.146135 0.195870 0.106884 0.165652

GABOR Gaussian linear classifier 0.081522 0.094457 0.153986 0.170543 0.069746 0.091196 0.429650 0.467935

Gaussian quadratic classifier 0.010266 0.097609 0.072766 0.080761 0.016606 0.066304 0.016908 0.148043
Fisher’s linear classifier 0.081522 0.094457 0.153986 0.170543 0.069746 0.091196 0.429650 0.467935

Logistic linear classifier 0.007850 0.060217 0.068539 0.073261 0.008756 0.091630 0.429348 0.468152
Scaled nearest mean classifier 0.084843 0.123261 0.153986 0.170435 0.080616 0.123370 0.450785 0.467717

Nearest neighbor classifier 0.000000 0.092500 0.000000 0.112717 0.000000 0.122826 0.000000 0.063587

Parzen classifier 0.000604 0.087826 0.059783 0.077065 0.003019 0.106848 0.004227 0.062935

Binary decision tree classifier 0.000000 0.091413 0.000000 0.114022 0.000000 0.128152 0.000000 0.090978

Neural network classifier 0.006039 0.069130 0.064614 0.070978 0.009964 0.069348 0.003321 0.116957

MOMENTS Gaussian linear classifier 0.226449 0.241848 0.211051 0.208043 0.224940 0.244457 0.442935 0.474130
Gaussian quadratic classifier 0.130133 0.159022 0.198068 0.196304 0.139493 0.171196 0.127415 0.193587
Fisher’s linear classifier 0.226449 0.241848 0.211051 0.208043 0.224940 0.244457 0.442935 0.474130

Logistic linear classifier 0.102657 0.152500 0.163949 0.162609 0.099336 0.164022 0.443539 0.473913
Scaled nearest mean classifier 0.293780 0.295326 0.231582 0.235109 0.291667 0.294457 0.455012 0.468478

Nearest neighbor classifier 0.000000 0.208478 0.000000 0.233696 0.000000 0.214891 0.000000 0.167283

Parzen classifier 0.082428 0.160326 0.130435 0.175652 0.080616 0.175326 0.021739 0.152283

Binary decision tree classifier 0.000000 0.210109 0.000000 0.227500 0.000000 0.224239 0.000000 0.186957
Neural network classifier 0.094203 0.155000 0.171800 0.179457 0.100543 0.164674 0.088768 0.154348

TAMURA Gaussian linear classifier 0.213164 0.214674 0.182971 0.178043 0.177536 0.183587 0.432971 0.463804
Gaussian quadratic classifier 0.190821 0.194565 0.176329 0.173696 0.175423 0.167935 0.175725 0.171522
Fisher’s linear classifier 0.213164 0.214674 0.182971 0.178043 0.177536 0.183587 0.432971 0.463804
Logistic linear classifier 0.163345 0.164891 0.172705 0.174783 0.176932 0.178370 0.433273 0.463804

Scaled nearest mean classifier 0.215580 0.213478 0.221618 0.217391 0.172403 0.166413 0.442029 0.465326

Nearest neighbor classifier 0.000000 0.228696 0.000000 0.225761 0.000000 0.247283 0.000000 0.223804

Parzen classifier 0.134964 0.167609 0.104167 0.186739 0.161534 0.166630 0.139493 0.161196

Binary decision tree classifier 0.000000 0.235326 0.000000 0.239130 0.000000 0.243587 – –

Neural network classifier 0.161836 0.162935 0.163949 0.170109 0.168176 0.168043 0.164855 0.179565

COLHIST Gaussian linear classifier 0.143418 0.142174 0.154891 0.154565 0.095411 0.098804 0.420592 0.451848
Gaussian quadratic classifier 0.053442 0.067826 0.110507 0.116304 0.082729 0.089565 0.084239 0.094348
Fisher’s linear classifier 0.143418 0.142174 0.154891 0.154565 0.095411 0.098804 0.420592 0.451848

Logistic linear classifier 0.041667 0.058370 0.094203 0.100652 0.048007 0.065543 0.420592 0.451957
Scaled nearest mean classifier 0.173309 0.169674 0.197766 0.196196 0.122886 0.118587 0.417874 0.436630

Nearest neighbor classifier 0.000000 0.085109 0.000000 0.146957 0.000000 0.085978 0.000000 0.064239

Parzen classifier 0.035326 0.064239 0.056159 0.108478 0.037440 0.066196 0.010266 0.063261

Binary decision tree classifier 0.000000 0.092174 0.000000 0.143587 0.000000 0.094783 0.000000 0.095000

Neural network classifier 0.040157 0.056957 0.113225 0.111413 0.045894 0.064783 0.049517 0.102283
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Table 4.4: Classification performance in terms of classification error for training and testing datasets using different
classifiers and different feature vectors in the probability and feature spaces for the COREL Database. The best
performing classifiers (that gave the smallest classification errors) for particular feature vectors and similarity models
are marked by boxes.

Classification error in probability space Classification error
MVG FIT GMIX in feature space

Feature Classifier Training Testing Training Testing Training Testing Training Testing

LAR+COOC Gaussian linear classifier 0.280710 0.325900 0.288704 0.290927 0.312469 0.364745 0.485741 0.493389

Gaussian quadratic classifier 0.301451 0.340511 0.305432 0.307217 0.341883 0.380598 0.298611 0.335233
Fisher’s linear classifier 0.280710 0.325900 0.288704 0.290927 0.312469 0.364745 0.485741 0.493389

Logistic linear classifier 0.251204 0.302469 0.279198 0.282617 0.310648 0.361275 0.485772 0.493407
Scaled nearest mean classifier 0.423519 0.428958 0.285586 0.289009 0.413642 0.416247 0.489660 0.492275

GABOR Gaussian linear classifier 0.226265 0.267660 0.323086 0.338136 0.224352 0.267368 0.484043 0.495215

Gaussian quadratic classifier 0.229136 0.266272 0.356204 0.355413 0.227716 0.266400 0.227809 0.279239
Fisher’s linear classifier 0.226265 0.267660 0.323086 0.338136 0.224352 0.267368 0.484043 0.495215

Logistic linear classifier 0.186019 0.249251 0.322006 0.333187 0.183858 0.250475 0.484043 0.495142
Scaled nearest mean classifier 0.412191 0.400888 0.342315 0.334740 0.412531 0.399007 0.489938 0.493517

MOMENTS Gaussian linear classifier 0.291667 0.318559 0.340031 0.339944 0.292870 0.317974 0.486389 0.494430

Gaussian quadratic classifier 0.306574 0.330046 0.371481 0.361513 0.307994 0.329078 0.296759 0.327215
Fisher’s linear classifier 0.291667 0.318559 0.340031 0.339944 0.292870 0.317974 0.486389 0.494430

Logistic linear classifier 0.264105 0.305866 0.336111 0.336584 0.265062 0.305720 0.486389 0.494430
Scaled nearest mean classifier 0.409167 0.406239 0.372562 0.365859 0.407809 0.404467 0.486821 0.492786

TAMURA Gaussian linear classifier 0.338272 0.360381 0.335648 0.350975 0.369938 0.373420 0.491574 0.494503

Gaussian quadratic classifier 0.359228 0.376160 0.368549 0.374187 0.420648 0.427844 0.324475 0.340328
Fisher’s linear classifier 0.338272 0.360381 0.335648 0.350975 0.369938 0.373420 0.491574 0.494503

Logistic linear classifier 0.331265 0.358006 0.334198 0.349240 0.346790 0.355541 0.491574 0.494503

Scaled nearest mean classifier 0.340340 0.350153 0.336265 0.349624 0.370247 0.374370 0.491821 0.493444

COLHIST Gaussian linear classifier 0.141173 0.184528 0.245031 0.259935 0.139907 0.181861 0.483272 0.493590

Gaussian quadratic classifier 0.121111 0.173150 0.252778 0.270619 0.118210 0.171963 0.126111 0.202334
Fisher’s linear classifier 0.141173 0.184528 0.245031 0.259935 0.139907 0.181861 0.483272 0.493590

Logistic linear classifier 0.117809 0.172292 0.244074 0.254858 0.113488 0.168237 0.483272 0.493590
Scaled nearest mean classifier 0.332932 0.351870 0.311142 0.312550 0.331667 0.350756 0.485154 0.490759
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tive classification by training only simple linear classifiers in the probability space.

(These results also agree with those of Duin [65].) The average classification error

for the COREL Database was larger than the average classification errors for other

databases. This is an expected result because of the complexity of this database.

Among the feature vectors, Gabor and color histogram performed better than

others while the line-angle-ratio and co-occurrence feature vectors performed better

than moments and Tamura feature vectors. The Logistic linear classifier in the prob-

ability space was usually the best performing classifier among all the others in both

probability and feature spaces.

Using mixtures of Gaussians did not give an improvement over the single mul-

tivariate Gaussian case. This was because of the fact that it was hard to estimate

multivariate distributions in the high dimensional space from a small amount of data,

and one component usually dominated the others. The multivariate Gaussian model

also usually performed better than the independently fitted distributions model be-

cause of its handling of the correlations between features. The results of classification

in the feature space where the Gaussian quadratic classifier was one of the best per-

forming classifiers also support this observation.

This significant performance of the multivariate Gaussian model shows us that

simple models are worth trying before using any of the more complex models because

they are often quite effective, do not require extra effort to tune in too many pa-

rameters, and do not suffer from the local extrema and convergence problems during

the estimation of more complex models. The fact that we often had problems of

overfitting in complex models like ICA or Gaussian mixtures shows us that although

these models can be effective in many situations, they become impractical in higher

dimensions and also when a very large amount of training data is not available. This

brings out the question of finding effective models that can both capture the intrinsic

structure in high-dimensional data and give a good estimate of its distribution. An

interesting research problem can be to develop mixtures of sub-manifolds where both
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the dimension of each sub-manifold and the number of sub-manifolds in the mixture

are determined automatically.

Although most of the classifiers have similar error rates, sets of image pairs mis-

classified by different classifiers do not necessarily overlap. Classifier performance can

be further improved by combining the decisions made by individual classifiers. This

will be investigated in Section 7.2.

4.5.2 Choosing p for the Lp Metric

The p values that were used in the retrieval experiments below were chosen using the

approach described in Section 4.3.2. For each normalization method, we computed

the classification error for p in the range [0.2,5]. The results are given in Figures 4.9

- 4.11. Normalization using transformation with the cumulative distribution function

(Norm.3) and rank normalization (Norm.4) gave the smallest classification error in

almost all cases. These methods also resulted in relatively flat classification error

curves around the best performing p values which showed that a larger range of p

values were performing similarly well. Therefore, flat minima are indicative of a more

robust method. All the other methods were also more sensitive to the choice of p

and both the classification error and the average precision changed fast with smaller

changes in p.

The best performing normalization methods had larger p values but the other

methods had p values around 1. Given the structure of the Lp metric, a few relatively

large differences can effect the results significantly for larger p values. On the other

hand, smaller p values are less sensitive to large differences. Therefore, smaller p values

tend to make a distance more robust to large differences. This is consistent with the

fact that L1 regression is more robust than least squares with respect to outliers [166].

This shows that the normalization methods other than Norm.3 and Norm.4 resulted

in relatively unbalanced feature spaces and smaller p values tried to reduce this effect

in the Lp metric. This is also consistent with our earlier experiments where the city-
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block (L1) distance performed better than the Euclidean (L2) distance [8]. Sebe et

al. [179] fitted Gaussians and Double Exponentials to feature differences and showed

that L2 and L1 distances correspond to the maximum likelihood estimates using these

fitted distributions. They concluded that L1 performed better than L2 and this was

consistent with the fitting results. In [180] they also used Cauchy distribution fits

and the Cauchy-based distance performed better than both L1 and L2.

We also did retrieval experiments for different values of p. The values of p that

resulted in the smallest classification errors and the largest average precisions were

consistent. Therefore, the classification scheme presented in Section 4.3.2 proved

effective in deciding which p to use. The p values that gave the smallest classification

error for each normalization method were used in the retrieval experiments of the

following section.

4.5.3 Retrieval Performance

Extensive retrieval experiments to test the effectiveness of different feature vectors

and similarity models are done and average precision and recall for all databases are

given in Figures 4.12 - 4.17. Each plot shows average precision vs. recall for either

a particular feature vector and similarity model combination for all normalization

models or a particular feature vector and normalization method for all similarity

models. The experiments of this section correspond to the similarity model level in

Figure 4.2, i.e. the likelihood ratio computed from the class-conditional probabilities

for the relevance and irrelevance classes for a particular similarity model trained using

a particular feature vector.

The results of retrieval experiments were consistent with those of the classifica-

tion experiments discussed in Section 4.5.1. The feature vector and similarity model

combinations that gave the smallest classification error also gave the largest precision

and recall.

The best results were obtained for the VisTex Database which is the simplest
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Figure 4.9: Classification error vs. p value in the Minkowsky Lp metric for different
normalization methods and feature vectors for the ISL Database. The best p value for
each method is marked with a star. The curves represent the normalization methods
linear scaling to unit range (Norm.1, blue), linear scaling to unit variance (Norm.2,
green), transformation using cumulative distribution function (Norm.3, red), rank
normalization (Norm.4, cyan), and normalization after fitting distributions (Norm.5,
black).
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(e) Color histogram

Figure 4.10: Classification error vs. p value in the Minkowsky Lp metric for differ-
ent normalization methods and feature vectors for the VisTex Database. The best
p value for each method is marked with a star. The curves represent the normaliza-
tion methods linear scaling to unit range (Norm.1, blue), linear scaling to unit vari-
ance (Norm.2, green), transformation using cumulative distribution function (Norm.3,
red), rank normalization (Norm.4, cyan), and normalization after fitting distributions
(Norm.5, black).
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(e) Color histogram

Figure 4.11: Classification error vs. p value in the Minkowsky Lp metric for different
normalization methods and feature vectors for the COREL Database. The best p
value for each method is marked with a star. The curves represent the normaliza-
tion methods linear scaling to unit range (Norm.1, blue), linear scaling to unit vari-
ance (Norm.2, green), transformation using cumulative distribution function (Norm.3,
red), rank normalization (Norm.4, cyan), and normalization after fitting distributions
(Norm.5, black).
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Figure 4.12: Retrieval performance for different normalization methods for the ISL
Database. Each plot shows average precision (y-axis) vs. recall (x-axis) for a par-
ticular feature vector and similarity model combination. Different curves within the
same plot represent the normalization methods linear scaling to unit range (Norm.1,
black), linear scaling to unit variance (Norm.2, red), transformation using cumula-
tive distribution function (Norm.3, blue), rank normalization (Norm.4, green), and
normalization after fitting distributions (Norm.5, magenta).
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Figure 4.13: Retrieval performance for different similarity models for the ISL
Database. Each plot shows average precision (y-axis) vs. recall (x-axis) for a par-
ticular feature vector and normalization method. Different curves within the same
plot represent the similarity models multivariate Gaussian (black, solid), indepen-
dently fitted distributions (red, dashed), mixture of Gaussians (blue, dash-dot), and
Minkowsky Lp metric (green, dotted).
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Figure 4.14: Retrieval performance for different normalization methods for the VisTex
Database. Each plot shows average precision (y-axis) vs. recall (x-axis) for a par-
ticular feature vector and similarity model combination. Different curves within the
same plot represent the normalization methods linear scaling to unit range (Norm.1,
black), linear scaling to unit variance (Norm.2, red), transformation using cumula-
tive distribution function (Norm.3, blue), rank normalization (Norm.4, green), and
normalization after fitting distributions (Norm.5, magenta).
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Figure 4.15: Retrieval performance for different similarity models for the VisTex
Database. Each plot shows average precision (y-axis) vs. recall (x-axis) for a par-
ticular feature vector and normalization method. Different curves within the same
plot represent the similarity models multivariate Gaussian (black, solid), indepen-
dently fitted distributions (red, dashed), mixture of Gaussians (blue, dash-dot), and
Minkowsky Lp metric (green, dotted).
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Figure 4.16: Retrieval performance for different normalization methods for the
COREL Database. Each plot shows average precision (y-axis) vs. recall (x-axis)
for a particular feature vector and similarity model combination. Different curves
within the same plot represent the normalization methods linear scaling to unit range
(Norm.1, black), linear scaling to unit variance (Norm.2, red), transformation using
cumulative distribution function (Norm.3, blue), rank normalization (Norm.4, green),
and normalization after fitting distributions (Norm.5, magenta).
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Figure 4.17: Retrieval performance for different similarity models for the COREL
Database. Each plot shows average precision (y-axis) vs. recall (x-axis) for a par-
ticular feature vector and normalization method. Different curves within the same
plot represent the similarity models multivariate Gaussian (black, solid), indepen-
dently fitted distributions (red, dashed), mixture of Gaussians (blue, dash-dot), and
Minkowsky Lp metric (green, dotted).
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of all three databases we used. Performance on the ISL Database was also better

than the one on the COREL Database. Probabilistic similarity measures always

performed better than the geometric measures. The most successful similarity model

was the multivariate Gaussian (MVG). It was both easy to compute and simple to

train. The best performing feature vector was the Gabor model. Color histograms

(COLHIST) were also effective for color images. Line-angle-ratio and co-occurrence

(LAR+COOC) feature vectors were the second most successful texture model.

The performances relative to the normalization methods were also consistent with

the class-separability results of Section 3.5. Normalization using fitted distributions

(Norm.5) was often the most successful with the exception that normalization using

the cumulative distribution function (Norm.3) worked the best for color histogram

feature vectors. The reason for this may be that the continuous distributions used

for fitting as in Section 3.3.5 could not model the histogram-based (discrete) features

effectively. Other than that, there were no significant differences between the perfor-

mances of different normalization methods. Our earlier experiments [8, 10] showed

that the performances of geometric similarity measures were quite dependent on the

normalization method used when the same p value was used in the Minkowsky Lp

metric (e.g. L1 or L2) for all normalization methods. However, this problem was not

observed when the p value optimal in terms of minimizing the classification error was

found for a particular model as described in Section 4.3.2.

Example queries are given in Figures 4.18 - 4.20. The first three rows in the user

interface show the best 12 matches and the last row shows the worst 4 matches to

the query. (The user interface was described in detail in Section 1.5.4.) These queries

illustrate the differences in the effectiveness of retrieval using geometric similarity

measures and probabilistic similarity measures with the same feature vector. Due to

space limitations we decided to choose most of the examples from the queries where

we do not have a perfect retrieval. It can be easily seen from the precision-recall curves

that the probabilistic similarity measures achieve a successful retrieval especially for
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the ISL and VisTex Databases. Both visual examples and precision-recall curves show

that probabilistic similarity outperforms the commonly used geometric similarity.

Examples using the same query images will be given in Chapter 8 to illustrate the

performances of some of the algorithms proposed in the rest of the dissertation.

4.6 Summary of Observations

A summary of observations from the experiments presented in this chapter is given

below.

• Classification effectiveness in terms of minimizing the classification error reflects

well on the retrieval performance in terms of precision and recall. The methods

that gave the smallest classification error also gave the largest precision and

recall. Therefore, one can do the design (parameter estimation, model selection,

choosing thresholds, etc.) in the classification framework and expect better

results in retrieval.

• The normalization methods that performed the best in terms of class separa-

bility as shown in Table 3.1 also performed the best in terms of precision and

recall in retrieval experiments. We can conclude that studying the distributions

of the features and using the results of this study significantly improves the

results compared to making only general or arbitrary assumptions.

• Normalization using fitted distributions (Norm.5) was often the most successful

normalization method. When a fixed p value was used for the Minkowsky Lp

metric, normalization using the cumulative distribution function (Norm.3) or

rank normalization (Norm.4) gave the best retrieval performance. When the p

value was optimized according to the minimum error decision rule in Section

4.3.2, the Minkowsky metric was robust to normalization effects. Furthermore,

values of p that gave the smallest classification error also gave the best precision.
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(a) An example query for LANDSAT Cher-
nobyl using Gabor features and Lp metric
(3/12)

(b) Same query for LANDSAT Chernobyl us-
ing Gabor features and multivariate Gaus-
sian (12/12)

(c) An example query for landscape using
Gabor features and Lp metric (6/12)

(d) Same query for landscape using Gabor
features and multivariate Gaussian (11/12)

Figure 4.18: Example queries for the ISL Database using a single feature vector
with geometric (left) or probabilistic (right) similarity measures. The numbers in
parentheses in sub-captions show the number of correct matches for each case.
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(a) An example query for leaves using color
histograms and Lp metric (8/12)

(b) Same query for leaves using color his-
tograms and multivariate Gaussian (10/12)

(c) An example query for food using Gabor
features and Lp metric (7/12)

(d) Same query for food using Gabor features
and multivariate Gaussian (12/12)

Figure 4.19: Example queries for the VisTex Database using a single feature vector
with geometric (left) or probabilistic (right) similarity measures. The numbers in
parentheses in sub-captions show the number of correct matches for each case.
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(a) An example query for glaciers and moun-
tains using Gabor features and Lp metric
(4/12)

(b) Same query for glaciers and mountains
using Gabor features and multivariate Gaus-
sian (8/12)

(c) An example query for cheetahs using
color histograms and Lp metric (4/12)

(d) Same query for cheetahs using color his-
tograms and multivariate Gaussian (7/12)

Figure 4.20: Example queries for the COREL Database using a single feature vector
with geometric (left) or probabilistic (right) similarity measures. The numbers in
parentheses in sub-captions show the number of correct matches for each case.
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(a) An example query for residential interiors
using color histograms and Lp metric (7/12)

(b) Same query for residential interiors using
color histograms and multivariate Gaussian
(8/12)

(c) An example query for fields using color
histograms and Lp metric (3/12)

(d) Same query for fields using color his-
tograms and multivariate Gaussian (9/12)

Figure 4.20: (continued)
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• Simple linear classifiers (e.g. Gaussian or Logistic) in the probability space

performed better than non-linear classifiers (e.g. decision tree and neural net-

work) in the feature space. This result leads us to do effective classification and

retrieval by training only simple linear classifiers in the probability space.

• Although the error rates for most of the classifiers are similar, image pairs

misclassified by different classifiers do not necessarily overlap. Combinations of

the decisions of multiple classifiers will be studied in Chapter 7.

• The best results were obtained for the VisTex Database. This is an expected

result because that database consists of mostly homogeneous texture patches.

COREL was the hardest database because of the large variations among its

images.

• Gabor and color histogram feature vectors performed better than others where

line-angle-ratio and co-occurrence feature vectors performed better than mo-

ments and Tamura feature vectors.

• The correspondences between classification performances in the probability space

vs. the feature space, and retrieval performances of the probabilistic similar-

ity measures vs. the geometric similarity measures show that our probabilistic

framework for retrieval is much more effective than the commonly used geomet-

ric framework.

• The multivariate Gaussian model performed better than the other probability

models for the estimation of class-conditional distributions in probabilistic sim-

ilarity measures. (In most of the cases, Gaussians were also the best fits to

individual feature components marginally.) This significant performance of the

multivariate Gaussian model in addition to the problems of overfitting that we

often had with models like Independent Component Analysis and mixtures of
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Gaussians shows us that simple models are worth trying before using any of

the more complex models because they are often quite effective, do not require

extra effort to tune in too many parameters, and do not suffer from the local

extrema and convergence problems of more complex models.

• The best performing configuration for all datasets include the Gabor and color

histogram feature vectors, normalization using fitted distributions, multivariate

Gaussian model, and Logistic linear classifier. However, precision and recall

for different groundtruth groups show that some of the groups have worse per-

formances than others and different features perform differently for different

images. This gives the motivation for the feature and similarity combination

models in the following chapters.
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Chapter 5

GRAPH-THEORETIC CLUSTERING FOR IMAGE

GROUPING AND RETRIEVAL

5.1 Motivation

Computing feature vectors is one of the most essential steps in image retrieval al-

gorithms like in many computer vision and pattern recognition applications. In the

previous chapters we used feature vectors for image representation and then described

different similarity measures to find similarities between these representations. These

similarity measures, explicitly or implicitly, use the assumption that visually similar

images are close to each other in the feature space. The high-dimensionality of the

feature vectors make the characterization of this space quite hard and, unfortunately,

none of the existing feature extraction algorithms can always map visually similar

images to nearby locations in the feature space. A common observation in retrieval

results is that sometimes images that are quite irrelevant to the query image are also

retrieved simply because they are close to the query image. We believe that an ef-

ficient retrieval algorithm should be able to retrieve images that are not only close

(similar) to the query image but also close (similar) to each other.

Another important issue is that the feature extraction algorithms may involve

many parameters to be adjusted. Most of the times the feature selection process is

done by trial and error. One of the main reasons why a smaller but more effective

subset of features is not sought is that formulating a statistical feature selection

problem is often impossible because the probability distributions of the features may

not be known or an optimization problem involving “goodness” of features as an
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objective function is hard to formulate and expensive to compute.

Clustering the feature space and visually examining the results to check whether

visually similar images are actually close to each other is an important step in under-

standing the behavior of the features and the structure of the feature space. This can

help us determine the effectiveness of both the features and the distance measures in

establishing similarity between images. In their Blobworld system, Carson et al. [37]

used an expectation-maximization-based algorithm to cluster the blob space to find

representative blobs that can mimic human queries. They noted that their cluster-

ing procedure tends to ignore the blobs which have the best chance of distinguishing

among categories because the most distinctive blobs in a given category occur much

less often than less distinctive blobs.

In this chapter we introduce a graph-theoretic approach for image grouping and

retrieval by formulating the database search as a graph clustering problem. The idea

that clusters contain visually similar images is similar to the idea in Carson et al.

[37] but we use the clusters in a post-processing step instead of forming the initial

queries. The goal is to have an additional constraint that the retrieved images should

be similar to each other as well as being similar to the query image, where similarity

is determined by the models described in Chapter 4.

Graph-theoretic approaches have been a popular tool in the computer vision litera-

ture, especially in object matching. Recently, graphs were used in image segmentation

by treating pixels as nodes and some features as edge weights, and defining criteria

like the normalized cut [184] and variations between intensity differences [71] to mea-

sure the disassociations between possible partitions of the graph. Graphs did not

receive significant attention in image retrieval algorithms mainly due to the computa-

tional complexity of graph-related operations. Huet and Hancock [98] used attributed

graphs to represent line patterns in images and used these graphs for image matching

and retrieval.

The rest of the chapter is organized as follows. The new image retrieval algo-
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rithm is described in Section 5.2 and is followed by the summary of a graph-theoretic

clustering algorithm in Section 5.3. A probabilistic model for the graph-theoretic

framework is proposed in Section 5.4. An alternative clustering algorithm that uses

vector quantization is given in Section 5.5. A measure to evaluate resulting clusters

is defined in Section 5.6. Experiments and results are presented in Section 5.7.

5.2 Image Grouping Using Graphs

In most of the retrieval algorithms a distance measure is used to rank the database

images in ascending order of their distances to the query image, which is assumed

to correspond to a descending order of similarity. Unfortunately, none of the exist-

ing feature extraction algorithms can always map visually similar images to nearby

locations in the feature space and it is not uncommon to retrieve images that are

quite irrelevant to the query image simply because they are close to it. We believe

that an efficient retrieval algorithm should be able to retrieve images that are not

only similar to the query image but also similar to each other, and propose a new

retrieval algorithm as follows. Assume we query the database and get back the best n

matches. For each of these n matches we do a query and get back the best n matches

again. Define S as the set containing the original query image and the images that

are retrieved as the results of the above queries. S will contain n images in the best

case and n2 + 1 images in the worst case. Then, we can construct a graph with the

images in S as the nodes and can draw edges between each query image and each

image in the retrieval set of that query image. We call these edges the set R where

R = {(ξi, ξj) ∈ S × S | image ξj is in the retrieval set when image ξi is the query}.
An example graph is given in Figure 5.1. The similarity values between images, which

correspond to two nodes that an edge connects, can also be assigned as a weight to

that edge. We want to find the connected clusters of this graph (S,R) because they

correspond to similar images. The clusters of interest are the ones that include the
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is the original query

Figure 5.1: An example scenario for graph construction for a database of 10 images
with n = 5.

original query image. The problem now becomes finding P , where P ⊆ S such that

P ×P ⊆ R. This is called a clique of the graph. The clique with the largest number

of nodes is called the major or maximal clique. The images that correspond to the

nodes in P can then be retrieved as the final result of the query.

An additional thing to consider is that the graph (S,R) can have multiple clusters

and some of these clusters can overlap. This is a desired property because image

content is too complex to be grouped into distinct categories. Hence, an image can

be consistent with multiple groups of images.

Additional measures are required to select the cluster that will be returned as the

result of the query. In the next section we define the term “compactness” for a set

of nodes. The cluster with the largest compactness (or with the largest number of

nodes) can be retrieved as the final result. If more than one such cluster exists, we
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can select the one with the largest number of nodes (or with the largest compactness),

or we can compute the sum of the weights of the edges in each of those clusters and

select the one with the smallest total weight.

This method increases the chance of retrieving similar images by not only ensuring

that the retrieved images are similar to the query image, but also adding another

constraint that they should be similar to each other. In the next section we describe

a graph-theoretic clustering algorithm which is used to find the clusters.

5.3 Graph-Theoretic Clustering

In the previous section we proposed that cliques of the graph correspond to similar

images. Since finding the cliques is computationally too expensive, we use the algo-

rithm by Shapiro and Haralick [181] that finds “near-cliques” as dense regions instead

of the maximally connected ones in the graph. To increase the speed further, the best

n matches for the images in the database can be found offline so that graph clustering

becomes the only overhead for a new query. Therefore, only one n-nearest neighbor

search is required for a new query, which is the same amount of computation for the

classical search methods.

In the following sections, first, we give some definitions, then, we describe the

algorithm for finding dense regions, and finally, we present the algorithm for graph-

theoretic clustering. The goal of this algorithm is to find regions in a graph, i.e. sets

of nodes, which are not as dense as major cliques but are compact enough within user

specified thresholds.

5.3.1 Definitions

• (S,R) represents a graph where S is the set of nodes and R ⊆ S × S, the set

of edges, is a symmetric binary relation on S.

• (X,Y ) ∈ R means node Y is a neighbor of node X. The set of all nodes Y



117

such that Y is a neighbor of X is called the neighborhood of X and is denoted

by Neighborhood(X) = {Y | (X,Y ) ∈ R}.

• Conditional density D(Y |X) is the number of nodes in the neighborhood of

X which have Y as a neighbor, D(Y |X) = #{Z ∈ S | (Z, Y ) ∈ R and (X,Z) ∈
R}. Since R is symmetric in our case,

D(X|Y ) = D(Y |X)

= #{Neighborhood(X) ∩ Neighborhood(Y )}.

• Given an integer k, a dense region V around a node X ∈ S is defined as

V(X, k) = {Y ∈ S | D(Y |X) ≥ k}.

• V(X) = V(X, k′) is a dense region candidate around X where k′ = max{k |
#V(X, k) ≥ k} because ifM is a major clique of size t, then X,Y ∈M implies

that D(Y |X) ≥ t. ThusM⊆ V(X, t) and k ≤ t ≤ #V(X, k).

• Association of a node X to a subset U of S is defined as

A(X|U) = #{Neighborhood(X) ∩ U}
#U (5.1)

where 0 ≤ A(X|U) ≤ 1.

• Compactness of a subset U of S is defined as

C(U) = 1

#U
∑

X∈U
A(X|U) (5.2)

where 0 ≤ C(U) ≤ 1.

5.3.2 Algorithm for Finding Dense Regions

A dense region U of the graph (S,R) should satisfy

1. U = {Z ∈ V(X) | A(Z|V(X)) ≥ MINASSOC} for some X ∈ S,
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2. C(U) ≥ MINCOMP,

3. #U ≥ MINSIZE

where MINASSOC, MINCOMP and MINSIZE are thresholds supplied by the user.

To determine the dense region around a node X,

1. Compute D(Y |X) for every other node Y in S.

2. Find a dense region candidate V(X, k′) where k′ = max{k | #{Y |D(Y |X) ≥
k} ≥ k}.

3. Remove the nodes with a low association (determined by the threshold MINAS-

SOC) from the candidate set. Iterate until all of the nodes have high enough

association.

4. Check whether the remaining nodes have high enough average association (de-

termined by the threshold MINCOMP).

5. Check whether the candidate set is large enough (determined by the threshold

MINSIZE).

When MINASSOC and MINCOMP are both 1, the resulting regions correspond

to the cliques of the graph.

5.3.3 Algorithm for Graph-Theoretic Clustering

Given dense regions, to find the clusters of the graph,

1. Define the dense-region relation F as

F = {(U1,U2) | U1,U2 are dense regions of R,
#(U1 ∩ U2)

#U1
≥ MINOVERLAP or

#(U1 ∩ U2)
#U2

≥ MINOVERLAP} (5.3)
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where MINOVERLAP is a threshold supplied by the user. Merge the regions

that have enough overlap if all of the nodes in the set resulting after merging

have high enough associations.

2. Iterate until no regions can be merged.

The result is a collection of clusters in the graph. Note that a node can be a member

of multiple clusters because of the overlap allowed between them.

For the example graph in Figure 5.1, resulting cluster for image 1 is {1, 2, 4, 3, 6}.
Image 6 is retrieved instead of image 8 because it is more consistent with the rest of

the retrieved images.

5.4 Probabilistic Model for Graph-Theoretic Retrieval

The previous section described how we can use graph-theoretic clustering for post-

processing the query results. In this section, we describe a model to estimate the

probability of each image being relevant to the query image under the graph-theoretic

framework.

Let {ξ1, . . . , ξm} be the set of all m images in the database. Let U be the list of

images retrieved during the iterative retrievals to construct the graph. We want to find

the probability P (ξi) that image ξi is the best match to the query image. Assuming

a multinomial distribution parameterized with Θ = (θ1, . . . , θm) where p(ξi|Θ) = θi,

the set U has the likelihood

P (U|Θ) = θN1
1 · · · θNm

m (5.4)

where Ni, i = 1, . . . ,m is the number of times image ξi appears in U . The maximum

likelihood estimate of θi can be found as

θ̂i =
Ni

N
(5.5)
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where N =
∑m

i=1Ni. However, this may give extreme results especially when the set

U is small. We can improve this by assigning prior probabilities to Θ and compute

the Bayes estimate.

Let V be the set of images (the final near-clique) retrieved as the best matches to

the query image as the result of graph-theoretic clustering. Let k be the size of V .
Without loss of generality, assume that the first k images ξ1, . . . , ξk are in V . Under

the graph-theoretic retrieval model, we assume that all images in V are a priori twice

as likely to be the best match to the query than the other m− k images that are not

in V (heuristic assumption). This gives the Dirichlet prior distribution

P (Θ|V) = Dir(Θ| 2, . . . , 2
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

m−k

). (5.6)

Then, the posterior distribution of Θ can be found as

P (Θ|U ,V) = P (U|Θ)P (Θ|V)
P (U|V)

= Dir(Θ|2 +Ni, i ∈ V , 1 +Ni, i 6∈ V).
(5.7)

The Bayes estimate of θi becomes

θ̂i =







2+Ni

m+k+N
if i ∈ V

1+Ni

m+k+N
if i 6∈ V .

(5.8)

We can then select a threshold θ̄ and classify each image into either the relevance or

the irrelevance class as

assign ξi to







class A if θi > θ̄

class B otherwise.

(5.9)

5.5 Clustering Using Vector Quantization

An alternative clustering method is vector quantization which allows clustering in a

high dimensional space. We use the Generalized Lloyd Algorithm (GLA) to cluster
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the feature space that is formed by treating each image as a point which is represented

by its feature vector.

5.5.1 Generalized Lloyd Algorithm (GLA)

The Generalized Lloyd Algorithm [132, 81] can be summarized as follows:

1. Given the number of clusters n and the training set T , begin with an initial

codebook C1. Set the iteration number r = 1.

2. Given the codebook Cr = {yi, i = 1, . . . , n}, where yi ∈ R
(q×1) is the centroid of

the i’th cluster, partition the training set into cluster sets Ri using the nearest

neighbor condition:

Ri = {x | x ∈ T , ρ(x,yi) ≤ ρ(x,yj), ∀j 6= i} (5.10)

where ρ(x,y) is the squared error between the vectors x and y. When there is

a tie, x is assigned to the cluster with smaller index.

3. Using the centroid condition, compute the centroids for the cluster sets found

to obtain the new codebook Cr+1 as

Cr+1 =

{

yi =
1

#Ri

∑

x∈Ri

x, i = 1, . . . , n

}

. (5.11)

4. Compute the average distortion for Cr+1. If it has changed by an amount that

is small enough relative to the last iteration, stop. Otherwise, increment r and

go to Step 2.

Sets of images that are assigned to each cluster correspond to the vectors that are

assigned to those clusters in the last iteration.
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5.5.2 Codebook Initialization

The initial codebook for the Generalized Lloyd Algorithm can be determined by:

1. Random initialization, where each codebook vector is randomly drawn from a

uniform distribution with a range same as the range of the feature space.

2. Splitting algorithm of Linde et al. [132].

3. The Pairwise Nearest Neighbor Algorithm (PNN) [81]:

(a) Given the number of clusters n and the training set T , begin with creating

one cluster for each vector.

(b) Merge clusters Ri and Rj which introduce the smallest error, i.e. minimize

ε′ij − εij =
#Ri #Rj

#Ri +#Rj

(
yi − yj

)2
. (5.12)

If there is a tie in the smallest error, merge the clusters which will result in

a cluster with smaller number of elements. The centroid of the new cluster

becomes

yi∪j =
1

#Ri +#Rj

(
#Ri yi +#Rj yj

)
. (5.13)

(c) Repeat Step 3b until n clusters remain.

Jain and Dubes [105] divided clustering algorithms into groups according to their

properties like exclusive versus non-exclusive, intrinsic versus extrinsic, hierarchical

versus partitional, agglomerative versus divisive, serial versus simultaneous, mono-

thetic versus polythetic and graph-theoretic versus algebra-based. Both GLA and

PNN are exclusive because no overlap between clusters is allowed, intrinsic because

they are unsupervised, polythetic because the objects to be clustered are represented

as points in a space, algebra-based because they use algebraic criteria like the mean

squared error. On the other hand, PNN is an agglomerative hierarchical algorithm
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because it involves nested sequence of partitions starting from atomic clusters that

are gradually merged into larger clusters, whereas GLA is partitional. PNN is serial

because it handles clusters two by two at each iteration, whereas GLA is simultaneous.

5.6 Cluster Evaluation

To evaluate whether a cluster formed by a clustering algorithm is visually consistent

or not, we define

Consistency =
1

k

k∑

j=1

#{i | GT(i) = GT(j), i = 1, . . . , k}
k

(5.14)

where k is the number of images in the cluster and GT(i) is the groundtruth group to

which image i of that cluster belongs. j indexes the images in the cluster. The term

inside the summation indicates the percentage of the cluster that image j is correctly

associated with. The overall effectiveness of a clustering algorithm for a given number

of clusters can be measured using consistency averaged over all clusters.

In the following sections, we will compare graph-theoretic clustering and vector

quantization in terms of clustering effectiveness.

5.7 Experiments

5.7.1 Clustering Experiments

The first step of testing the proposed retrieval algorithm is to check whether the

clusters formed by the graph-theoretic clustering algorithm are visually consistent or

not. First, each image is used as a query, and for each search, n top-ranked images

are retrieved. Then, a graph for the whole database is constructed with all images

as nodes and n edges corresponding to the n top-ranked images for each node. Some

possible clusters for the example database of Figure 5.1 are given in Figure 5.2. Note

that the resulting clusters can overlap. This is a desired property because image
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(b) Example clusters are marked by
dashed lines

Figure 5.2: Example clusters of the graph when all images in Figure 5.1 are used as
queries.

content is too complex to be grouped into distinct categories. Hence, an image can

be consistent with multiple groups of images.

MINOVERLAP was fixed to be 0.80 in all experiments. 2256 clustering tests were

performed for various values of n ∈ [10, 100], MINCOMP ∈ [0.3, 1.0], MINASSOC ∈
[0,MINCOMP] and MINSIZE ∈ {8, 12} for different feature vector and similarity

model combinations. Parameters that resulted in the largest average consistency val-

ues for example cases are given in Table 5.1. Example clusters using these parameters

are given in Figure 5.3. Gabor and color histogram feature vectors and the multivari-

ate Gaussian model resulted in larger consistency because the initial retrievals that

were used to construct the graphs were more successful for these models. We also

obtained larger consistency values than the ones given in Table 5.1 when we allowed

some images to remain unclustered. We observed that decreasing n or increasing

MINCOMP or MINASSOC increased consistency but also increased the number of
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Table 5.1: Parameters of the graph-theoretic clustering algorithm that resulted in the
largest average consistency values for example cases. n, MINASSOC, MINCOMP,
MINSIZE and MINOVERLAP (0.80) are input, and consistency and number of clus-
ters are output.

Database Feature n MINCOMP MINASSOC MINSIZE Consistency # Clusters

ISL LAR+COOC 36 0.7 0.6 12 0.9339 87
ISL GABOR 40 0.7 0.6 12 0.9739 79

VisTex GABOR 14 0.7 0.5 8 0.9017 60

unclustered images.

We also clustered the feature space using the Generalized Lloyd Algorithm (GLA)

(also known as the k-means algorithm). The threshold for the percentage decrease in

distortion to abort the iterations was selected to be 0.0001. The number of clusters

was set to change from 10 to 80 with increments of 5. The initial codebook generated

by the Pairwise Nearest Neighbor Algorithm (PNN) resulted in the smallest distortion

so only those results are presented here. For all of the algorithms except the GLA

using random initialization, distortion decreased with increasing number of clusters.

Random initialization sometimes caused an empty cell problem which increased the

distortion (the implementation did not take any steps to prevent empty cells because

they occurred only after a random initialization).

Consistency values for given numbers of clusters for example cases are given in

Figure 5.4. Using GLA with PNN had a larger average consistency so we can say

that pairwise merging was effective in grouping visually similar images in the feature

space. Some example clusters are given in Figure 5.5. Although consistency values for

most of the clusters were large, some clusters with small consistency values (around

0.3) decreased the average dramatically. It means that the features could not map

some of the visually similar images to nearby locations in the feature space. An-

other reason may be that the squared error criterion was sometimes reported to have

a poor correlation with the human visual system. The largest average consistency
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(a) LAR+COOC, Consis-
tency = 0.900277

(b) GABOR, Consistency
= 0.731200

(c) GABOR, Consistency
= 0.933413

(d) GABOR, Consistency
= 0.734072

(e) GABOR, Consistency
= 0.867347

(f) GABOR, Consistency =
0.882812

Figure 5.3: Example clusters obtained with graph-theoretic clustering using the pa-
rameters given in Table 5.1. Even though consistency values can be low, clusters
contain visually similar images.
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Figure 5.4: Consistency values (y-axis) as a function of number of clusters (x-axis) us-
ing the Generalized Lloyd and Pairwise Nearest Neighbor Algorithms for the example
feature vectors and databases given in Table 5.1.

values obtained using the graph-theoretic clustering algorithm were usually greater

than the ones obtained using the GLA and PNN algorithms for the same number of

clusters. The graph-theoretic clustering algorithm requires the parameters n, MINAS-

SOC, MINCOMP, MINSIZE and MINOVERLAP to be given and then it determines

the number of clusters automatically, while the number clusters is the only required

parameter in the GLA algorithm.

5.7.2 Retrieval Experiments

Results of the clustering experiments of the previous section were used to select the

best parameter set to be used in retrieval. The cluster with the largest compact-

ness (and with the largest number of nodes if there was a tie) was retrieved as the

best match for each query. Then, the model described in Section 5.4 was used to

estimate the probability of each image being relevant to the query image under the
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(a) LAR+COOC, Consis-
tency = 0.913223

(b) GABOR, Consistency
= 0.686728

(c) GABOR, Consistency
= 0.781250

(d) GABOR, Consistency
= 0.500000

(e) GABOR, Consistency
= 0.502222

(f) GABOR, Consistency =
0.336735

Figure 5.5: Example clusters obtained with vector quantization. Even though consis-
tency values can be low, clusters contain visually similar images.
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graph-theoretic framework, and these estimates were used to rank the images in the

database. The results were compared to the ones in Chapter 4 which did not use

clustering. When n is set to be equal to the number of images in the database, the

graph reduces to a single clique and the graph-theoretic search becomes equivalent to

retrieving n top-ranked images.

Figure 5.6 shows histograms of the probabilities for the images in the training

sets for the relevance and irrelevance classes. Example queries without and with

clustering are given in Figure 5.7. We can see that some images that were visually

irrelevant to the query image could be eliminated after graph-theoretic clustering.

This is consistent with Figure 5.8 where average precision and recall for the example

cases of Table 5.1 are given. The precision-recall curves after clustering were initially

above the curves for retrieval without clustering but they intersected when the number

of retrieved images was around 90 for the ISL Database and around 50 for the VisTex

Database. These numbers are larger than the average number of images in each

groundtruth group. Since the model described in Section 5.4 uses data from the

clusters and a prior distribution to estimate the probabilities, the prior information

becomes dominant when the number of retrieved images go above the average number

of images for each groundtruth group, and all the remaining images have the same

probability given by the prior. This is not a problem because the images that we are

interested in are already retrieved (recall is already high). The average precision when

12 images were retrieved after clustering was 0.9538, 0.9785 and 0.9612 for the ISL

Database using LAR+COOC feature vectors and using GABOR feature vectors, and

the VisTex Database using GABOR feature vectors respectively. On the other hand,

the average precision when only the 12 top-ranked images were retrieved without

clustering was 0.9438, 0.9673 and 0.9480 for the same settings.

Since we use the top-ranked images to construct the graph, the initial precision

before clustering should be large enough to prevent the graph being dominated by

images visually irrelevant to the query image. In our experiments in [6], a significant
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Figure 5.6: Histograms of probabilities for the images in the training sets for the
relevance and irrelevance classes under the graph-theoretic clustering model using the
parameters given in Table 5.1.

improvement in precision was observed when the initial precision was greater than

0.5 compared to the case when the initial precision was less than 0.5.

5.7.3 Query Visualization Using Feature Space Projections

In this section we illustrate how clustering modifies the retrieval set iteratively. The

data used was a subset of the images in the ISL Database (340 images). Figure 5.9

shows the feature space for the line-angle-ratio and co-occurrence feature vectors. The

feature vectors were projected onto their first two principal components to reduce the

dimensionality and Sammon’s nonlinear mapping algorithm [113] was used to refine

the projections.

Figures 5.10 - 5.13 show some retrieval examples. Euclidean distance was used for

similarity between feature vectors for illustration. As can be seen from these figures,

the projection algorithms did not generate a perfect mapping because the nearest

neighbors in the original space were not necessarily nearest neighbors when they were

projected to 2-D. For images that belonged to the groups that were well separated

from other groups in the feature space, the graph-theoretic clustering process often
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(a) An example query for LANDSAT USA
using Gabor features without clustering
(8/12)

(b) Same query for LANDSAT USA using
Gabor features with clustering (12/12)

(c) An example query for brick using Gabor
features without clustering (8/12)

(d) Same query for brick using Gabor fea-
tures with clustering (11/12)

Figure 5.7: Example queries without (left) and with (right) graph-theoretic clustering.
The numbers in parentheses in sub-captions show the number of correct matches for
each case.
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(a) An example query for flowers using Ga-
bor features without clustering (7/12)

(b) Same query for flowers using Gabor fea-
tures with clustering (10/12)

(c) An example query for leaves using Gabor
features without clustering (7/12)

(d) Same query for leaves using Gabor fea-
tures with clustering (12/12)

Figure 5.7: (continued)
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Figure 5.8: Retrieval performance without (black) and with (red) graph-theoretic
clustering using the parameters given in Table 5.1. Each plot shows average precision
(y-axis) vs. recall (x-axis) for the example cases.
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Figure 5.9: Feature space projections for 340 images from the ISL Database. The
groundtruth groups are: parking lots (black), roads (red), residential areas (blue),
landscapes (green), LANDSAT USA (magenta), DMSP North Pole (cyan) and LAND-
SAT Chernobyl (yellow). These plots show how the feature space was structured
compared to the manually generated groundtruth.
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(c) Results with clustering

Figure 5.10: An example for successful clustering where precision increased from
4/12 to 11/12 after clustering. Different colored points and the legends represent
the original query image (original query), images that are retrieved as a result of
the first level query by the original query image (results of 1st query (or results of
12-nn query)), images that are retrieved as a result of the second level queries when
the results of the first level query are used as query images (results of 2nd queries),
images in the resulting cluster after graph-theoretic clustering (selected cluster after
GTC), and other images in the database (other images).

removed the outliers; on the other hand, if the query image appeared at a location

where there was not a good separation between groups, one of the groups dominated in

clustering and if that group was not the one that the query image actually belonged, a

poor precision was obtained. Therefore, improving the features makes graph-theoretic

clustering more effective. This is also another example where a nearest neighbor search

using a distance measure like the Euclidean distance is too sensitive to the cluster

structures in the feature space while the likelihood-based measures make use of the

offline training and are more robust.
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(c) Results with clustering

Figure 5.11: An example for successful clustering where precision increased from 8/12
to 12/12 after clustering.
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(c) Results with clustering

Figure 5.12: An example for unsuccessful clustering where precision decreased from
6/12 to 2/12 after clustering.
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Figure 5.13: An example for unsuccessful clustering where precision decreased from
8/12 to 5/12 after clustering.
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Chapter 6

A WEIGHTED DISTANCE APPROACH TO RELEVANCE

FEEDBACK

6.1 Introduction

As discussed in Chapters 4 and 5, none of the existing feature extraction algorithms

can always map visually similar images to nearby locations in the feature space and

post-processing methods can be useful to improve the results. Relevance feedback was

shown to be useful in document retrieval [175]. It has also recently been popular in

the image retrieval community as reviewed in Chapter 2. In this chapter, we propose

a weighted distance approach for relevance feedback.

When the commonly used geometric framework of the nearest neighbor rule is

used as the similarity measure, the straightforward way of incorporating feedback is

to weight individual feature components according to user’s responses. The disad-

vantages of most of the methods proposed for relevance feedback are that either they

require keywords to be manually assigned to images, or they do weight assignment

heuristically, or they are based on unrealistic assumptions. However, retrieval algo-

rithms depend on features directly computed from images. We want to use only the

information fed back by the user instead of using artificial keywords or unjustified

heuristic assumptions. We also cannot assume anything about the user’s information

need, neither can we assume any rules for the relevancy and irrelevancy he/she is

looking for. Therefore, after formulating the weight updating problem in an estima-

tion and regression framework, we compute the optimum weights that can be used

for iterative retrieval.
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Average precision is computed for the groundtruthed data set for performance

evaluation. We also define a new measure called progress to measure the perfor-

mance. Using experiments on a small subset of the ISL Database, we show that

the weighted distance approach can improve precision as much as 19% over the case

without feedback. The following section describes the motivation and details of our

weighted distance approach.

6.2 The Weighted Distance Approach

First, we present some definitions that will be used in the following sections.

K: Number of iterative searches.

R(k)= {retrieval set after the k’th search}, k = 0, . . . , K, while R(0) being the whole

database.

R(k)
rel= {set of images in R(k) that are marked as relevant}, R(k)

rel ⊆ R(k).

R(k)
irrel= {set of images in R(k) that are marked as irrelevant}, R(k)

irrel ⊆ R(k), R(k)
rel ∪

R(k)
irrel ⊆ R(k).

F (k)
i = {values of the i’th feature components of the images in R(k)}.

F (k)
rel ,i= {values of the i’th feature components of the images in R(k)

rel }.

F (k)
irrel ,i= {values of the i’th feature components of the images in R(k)

irrel}.

In the retrieval scenario of this chapter, similarity between images is measured

by computing distances between feature vectors in the feature space. The inputs to

the distance measures are two q-dimensional feature vectors x and y and the weight

vector w ∈ R
(q×1). We use the weighted Minkowsky Lp distance as defined below.



139

Definition 3 Weighted Minkowsky Lp distance

ρp(x,y;w) =

(
q
∑

i=1

|wi(xi − yi)|p
)1/p

(6.1)

where x,y,w ∈ R
(q×1) and xi,yi,wi are the i’th components of the vectors x,y,w

respectively.

i) Positivity: ρp(x,y;w) ≥ 0 and if x = y, then ρp(x,y;w) = 0.

ii) Strictly positivity: If ρp(x,y;w) = 0, |wi(xi − yi)| = 0 ∀i. If wi > 0, this

implies that xi = yi ∀i. However, wi ≥ 0 in our case so it does not guarantee

that xi = yi ∀i. Not satisfied.

iii) Symmetry: ρp(x,y;w) = ρp(y,x;w).

iv) Triangle inequality:

ρp(x, z;w) =

(
q
∑

i=1

|wi(xi − zi)|p
)1/p

=

(
q
∑

i=1

|wixi −wizi|p
)1/p

=

(
q
∑

i=1

|wixi −wiyi +wiyi −wizi|p
)1/p

≤
(

q
∑

i=1

|wixi −wiyi|p
)1/p

+

(
q
∑

i=1

|wiyi −wizi|p
)1/p

(Using Minkowsky inequality [151])

=

(
q
∑

i=1

|wi(xi − yi)|p
)1/p

+

(
q
∑

i=1

|wi(yi − zi)|p
)1/p

= ρp(x,y;w) + ρp(y, z;w)
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Since the strictly positivity requirement is not satisfied, the weighted Lp distance

is a pseudo–metric. We describe the methods for weight updating in the following

sections.

6.3 Standard Deviation Ratio-based Weight Updating

From the pattern recognition point of view, for a feature to be good,

• its variance among all the images in the database should be large,

• its variance among the relevant images should be small,

• its variance among the irrelevant images should be large.

Any one of these is not enough alone but characterizes a good feature when combined

with the others.

Given these observations, we decided to use w
(k)
i = σ

(0)
i /σ

(k)
rel ,i, where σ

(0)
i =

std(F (0)
i ) and σ

(k)
rel ,i = std(F (k)

rel ,i), as the weight for the i’th feature in the k + 1’st

iteration. For a given image, there is a small set of relevant images in the database;

on the other hand, the rest of the images can be categorized as irrelevant. We pre-

ferred using only the relevant images because the small set of feedback images that

are selected by the user for both relevancy and irrelevancy will probably provide a

better estimate for the former case.

Depending on σ
(0)
i and σ

(k)
rel ,i, four different situations can arise as shown in Ta-

ble 6.1:

• When σ
(0)
i is large and σ

(k)
rel ,i is small, w

(k)
i becomes large. This means that the

feature has a diverse set of values in the database but its values for relevant

images are similar. This is a desired situation and shows that this feature is

very effective in distinguishing this specific relevant image set so a large weight

assigns more importance to this feature.
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Table 6.1: Motivation for the weight selection. Moving upwards in the table represents
a situation that is closer to ideal.

σ
(0)
i σ

(k)
rel ,i w

(k)
i = σ

(0)
i /σ

(k)
rel ,i

large small large
large large ∼ 1
small small ∼ 1
small large small

• When both σ
(0)
i and σ

(k)
rel ,i are large, w

(k)
i is close to 1. This means that the

feature may have good discrimination characteristics in the database but is not

effective for this specific relevant image group. The resulting weight does not

give any particular importance to this feature.

• When both σ
(0)
i and σ

(k)
rel ,i are small, w

(k)
i is again close to 1. This is a similar

but slightly worse situation than the previous one. The feature is not generally

effective in the database and is not effective for this relevant set either. No

importance is given to this feature.

• When σ
(0)
i is small and σ

(k)
rel ,i is large, w

(k)
i becomes small. This is the worst

case among all the possibilities. The feature is not generally effective and even

causes the distance between relevant images to increase. A small weight forces

the distance measure to ignore the effect of this feature.

All of the resulting weights in these four cases are consistent with the desired situations

in an ideal retrieval. Note that at least one image other than the query image should

be labeled as relevant by the user to have a non-zero standard deviation. This is a

reasonable assumption because the user will create a new query if nothing relevant

was retrieved.
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6.3.1 Iterative Retrieval

The retrieval algorithm can be described as follows:

1. Initialize all weights uniformly as w
(0)
i = 1/q, i = 1, . . . , q. Compute σ

(0)
i , i =

1, . . . , q.

2. For k = 1, . . . , K,

(a) Search the database using w
(k−1)
i and obtain the retrieval set R(k).

(b) Get feedback from the user as R(k)
rel .

(c) Compute σ
(k)
rel ,i, i = 1, . . . , q.

(d) Compute

w
(k)
i =

σ
(0)
i

σ
(k)
rel ,i

, i = 1, . . . , q (6.2)

and normalize as w
(k)
i = w

(k)
i /

∑q
i=1w

(k)
i .

3. Do the final search using w
(K)
i , i = 1, . . . , q.

To compute σ
(k)
rel ,i in 2c, we use two methods:

• Independent update: Standard deviations are estimated independently in every

iteration using only that iteration’s retrieval sets, i.e.

(σ
(k)
rel ,i)

2 = E[(F (k)
rel ,i)

2]− (E[F (k)
rel ,i])

2, i = 1, . . . , q

where E[F (k)
rel ,i] and E[(F (k)

rel ,i)
2] are the first and second moments of the sample

F (k)
rel ,i respectively.

• Incremental update: We assume that user’s notion of similarity does not change

as the iterations progress and he/she is consistent in consecutive iterations.
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Therefore, standard deviations are incrementally updated in every iteration,

i.e.

(σ
(k)
rel ,i)

2 =
1

#R(k−1)
rel +#R(k)

rel

(

#R(k−1)
rel E[(F (k−1)

rel ,i )2] + #R(k)
rel E[(F (k)

rel ,i)
2]
)

−
(

1

#R(k−1)
rel +#R(k)

rel

(

#R(k−1)
rel E[F (k−1)

rel ,i ] + #R(k)
rel E[F (k)

rel ,i]
)
)2

,

i=1,. . . ,q, where the retrieval sets are updated as R(k) = R(k) ∪ R(k−1) and

R(k)
rel = R

(k)
rel ∪R

(k−1)
rel after iteration k.

When all the values in F (k)
rel ,i are the same, i.e. all images have the same value for that

feature, we assign a large constant value to w
(k)
i .

6.3.2 Alternative Formulation

A special case of this weighting scheme can alternatively be formulated as follows.

Let the feature vector x = (x1, . . . ,xq)
T ∈ R

(q×1) be a multivariate random variable

with independent components and the covariance matrix

Σx =











σ21 0 · · · 0

0 σ22 · · · 0
...

. . .
...

0 · · · · · · σ2
q











. (6.3)

After the whitening transform [78], the random variable y = Σ−1/2
x x has components

with unit variance, i.e. Σy = I. Let xrel ,1, . . . ,xrel ,N be a sample of feature vectors

for relevant images. Let Σxrel
be the sample covariance matrix

Σxrel
=











σ2rel ,1 0 · · · 0

0 σ2rel ,2 · · · 0
...

. . .
...

0 · · · · · · σ2
rel ,q











. (6.4)
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After the same whitening transform, y
rel

= Σ1/2
x xrel , the covariance matrix of y

rel

becomes

Σyrel
= Σ−1/2

x Σxrel
(Σ−1/2

x )T

=











1
σ1

0 · · · 0

0 1
σ2
· · · 0

...
. . .

...

0 · · · · · · 1
σq





















σ2rel ,1 0 · · · 0

0 σ2rel ,2 · · · 0
...

. . .
...

0 · · · · · · σ2
rel ,q





















1
σ1

0 · · · 0

0 1
σ2
· · · 0

...
. . .

...

0 · · · · · · 1
σq











T

=











σ2
rel,1

σ21
0 · · · 0

0
σ2
rel,2

σ22
· · · 0

...
. . .

...

0 · · · · · · σ2
rel,q

σ2q











.

(6.5)

The Mahalanobis distance under the hypothesis that two feature vectors u and v

are relevant is

ρ(u,v) = (u− v)TΣ−1
yrel

(u− v) =
q
∑

i=1

σ2i
σ2rel ,i

(ui − vi)
2 =

q
∑

i=1

w2
i (ui − vi)

2. (6.6)

This is equivalent to the weighted squared Euclidean distance with the weights wi =

σi/σrel ,i, which is a special case of Definition 3.

6.4 Regression-based Weight Updating

We can also formulate the weight selection process as a regression problem using

training data. Given N image pairs with their feature vectors (x1,y1), . . . , (xN ,yN )

and their labels c1, . . . , cN where

ci =







0 if pair i is from the relevance class

1 if pair i is from the irrelevance class,

(6.7)
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first, the differences d1, . . . ,dN are computed as

di = |xi − yi|, xi,yi,di ∈ R
(q×1), i = 1, . . . , N. (6.8)

We can then choose the q-dimensional weight vector w to satisfy

(d1, · · · ,dN )T
︸ ︷︷ ︸

w = (c1, · · · , cN)T
︸ ︷︷ ︸

,

D w = C.

(6.9)

The N image pairs to compute the weights can be formed by using the cross

product Rrel ×Rrel for the relevance class and Rrel ×Rirrel for the irrelevance class,

where

Rrel = {set of images that are marked as relevant by the user},

Rirrel = {set of images that are marked as irrelevant by the user}.

6.4.1 Linear Least-Squares with Singular Value Decomposition (SVD)

The least-squares solution to Equation (6.9) can be computed as

w∗ = argmin
w
‖Dw −C‖2 (6.10)

where D ∈ R
(N×q) is the matrix formed by feature difference vectors, w ∈ R

(q×1)

is the weight vector, and C ∈ R
(N×1) is the class label vector. A straightforward

solution for this regression problem is

w∗ = (DTD)−1DTC. (6.11)

To avoid the problems that can be caused by the singularities in DTD, a more stable

solution can be found by replacing D by its Singular Value Decomposition [161]

D = UΛVT as

w∗ = argmin
w
‖UΛVTw −C‖2 (6.12)
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where U ∈ R
(N×N) and V ∈ R

(q×q) are orthonormal matrices, and Λ ∈ R
(N×q) is the

matrix of singular values. Using the fact that UTU = VTV = I, the problem can be

restated as

w∗ = argmin
w
‖ΛVTw −UTC‖2 (6.13)

and the solution becomes

w∗ = VΛ∗UTC (6.14)

where Λ∗ is the transpose of Λ with all singular values whose ratio to the largest sin-

gular value is greater than N times the machine precision (10−6 in our case) replaced

by their reciprocals.

One problem that can be observed in the solution of this unconstrained least-

squares problem is that some of the weight components can be negative. We make

them nonnegative by either shifting the weight vector by its smallest component (rep-

resented as “SVD+min” in the experiments), or by setting the negative components

to zero (represented as “SVD+set 0” in the experiments).

6.4.2 Nonnegative Least-Squares (NNLS)

Another way of obtaining nonnegative weights is to solve the problem

find w to minimize ‖Dw −C‖2 subject to w ≥ 0. (6.15)

A nonnegative least-squares algorithm is given in [130] as follows:

1. Set P = {}, Z = {1, 2, . . . , q} and w = 0.

2. Compute u = DT (C−Dw).

3. If the set Z is empty or if ui ≤ 0 ∀i ∈ Z, terminate the algorithm.

4. Find an index t ∈ Z such that ut = max{ui|i ∈ Z}.
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5. Move the index t from set Z to set P .

6. Let DP ∈ R
(N×q) denote the matrix defined by

column i of DP =







column i of D if i ∈ P

0 if i ∈ Z.
(6.16)

Compute z ∈ R
(q×1) as a solution of the least-squares problem DPz = C. Note

that only the components zi, i ∈ P are determined by this problem. Define

zi = 0 for i ∈ Z.

7. If zi > 0 ∀i ∈ P , set w = z and go to step 2.

8. Find an index p ∈ P such that wp

wp−zp = min{ wi

wi−zi |zi ≤ 0, i ∈ P}.

9. Set α = wp

wp−zp .

10. Set w = w + α(z−w).

11. Move from set P to set Z all indices i ∈ P for which wi = 0. Go to step 6.

On termination, the vector w satisfies

w =







wi > 0, i ∈ P

wi = 0, i ∈ Z
(6.17)

and becomes a solution to the least-squares problem.

6.4.3 Ridge Regression

Another way of overcoming the problem of singular matrices is ridge regression where

the range of functions is restricted. This can also be regarded as reducing the degrees
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of freedom. Ridge regression introduces a term that penalizes large weights in addition

to the squared error. The cost function to be minimized is

ε2 = ‖Dw −C‖2 + λwTw. (6.18)

The regularization parameter λ > 0 controls the balance between the residual error

and the penalty for large weights.

6.4.4 Constrained Non-linear Least-Squares

We can also constrain the weight vector to have unit length. Then, the problem

becomes to

find w to minimize ‖Dw −C‖2 subject to ‖w‖ = 1. (6.19)

After introducing a Lagrange multiplier, the cost function to be minimized becomes

ε2 = (Dw −C)T (Dw −C) + λ(wTw − 1). (6.20)

The optimum weight vector is the one that minimizes ε2 as

∂ε2

∂w
= 2DT (Dw −C) + 2λw = 0 ⇒ w = (DTD+ λI)−1DTC. (6.21)

A search algorithm can be used to find λ as the solution of

∂ε2

∂λ
= wTw − 1 = 0 ⇒ CTD(DTD+ λI)−2DTC = 1. (6.22)

Then this λ can be substituted into Equation (6.21) to find the optimum weight.

6.4.5 Alternative Formulation

Given N data pairs (di, ci), i = 1, . . . , N , we try to find a least-squares fit to the

model

(d1, · · · ,dN )T
︸ ︷︷ ︸

w = (c1, · · · , cN)T
︸ ︷︷ ︸

,

D w = C

(6.23)
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as

find w to minimize ‖Dw −C‖2 =
N∑

i=1

(dT
i w − ci)2. (6.24)

Suppose each dT
i w have a Gaussian distribution around the true value ci. Also

suppose that the standard deviations are the same, σ, for all data points. The distri-

bution model can be defined as

p(d) ∝ e−(dTw−c)2/2σ2 . (6.25)

The likelihood function for the parameter w is

L(w|d1, . . . ,dN ) ∝
N∏

i=1

e−(dTi w−ci)
2/2σ2 . (6.26)

The maximum likelihood estimate of w can be found as

find w to maximize L(w|d1, . . . ,dN ) ≡ maximize logL(w|d1, . . . ,dN )

≡ maximize −
N∑

i=1

(dT
i w − ci)2/2σ2

≡ minimize
N∑

i=1

(dT
i w − ci)2

(6.27)

which is equivalent to the least-squares estimation problem in Equation (6.24).

The retrieval performances of the weight updating algorithms are evaluated in the

next section.

6.5 Experiments

The feedback algorithms of this chapter were tested only on a smaller subset (340

images) of the ISL Database using only the line-angle-ratio and co-occurrence feature

vectors. Retrieval results in terms of precision averaged over the groundtruth images

are given in Figures 6.1 and 6.2. The search engine performs a new search in the

database and retrieves 12 images in every iteration. In these experiments, we used

only the weighted L1 and L2 distances with independent updating. The results are
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Figure 6.1: Average precision using independent weight updating for the L1 distance
with different weight estimation methods for the first two iterations. “n r.f.” repre-
sents the n’th feedback iteration.

summarized in Table 6.2. All the feedback methods showed an improvement over

the case without feedback. We can see that slightly better results could be obtained

on the average when the L2 distance was used. We tried up to five iterations and

the largest average improvement was obtained as 19% after the first iteration using

the standard deviation ratio-based updating. The largest average improvement among

regression-based methods with the weighted L1 distance was obtained as 15.48% after

the first iteration when SVD was used to update the weights and the negative weight

components were set to zero (“SVD+set 0”). The constrained nonlinear least-squares

algorithm performed worse than all the other weight updating methods.

When the whole database is searched in every iteration, the improvement is usu-

ally a few additional relevant images and this can also be achieved by showing a new

set of images from the retrieval set of the original query instead of waiting for the

computation of getting feedback and doing one more search. Another way of inves-
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Figure 6.2: Average precision using independent weight updating for the L2 distance
with different weight estimation methods for the first two iterations. “n r.f.” repre-
sents the n’th feedback iteration.

Table 6.2: Average precision when 12 images are retrieved using independent weight
updating for the L1 and L2 distances with different weight estimation methods. Im-
provements for each iteration over the previous iteration are given in parentheses. “n
r.f.” represents the n’th feedback iteration.

Distance 0 r.f. 1 r.f. 2 r.f.

L1 (std. ratio) 0.60 0.69 (13.53%) 0.70 (1.71%)
L1 (SVD+min) 0.60 0.67 (11.33%) 0.66 (-2.38%)
L1 (SVD+set 0) 0.60 0.70 (15.48%) 0.68 (-2.07%)
L1 (NNLS) 0.60 0.65 (7.00%) 0.63 (-2.84%)

L2 (std. ratio) 0.60 0.71 (19.03%) 0.72 (1.06%)
L2 (SVD+min) 0.60 0.68 (14.76%) 0.68 (-0.78%)
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tigating how well the relevance feedback performs is to compare the performance of

iterative retrieval with that of the original search in terms of the progress made to-

wards retrieving a specific number of images. After obtaining the feedback, the search

engine performs a new search in the database but ignores all the images that were

retrieved in previous iterations. Therefore, a new set of 12 images are retrieved in

every iteration. This performance is compared with the case where the next set of 12

images from the retrieval set of the original search are presented to the user (showing

the next page in the user interface). Given n as a specific number of images retrieved,

we define progress as the ratio of two precisions,

Progress =
#{relevant images among n after dn/12e iterations}

#{relevant images among n retrieved without feedback} . (6.28)

When progress is greater than 1, it means the feedback algorithm is effective and

converges faster. Average progress is given in Figures 6.3 and 6.4. The results are

summarized in Table 6.3. We can see that incremental updating performed better

than independent updating. The largest improvement for the standard deviation

ratio-based updating was obtained as 5.3% greater progress over the no feedback

case. The largest average improvement among regression-based methods with the

weighted L1 distance was obtained as 7.4% greater progress over the case without

feedback after the second iteration with “SVD+set 0”.

We also investigated the residual errors in the regression solutions. By considering

only the first iteration, the weight vector that was computed using singular value

decomposition resulted in the smallest residual error. But, when we set the negative

weight components to zero, the residual error increased significantly. On the other

hand, the nonnegative least-squares algorithm gave residual errors that were larger

than but comparable to the ones with singular value decomposition with full weight

vectors. The nonnegative least-squares algorithm also resulted in many zero weight

components (7 out of 28 weight components were positive on the average). On the

other hand, singular value decomposition resulted in more positive weight components
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Figure 6.3: Average progress using independent and incremental weight updating for
the L1 distance with different weight estimation methods for the first two iterations.
“n r.f.” represents the n’th feedback iteration.
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Figure 6.4: Average progress using independent and incremental weight updating for
the L2 distance with different weight estimation methods for the first two iterations.
“n r.f.” represents the n’th feedback iteration.
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Table 6.3: Average progress using independent and incremental weight updating for
the L1 and L2 distances with different weight estimation methods when 12, 24 and
36 images are retrieved. “n r.f.” represents the n’th feedback iteration.

Distance 0 r.f. 1 r.f. 2 r.f.

L1 (std. ratio):Indep. update 1 1.037 1.004
L1 (std. ratio):Increm. update 1 1.033 1.018
L1 (SVD+min):Indep. update 1 1.041 1.005
L1 (SVD+min):Increm. update 1 1.041 1.052
L1 (SVD+set 0):Indep. update 1 1.048 1.009
L1 (SVD+set 0):Increm. update 1 1.048 1.074

L1 (NNLS):Indep. update 1 0.991 0.935
L1 (NNLS):Increm. update 1 0.991 1.021

L2 (std. ratio):Indep. update 1 1.052 1.012
L2 (std. ratio):Increm. update 1 1.053 1.038
L2 (SVD+min):Indep. update 1 1.062 1.030
L2 (SVD+min):Increm. update 1 1.062 1.073

(15 positive weight components on the average).

The experiments showed that all of the feedback methods gave an improvement

over the case without feedback. However, their effectiveness is limited by the prob-

lems of the geometric similarity framework as discussed in Chapter 4. Furthermore,

the weights are defined only for the components of a single feature vector and they

do not support multiple feature vectors in the current setting. One way to over-

come this problem is to formulate a hierarchical weighting scheme [172], which may,

unfortunately, still be effected by the limitations of the geometric framework.

In the following chapter, we will propose a Bayesian framework that results in a

powerful way of both combining different feature vectors and incorporating relevance

feedback with a performance better than two competing algorithms from the recent

content-based image retrieval literature.
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Chapter 7

A UNIFIED FRAMEWORK FOR FEATURE AND

SIMILARITY COMBINATION

7.1 Introduction

Numerous feature extraction methods and similarity measures that were designed for

particular applications have been proposed in the literature. However, there seems

to be no general method or a formal approach which is useful in a broad range of

images. Results of the previous chapters also showed that low-level features can-

not always map visually similar images to nearby locations in the feature space and

distance-based similarity measures often retrieve images that are quite irrelevant to

the query image. Therefore, we discussed two post-processing algorithms; graph-

theoretic clustering and a relevance feedback approach with weighted distances, and

showed that improvements in both image grouping and retrieval can be obtained us-

ing these methods. However, it is still hard to generalize these methods to mimic the

high-level notion of similarity in humans.

An important observation in Chapter 4 was that different features and different

similarity measures performed differently for different types of images. Therefore,

developing a framework to combine feature vectors and similarity measures looks

promising to improve the overall performance. One simple method to combine multi-

ple features is to append different feature vectors and treat the result as a big global

feature vector [131]. Another method is to compute distances using each feature

vector separately and then use a linear or Boolean combination of them as the final

distance measure [24].
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In the database retrieval literature, systems such as QBIC [74] and Virage [15]

offered the user the ability to take weighted combinations of color, texture, shape,

and position measures in combination with keyword search. Vailaya and Jain [203]

used the weighted sum of distances based on edge direction histograms and moment

invariants. They also used the weighted sum of distances based on edge direction his-

tograms and color histograms [200]. However, in all of these approaches, the weights

have to be assigned by the user. This is not generally applicable because the ordinary

user does not usually have a detailed understanding of the features designed by an

expert. Furthermore, all of these methods still suffer from the geometric retrieval

problem.

To make use of different features for different types of images, Vailaya et al. [200]

used a hierarchical classifier to first classify images into the city or landscape classes

using edge direction coherence vectors with a nearest neighbor classifier, then to clas-

sify landscape images into forests, mountains and sunset/sunrise classes using color

coherence vectors. In [199], they used a Bayesian classifier for the same classification

task. The class-conditional densities were estimated using a non-parametric vector

quantization approach. They also used the same type of classifier for automatic image

orientation detection [202]. The classifier was used to assign an image into one of the

four orientations: 0◦, 90◦, 180◦, 270◦. However, this is applicable only for specific

groups of images that can be categorized in binary or a small number of groups.

The biggest drawback of the above system is that the defined classes (city, land-

scape, forest, mountain, sunset, etc.) are assumed to form a partition of the database

and each image in the database is required to be a member of one and only one of

these groups. When the database gets larger and more complex, the number of classes

that needs to be defined increases, the limit being a class for each image. Vasconcelos

and Lippman [206] proposed such an approach where each image in the database was

assumed to be a class and the goal was to assign the query image to one of these

classes. They used Discrete Cosine Transform coefficients for small non-overlapping
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neighborhoods in an image as features, and mixtures of Gaussians for class-conditional

distributions. This approach is applicable to other types of feature vectors that can

be computed for each pixel or for small neighborhoods in an image so that a sample

of the feature vectors can be used to train the distributions for that image. However,

it cannot be generalized for feature vectors that require larger neighborhoods or when

each image is represented by a single feature vector because there will not be enough

data to estimate the parameters of any distribution.

Dy et al. [68] used a similar approach by two-level hierarchical classifiers. They

tried to classify a query using features that best differentiate the major classes and

then specialized the query to that class by using the features that best distinguish

the images within the chosen major class. The motivation came from the observation

that the features that are the most effective in discriminating among images from

different classes may not be the most effective for retrieval of visually similar images

within a class. They used a nearest neighbor classifier in the first level, then used

a k-nearest neighbor classifier in each class. This method does not have the binary

categorization restriction but the nearest neighbor classifier still computes similarity

in the geometric setting.

In another approach to combine different methods in the distance level, Berman

and Shapiro [22] proposed the following set of operations to enable more expres-

sive queries: Addition (ρ = ρ1 + ρ2), weighting (ρ = αρ1, α ≥ 0), maximum (ρ =

max(ρ1, ρ2)), and minimum (ρ = min(ρ1, ρ2)), where ρ1 and ρ2 are two distance mea-

sures. They showed that these operators satisfy the triangle inequality and applied

triangle inequality-based pruning algorithms to distance measures that were com-

bined using these operations. They also experimented with polynomial combinations

of distance measures to create new distance measures and extended the triangle in-

equality to compute lower bounds for these new measures to prune the database [21].

However, they decided that the functionality was too unintuitive with little apparent

gain in utility.
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Recently, relevance feedback has been used as a tool to improve retrieval per-

formance as discussed in Chapter 2. It was also used to combine different feature

vectors or similarity measures. Benitez et al. [20] used relevance feedback to rank

search engines to select a search engine that gave the best results for a given query.

All the search engines were initially given equal weights and then these weights were

heuristically increased or decreased based on the images they retrieved and the feed-

back given by the user. A heuristic ordering method was used where results from

search engines with better ranks were displayed before the results from others. No

detailed performance of this approach is available. Rui et al. [172] also used a sim-

ilar weighting approach but in the feature and distance levels. User’s feedback was

used to update the weights that were used to compute a weighted linear combination

of distance values for different feature vectors. However, the weights were assigned

heuristically and similarity was based on geometric distances as in most of the other

approaches described in Chapter 2.

Neural networks have also been used as a tool for feature combination. Haering

et al. [87] used a neural network with features like color, roughness, directionality,

co-occurrence features, Fourier features, Gabor features and fractal features as input

and trained it to detect deciduous trees. Haering and de Vitoria Lobo [86] again

used 51 features like Fourier features, Gabor features, steerable bar and step edge

filters, co-occurrence features, fractal dimension measures, HSV color features and

entropy measures for locating deciduous trees in images. They compared the per-

formance of a back-propagation neural network against those of convolutional neural

networks, Fisher’s linear classifiers, Gaussian quadratic classifiers, eigenanalysis, and

minimally correlated features and concluded that the back-propagation neural net-

work performed the best. Oh et al. [152, 153] also used neural network classifiers with

two methods to combine different features in a handwriting recognition application.

They first used a class-common approach where the features were chosen according

to their class separation performances when all classes were combined, then used a
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single final classifier. The second approach was a class-dependent approach where fea-

tures were chosen specifically for each class and sub-classifiers were used for individual

cases.

There has been a lot of research on feature and decision combination in the hand-

writing and speech recognition areas. Most of these methods try to combine the

outputs of multiple classifiers to arrive at a final decision. Possible methods for com-

binations in the classifier level are:

• A weighted majority vote (each classifier makes a binary decision (vote) about

each class and the final decision is made in favor of the class with the largest

number of votes) [211, 126, 127, 120],

• Sum, product, maximum, minimum and median of the a posteriori probabilities

computed by individual classifiers [119, 120],

• Softmin and softmax combination rules for the outputs of individual classifiers

that also allow joint training [118],

• Class ranking (each class receives m ranks from m classifiers, the highest (min-

imum) of these ranks is the final score for that class) [94],

• Borda count (sum of the number of classes ranked below a class by each classi-

fier) [94],

• Discrete optimization of the overall probability of correct classification using

ranked-based classifiers [176],

• Weighted combination of classifiers [121],

• Hierarchical multiple classifiers (component classifiers are built using clusters

of training data and a super-classifier is built using the outputs of component

classifiers and clustering information) [45].
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However, as discussed above, image retrieval problem is usually set as ranking im-

ages according to their distances to the query image in the feature space. Unfortu-

nately, probabilities are not usually obtained in this geometric retrieval setting and

the classifier-based combination methods cannot be directly applicable in the com-

monly used framework. Hence, it is apparent that combining feature vectors and

similarity measures is not promising to be effective enough in the geometric retrieval

framework.

In this dissertation, we pose the retrieval problem in a probabilistic framework.

We define a mapping from the high-dimensional feature space to the two-dimensional

probability space and use class-conditional probabilities p(d|A) and p(d|B) for re-

trieval. One important advantage of this framework is that it provides a natural way

to combine multiple measurements on images. Since each possible combination of

feature vectors, similarity models and classifiers gives a set of these class-conditional

probabilities, the classifier combination methods listed above can be directly used to

arrive at a final decision about the similarity between images. The classifier combi-

nation methods that we use will be given in Section 7.2.

There have been many classifiers, like linear classifiers, quadratic classifiers, deci-

sion tree classifiers, ML and MAP classifiers, neural network classifiers, and rule-based

classifiers that were proposed and applied to specific classification tasks; however, the

naive Bayesian classifier [63] is still competitive with the state-of-the-art classifiers

[75, 61, 62]. The classification is done by applying the Bayes rule to compute the

probability of a class given a particular instance of the pattern’s attribute values by

making an independence assumption: all the attributes are conditionally independent

given the value of the class. Even though this assumption looks like a very strong

one, Domingos and Pazzani [61, 62] showed that the naive Bayesian classifier can

still be optimal when this assumption is violated by a wide margin. Their conclusion

was that correct classification can be achieved even when the probability estimates

contain large errors. The classifier combination methods listed above are also based
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on this conditional independence assumption.

The naive Bayesian classifier can be studied in the framework of Bayesian net-

works. Even though we showed that the class-conditional probabilities were success-

ful in both classification and retrieval, an important fact is that they also include

uncertainty because they are estimated from noisy data, the density models are not

perfect and there are additional factors like quantization and high-dimensionality.

An additional modeling of probability can be explicitly incorporated as “probability

of probability” in a Bayesian network framework. Bayesian networks have become a

popular representation for encoding uncertain knowledge in expert systems in the last

decade. Researchers have developed methods for learning Bayesian networks from a

combination of expert knowledge and data. Some example applications [108, 14, 93]

include medical diagnosis systems, speech recognition, space missions, weather fore-

casting, technical support troubleshooting and help wizards in Microsoft products,

document retrieval, sensor fusion and junk e-mail filtering.

A recent successful application of Bayesian networks for image retrieval was de-

scribed by Schroder et al. [177] where a naive Bayesian classifier was used to link

user interests and signal models to iteratively learn user-specific land cover types in

a remote sensing image archive. They first performed feature extraction from image

data. Then an unsupervised classification algorithm was used on these feature vectors

to obtain class labels for each feature type for each pixel. The feature vectors they

used were computed from Gibbs random fields, co-occurrence matrices and spectral

values. The next level of information contained the land cover types. The network

they used is given in Figure 7.1(a). They iteratively computed the posterior proba-

bility of a pixel belonging to that cover type given its feature classes. Since the class

label was a binary variable and there were a fixed number of feature classes (specified

in the unsupervised clustering algorithm), they used relative frequency tables to rep-

resent the conditional probabilities in the naive Bayesian network. They started with

uniform priors and used user’s feedback to iteratively update the conditional proba-
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bilities using relative frequencies. User feedback was in the form of clicks on pixels as

positive and negative examples for the cover type. Then, this trained classifier was

used to perform a search in the database to rank images according to their posterior

probabilities. They showed retrieval examples and also used a small groundtruth to

compare the classified pixels with manually labeled regions using a confusion matrix.

The average correct detection rate was given to be 90%.

Kumar and Desai [124] also used a discrete variable Bayesian network to identify

types of the segments of an image. They estimated the conditional probabilities from

histograms of feature values. They showed an aerial image as an example of the

application of their method.

Another application of Bayesian networks for retrieval was presented by Vascon-

celos and Lippman [204]. They used the fact that movie production usually has

specific conventions and structure, and used a Bayesian framework to incorporate

this structure in video summarization and classification. They used sensors (algo-

rithms) trained to detect relevant visual features and used a Bayesian network to link

semantic content descriptors with these sensors. The sensors they used were “action”,

“skin” and “texture”, and the semantic attributes they used were “action”, “scene

setting” (man-made or nature), “close-up” and “crowd”. The network they used is

given in Figure 7.1(b). They showed examples on 100 video clips from a movie and

obtained 88% classification accuracy. However, all the variables in the network were

binary and both the structure and the conditional probabilities were set manually.

Recently, Tieu and Viola [196] used boosting for image retrieval. They first ex-

tracted a large number of features from oriented edges and bar filters. The total

number of features were 46,875 for RGB in three resolutions. Their motivation was

that highly selective features would respond to only a small percentage of images in

the database. Then, given positive and negative query images, they trained 20 classi-

fiers that selected individually highly selective features along which positive examples

were more distinct from the negative examples. Boosting was used to combine these
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Gibbs random
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Co−occurrence
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(a) Network used by Schroder et al.

[177]

Close−up

SkinMotion

CrowdAction Scene setting
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(b) Network used by Vasconcelos
and Lippman [204]

Figure 7.1: Example Bayesian networks used for content-based image or video classi-
fication.

classifiers with a final strong classifier. Precision-recall results on 500 COREL images

showed that boosting was effective and also allowed relevance feedback.

In the rest of the chapter we first summarize classifier combination in Section 7.2.

Then, in Section 7.3, we give a brief introduction to Bayesian networks, describe how

to construct a Bayesian network with its associated probability distributions (i.e. of-

fline training), and present the methodology to update these distributions when new

data is available (i.e. online updating). Finally, we describe the details of our ap-

proach that allows us to extend the feature representations and similarity models that

were described in previous chapters into a combined framework. Furthermore, this

framework offers a relevance feedback architecture to incorporate the user’s feedback

to further improve the performance. Performance evaluation of the framework pro-

posed in this chapter is done using extensive classification and retrieval experiments

in Chapter 8.

7.2 Classifier Combination

We have used different classifiers, e.g. linear classifiers, quadratic classifiers, nearest

neighbor classifiers, decision tree classifiers, neural network classifiers in the two-class
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classification problem in Section 4.4. An empirical comparison of different classifiers

like in Section 4.5.1 lets us choose one of them as the best classifier for the problem

at hand. However, although most of the classifiers may have similar error rates,

sets of image pairs misclassified by different classifiers do not necessarily overlap.

Classifier combination is motivated by the goal of further improving the classification

performance by not relying on a single decision but rather by combining the decisions

made by the individual classifiers.

Kittler et al. [119, 120] and Duin and Tax [67] observed that combinations of

different classifiers that used different feature vectors and different training sets were

the most useful. In this scenario, the classifiers operate in different measurement

spaces and each classifier uses its own representation of the input pattern.

In this section, we discuss classifier combination in a Bayesian framework. In the

general problem of assigning the pattern ξ to one of them classes C1, . . . , Cm with prior

probabilities p(C1), . . . , p(Cm) using n classifiers with measurement vectors x1, . . . ,xn,

the Bayesian classifier makes the decision using a posteriori probabilities as

assign ξ to Ck if k = arg
m

max
j=1

p(Cj|x1, . . . ,xn)

= arg
m

max
j=1

p(x1, . . . ,xn|Cj)p(Cj).
(7.1)

In a practical situation where we have limited training data, computing the joint

probability density p(x1, . . . ,xn|Cj) for each class will be difficult. Therefore, we

need to make some assumptions to simplify the decision rule. The following sections

describe some possible and common assumptions in the literature. We follow the

framework of Kittler et al. [120].

7.2.1 Product Rule

Assuming that the measurements x1, . . . ,xn are conditionally statistically indepen-

dent given the class, the joint class-conditional probability in Equation (7.1) can be
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written as

p(x1, . . . ,xn|Cj) =
n∏

i=1

p(xi|Cj) (7.2)

where p(xi|Cj) is the class-conditional model for the i’th classifier under class Cj.
Then, the decision rule becomes

assign ξ to Ck if k = arg
m

max
j=1

[

p(Cj)
n∏

i=1

p(xi|Cj)
]

= arg
m

max
j=1

[

(p(Cj))−(n−1)

n∏

i=1

p(Cj|xi)
] (7.3)

where p(Cj|xi) are the posterior probabilities for each classifier under class Cj. Under
the assumption of equal priors, Equation (7.3) becomes

assign ξ to Ck if k = arg
m

max
j=1

n∏

i=1

p(Cj|xi). (7.4)

The conditional independence assumption may not always hold but it gives a

practical approximation and the errors caused by this assumption will not be too

severe if we use different feature vectors and different classifiers in the combination

[67].

7.2.2 Sum Rule

If we assume that the posterior probabilities from individual classifiers will not deviate

dramatically from the corresponding prior probabilities, they can be rewritten as

p(Cj|xi) = p(Cj)(1 + εji) (7.5)

where εji ¿ 1. Substituting this approximation in Equation (7.3) and neglecting any

terms of second and higher order of εji gives the decision rule

assign ξ to Ck if k = arg
m

max
j=1

[

(1− n)p(Cj) +
n∑

i=1

p(Cj|xi)
]

. (7.6)
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Under the assumption of equal priors, Equation (7.6) becomes

assign ξ to Ck if k = arg
m

max
j=1

n∑

i=1

p(Cj|xi). (7.7)

The assumption that the posterior probabilities from individual classifiers do not

deviate dramatically from the priors will be unrealistic in some cases. However, this

approximation will have a low sensitivity to estimation errors [120].

7.2.3 Max Rule

Approximating the sum in Equation (7.6) by the maximum of the posterior proba-

bilities1 gives the decision rule

assign ξ to Ck if k = arg
m

max
j=1

[

(1− n)p(Cj) + n
n

max
i=1

p(Cj|xi)
]

(7.8)

which under the assumption of equal priors becomes

assign ξ to Ck if k = arg
m

max
j=1

n
max
i=1

p(Cj|xi). (7.9)

7.2.4 Min Rule

Approximating the product in Equation (7.3) by the minimum of the posterior prob-

abilities2 gives the decision rule

assign ξ to Ck if k = arg
m

max
j=1

[

(p(Cj))−(n−1)
n

min
i=1

p(Cj|xi)
]

(7.10)

which under the assumption of equal priors becomes

assign ξ to Ck if k = arg
m

max
j=1

n

min
i=1

p(Cj|xi). (7.11)

1 1

n

∑n

i=1
ai ≤ maxn

i=1
ai for ai ∈ R.

2
∏n

i=1
ai ≤ minn

i=1
ai for 0 ≤ ai ≤ 1.
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7.2.5 Median Rule

Using the fact that median is a robust estimate of the mean, approximating the sum

in Equation (7.6) by the median of the posterior probabilities gives the decision rule

assign ξ to Ck if k = arg
m

max
j=1

n

median
i=1

p(Cj|xi) (7.12)

under the assumption of equal priors.

7.2.6 Harmonic Mean Rule

Another measure of central tendency is the harmonic mean. Therefore, the sum in

Equation (7.6) can be replaced by the harmonic mean and the decision rule becomes

assign ξ to Ck if k = arg
m

max
j=1

[
n∑

i=1

(p(Cj|xi))−1

]−1

(7.13)

under the assumption of equal priors. Note that this rule is valid when the posterior

probabilities p(Cj|xi) are positive.

7.2.7 Majority Vote Rule

If we set each classifier to make a binary decision

δki =







1 if k = arg
m

max
j=1

p(Cj|xi)

0 otherwise,

(7.14)

approximating the sum in Equation (7.6) by the individual binary decision outcomes

gives the decision rule

assign ξ to Ck if k = arg
m

max
j=1

n∑

i=1

δji (7.15)

under the assumption of equal priors. The sum in Equation (7.15) counts the votes

received by each class from individual classifiers and the final decision is made in favor

of the class with the largest number of votes.
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All of these combination methods are based on the conditional independence as-

sumption. Furthermore, some additional conditions need to be satisfied for the clas-

sifier combination methods to improve the classification performance. The individual

classifiers should not be strongly correlated in their misclassification, i.e. they should

not agree with each other when they misclassify a sample, or at least they should

not assign the same incorrect class to a particular sample. This requirement can be

satisfied to a certain extent by using different feature vectors and different classifiers.

A numerical measure of dependency between classifiers is the Q statistic [125].

Given a labeled sample of n data points, the correct decisions made by the i’th

classifier can be collected in a vector Ti = (ti1, . . . , tik, . . . tin)
T ∈ R

(n×1) where tik

is 1 if the i’th classifier correctly classifies the k’th data point and 0 otherwise. For

the pair of classifiers i and j with the decision vectors Ti and Tj respectively, the

statistic Qij is given as

Qij =
N11N00 −N01N10

N11N00 +N01N10

(7.16)

where Nab = #{k|tik = a∧ tjk = b, 1 ≤ k ≤ n} for a ∈ {0, 1} and b ∈ {0, 1}. Q varies

between -1 and 1, and will be 0 for statistically independent classifiers. Classifiers

that tend to classify the same objects similarly will have positive values of Q and

those which make errors on different objects will have negative Q values. For more

than two classifiers, the average of the pairwise Q values can be used as the overall

measure.

Extensions of this framework to support multiple feature vectors and similarity

measures as well as relevance feedback will be described in Section 7.4.1. Experiments

and details of our system are described in Chapter 8.

7.3 Bayesian Networks

Bayesian networks [157] are directed acyclic graphs that allow effective representa-

tion of the joint probability distribution of a set of random variables. Therefore, they
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provide a tool to deal with two problems: uncertainty and complexity. There are two

components of a Bayesian network model M = {G,Θ}: the graph G that describes

the variables and their structural relationships, and the setΘ of parameters for proba-

bility distributions associated with each variable. Each node in the graph represents a

random variable and edges represent conditional independence relationships between

the variables.

LetM be a Bayesian network over the set of variables X = {x1, . . . , xn}. Then,

the joint probability distribution is given as

p(X ) = p(x1, . . . , xn)

=
n∏

i=1

p(xi|x1, . . . , xi−1)
(7.17)

using the chain rule of probability. The conditional independence relationships en-

coded in the Bayesian network state that a node xi is conditionally independent of

its ancestors given its parents πi. Therefore,

p(X ) =
n∏

i=1

p(xi|πi). (7.18)

Once we know the joint probability distribution encoded in the network, we can

answer all possible inference questions about the variables using marginalization.

There are two groups of problems involved in Bayesian network design: learning

and inference. Learning includes estimating the network structure and the parameters

of the probability distributions from data and prior information (e.g. expert knowl-

edge, causal relationships) if available. The simplest situation is the one where the

network structure is completely known (either specified by an expert or designed us-

ing the casual relationships between the variables in the problem domain) and there

are no unobserved variables in the training data. Other situations with increasing

complexity are known structure but unobserved variables, unknown structure with

observed variables and unknown structure with unobserved variables. It is possible to

learn both structure and parameters from data. However, learning structure is much
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harder than learning parameters. Inference involves computing information about

some of the variables given the information about others. It is not always possible to

make exact inferences because of the complexity of the network structure but approx-

imation algorithms exist. Books [157, 109, 128], detailed tutorials [92, 34, 122, 110]

and survey papers [35] have been written to present different aspects of Bayesian

networks.

Even though knowledge interpretation in Bayesian networks is similar to that in

neural networks, Bayesian networks have two advantages. First, they can incorporate

expert knowledge to increase the efficiency and accuracy of the knowledge extracted

from data. Second, they present the relationships between variables in a more causal

way and therefore enhance the understandability of the knowledge in the representa-

tion.

One needs to specify two things to fully characterize a Bayesian network: the

structure and the parameters. Here we assume that the structure is known a priori

and all the variables are always observable (complete data). In the next section, we

describe methods to estimate the parameters of the conditional distributions p(xi|πi).

7.3.1 Learning Parameters

Let the joint probability distribution of the variables in the network with parameter

set Θ be

p(X|Θ) = p(x1, . . . , xn|Θ)

=
n∏

i=1

p(xi|πi,θi)
(7.19)

where θi is the vector of parameters for the conditional distribution of xi and Θ =

(θ1, . . . ,θn). Given training data D = {X1, . . . ,Xm} as a random sample from this

joint distribution, we can define the goal of learning as finding the parameters of each
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conditional probability distribution that maximizes the likelihood of the training data

L(Θ|D) =
m∏

l=1

p(Xl|Θ)

=
m∏

l=1

n∏

i=1

p(xli|πi,θi)
(7.20)

where xli is the i’th variable in the training set Xl. This is equivalent to maximizing

the log-likelihood

logL(Θ|D) =
m∑

l=1

n∑

i=1

log p(xli|πi,θi). (7.21)

We see that the likelihood decomposes according to the structure of the network;

therefore, we can maximize the contribution of each node independently assuming

the parameters for each node are independent of the parameters of the other nodes

(global parameter independence) [92]. This procedure gives the maximum likelihood

estimates (MLE).

Another way of estimating the parameters is to assign a prior probability density

function p(θi) to each θi and use the training data D to compute the posterior dis-

tribution p(θi|D) and Bayes estimate Ep(θi|D)[θi]. Next, we present learning methods

for the conditional probability distributions for discrete and continuous variables.

Discrete Variables With Discrete Parents

The most commonly used types of variables in Bayesian networks are discrete vari-

ables. Let each discrete variable xi have ri possible values (states) with probabilities

p(xi = k|πi = j,θi) = θijk > 0 (7.22)

where k ∈ {1, . . . , ri}, j is the state of xi’s parents and θi = {{θijk}rik=2}
qi
j=1 with

qi =
∏

xl∈πi
rl (the parameter θi1 can be calculated as θi1 = 1 −∑ri

k=2 θijk), i.e.

having a multinomial distribution for every combination of πi. Given the training

data D, the MLE of θijk can be found as

θ̂ijk =
Nijk

Nij

(7.23)
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where Nijk is the number of cases in D in which xi = k and πi = j, and Nij =
∑ri

k=1Nijk.

However, MLEs are known to be sensitive to sparse data. When the sample is small

and the number of parameters is large, we can have unreliable estimates. Another way

is to use the Bayes estimate. First, we need to assign a prior distribution p(Θ) for Θ.

Under the parameter independence assumptions, the parameters remain independent

given the random sample [92], i.e.

p(Θ|D) =
n∏

i=1

qi∏

j=1

p(ϑij |D) (7.24)

where ϑij = {θij2, . . . ,θijri}. The global independence assumption states that the

parameters for each variable are independent of the parameters of the other variables.

The local independence assumption states that parameters for the states of a variable

conditioned on each configuration of its parents are also independent. Thus, we can

update each ϑij independently.

We can choose any prior for ϑij but there is a big advantage to use conjugate priors.

A conjugate prior is one which, when multiplied with the direct probability, gives a

posterior probability having the same functional form as the prior, thus allowing the

posterior to be used as a prior in further computations [30].

The conjugate prior for the multinomial distribution is the Dirichlet distribution

[56]. Geiger and Heckerman [80] showed that if all allowed states of the variables are

possible (i.e. θijk > 0), then parameter independence3 imply that the physical prob-

abilities for complete network structures must have a Dirichlet distribution specified

as

p(ϑij) = Dir(ϑij |αij1, . . . , αijri)

=
Γ(
∑ri

k=1 αijk)
∏ri

k=1 Γ(αijk)

ri∏

k=1

(θijk)
αijk−1

(7.25)

3There are also other assumptions that need to be made about the structure of the network but
we do not mention them here because we assume that the structure is fixed.
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where
∑ri

k=1 θijk = 1 and αijk are positive constants.

To obtain the Bayes estimate, we first compute the likelihood of the sample D as

p(D|ϑij) =
ri∏

k=1

(θijk)
Nijk . (7.26)

Then, the posterior distribution of ϑij can be computed using the Bayes rule as

p(ϑij |D) =
p(D|ϑij)p(ϑij)

p(D)

∝
ri∏

k=1

(θijk)
Nijk

ri∏

k=1

(θijk)
αijk−1

∝
ri∏

k=1

(θijk)
αijk+Nijk−1

= Dir(ϑij |αij1 +Nij1, . . . , αijri +Nijri).

(7.27)

The Bayes estimate for θijk is found by taking the conditional expected value

θ̂ijk = Ep(ϑij |D)[θijk]

=

∫

θijkp(ϑij |D)dϑij

=
αijk +Nijk

αij +Nij

(7.28)

where αij =
∑ri

k=1 αijk and Nij =
∑ri

k=1Nijk as before. αij is sometimes called the

equivalent sample size for the Dirichlet distribution because it is equal to the number

of observations we would have to make starting from complete ignorance in order to

arrive at that distribution [91]. It represents user’s confidence in the prior values of

ϑij , i.e. the larger αij is, the more certain the user is about the values. We will

discuss different choices for αij1, . . . , αijri in Section 7.3.3.

Continuous Variables With Discrete Parents

Continuous variables have not been used as widely as discrete variables and a common

way to handle them has been to quantize the values and use the estimation meth-

ods for discrete variables. The approaches that include continuous variables used
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either multivariate Gaussians [79, 129], mixtures of Gaussians [55] or Gaussian kernel

estimation [111].

We presented maximum likelihood estimates (MLEs) for the parameters of some

distributions in the exponential family in Section 3.3.5. One of the main advantages

of using distributions from the exponential family is that the computational require-

ments for learning are guaranteed to be linear in the sample size [34]. After the

sufficient statistics are computed, learning proceeds independently of the sample size.

As in the case of discrete variables, Bayes estimates for the parameters of continous

variables can be derived using data and prior information. We consider continuous

variables with only Gaussian or Gamma distributions with discrete parents in the rest

of the section. Exact inference for the case of continous variables with continuous

parents is also possible [79, 34, 129, 55] but exact inference for discrete variables with

continous parents is not always tractable [147].

Let xi be a continuous variable having a Gaussian distribution

p(xi|πi = j,θi) =
1√
2πσij

e(xi−µij)
2/2σ2ij , −∞ < xi <∞, −∞ < µij <∞, σij > 0

(7.29)

for each possible state j of its parents πi where j ∈ {1, . . . , qi} and θi = {µij, σ
2
ij}qij=1

with the qi possible states as described in the previous section. To find the MLEs of

the parameters, we first partition the training data D into D1, . . . ,Dqi according to

the states of πi. Then, the MLEs are computed as

µ̂ij =
1

#Dj

∑

xi∈Dj

xi and σ̂2ij =
1

#Dj

∑

xi∈Dj

(xi − µ̂ij)
2. (7.30)

Multivariate case is computed similarly.

However, we can have a small sample problem as in the discrete variable case.

Using prior information helps avoiding overfitting and can also ensure that the co-

variance matrix is positive definite in the multivariate case. Conjugate priors for the

parameters of a Gaussian(µ, σ2) distribution with mean µ and variance σ2 are given
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in [56, p. 169] as follows: The prior conditional distribution of µ for fixed σ is a

Gaussian distribution

µ|σ ∼ Gaussian(µ0, σ
2/τ0), −∞ < µ <∞, −∞ < µ0 <∞, τ0 > 0, (7.31)

the prior marginal distribution of σ−2 is a Gamma distribution

σ−2 ∼ Gamma(α0, β0), σ, α0, β0 > 0 (7.32)

and the prior marginal distribution of µ is a Student-t distribution

µ ∼ Student-t(2α0, µ0, α0β0τ0), −∞ < µ <∞, α0, β0, τ0 > 0, −∞ < µ0 <∞
(7.33)

where the Student-t distribution is defined as

Student-t(x|α, µ, τ) = τ 1/2Γ[(α + 1)/2]

(απ)1/2Γ(α/2)

[

1 +
τ

α
(x− µ)2

]−(α+1)/2

(7.34)

with α being the degrees of freedom, µ being the location parameter and τ being the

precision parameter.

Then, given a sample y1, . . . , yn and the sample mean ȳ =
∑n

i=1 yi, the posterior

joint distribution of µ and σ−2 is computed as follows: The posterior conditional

distribution of µ given σ is a Gaussian distribution

µ|σ ∼ Gaussian

(
τ0µ0 + nȳ

τ0 + n
,

σ2

τ0 + n

)

, (7.35)

the posterior marginal distribution of σ−2 is a Gamma distribution

σ−2 ∼ Gamma



α0 +
n

2
,

[

1

β0
+

1

2

n∑

i=1

(yi − ȳ)2 +
τ0n(ȳ − µ0)2
2(τ0 + n)

]−1


 (7.36)

and the posterior marginal distribution of µ is a Student-t distribution

µ ∼ Student-t

(

2α0 + n,
τ0µ0 + nȳ

τ0 + n
,

(α0 +
n
2
)τ0

1
β0

+ 1
2

∑n
i=1(yi − ȳ)2 +

τ0n(ȳ−µ0)2

2(τ0+n)

)

. (7.37)
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In the multivariate case, the conjugate conditional distribution of µ given Σ is a

Gaussian distribution, the conjugate marginal distribution of Σ−1 is a Wishart dis-

tribution and the conjugate marginal distribution of µ is a multivariate Student-t

distribution [56, p. 178].

Given the training data D partitioned into D1, . . . ,Dqi , the posterior distributions

for the parameters of a continuous variable xi can be computed using the formulas

above with the corresponding subsets of the training data for each possible state of its

parents πi. Then, the Bayes estimates of µij and σ
2
ij can be computed as the expected

values of the posterior distributions (conditional expected values given data), i.e.

µ̂ij =
τij0µij0 +#Dj xi|j

τij0 +#Dj

(7.38)

and

σ̂2ij =

2
βij0

+
∑

xi∈Dj
(xi − xi|j)

2 +
τij0#Dj (xi|j−µij0)

2

τij0+#Dj

2αij0 +#Dj

(7.39)

where xi|j =
1

#Dj

∑

xi∈Dj
xi.

When xi is a continuous variable having a Gamma distribution,

p(xi|πi = j,θi) =
1

Γ(αij)β
αij

ij

x
αij−1
i e−xi/βij xi ≥ 0, αij, βij > 0 (7.40)

for each possible state j of its parents πi where j ∈ {1, . . . , qi} and θi = {αij, βij}qij=1

with the qi possible states as described in the previous section. After partitioning the

training data as in the previous case, the method of moments estimators (MOMs) are

computed as

α̂ij =

(
1

#Dj

∑

xi∈Dj
xi

)2

(
1

#Dj

∑

xi∈Dj
x2i

)

−
(

1
#Dj

∑

xi∈Dj
xi

)2 (7.41)

and

β̂ij =

(
1

#Dj

∑

xi∈Dj
x2i

)

−
(

1
#Dj

∑

xi∈Dj
xi

)2

(
1

#Dj

∑

xi∈Dj
xi

) . (7.42)
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The conjugate prior conditional distribution for β for a fixed α in a Gamma(α, β)

distribution is also a Gamma distribution [34]

β−1|α ∼ Gamma(α0, β0), α0, β0 > 0 (7.43)

which results in the posterior conditional distribution which is also a Gamma

β−1|α ∼ Gamma



αn+ α0,

[

1

β0
+

n∑

i=1

yi

]−1


 (7.44)

where y1, . . . , yn is the data sample.

Given the training data D partitioned into D1, . . . ,Dqi , the posterior conditional

distributions for the βij parameters can be computed as above and their Bayes esti-

mates can be found as

β̂ij|αij =
αij #Dj + αij0

1
βij0

+
∑

xi∈Dj
xi

. (7.45)

We will discuss how to choose the prior distribution parameters in Section 7.3.3.

7.3.2 Making Inferences

Once we know the joint probability distribution encoded in the network, we can

answer all possible inference questions about the variables using marginalization. For

example, the joint probability distribution for the network in Figure 7.1(a) is

p(C, x1, x2, x3) = p(c)p(x1|C)p(x2|C)p(x3|C) (7.46)

where C = land cover class, x1 = Gibbs features class label, x2 = co-occurrence

features class label and x3 = spectral value class label. A useful application is to

estimate the probability of a pixel belonging to the land cover class C given the values

of the feature class labels x1, x2 and x3 for that pixel. Using the Bayes rule,

p(C|x1, x2, x3) =
p(C, x1, x2, x3)
p(x1, x2, x3)

=
p(x1, x2, x3|C)p(C)

p(x1, x2, x3)

=
p(x1|C)p(x2|C)p(x3|C)p(C)

p(x1|C)p(x2|C)p(x3|C)p(C) + p(x1|C̄)p(x2|C̄)p(x3|C̄)p(C̄)

(7.47)
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where C̄ means the pixel does not belong to the land cover class. This is called

“bottom-up” inference because it goes from effects to causes.

Similarly, we can compute the joint probability distribution for the network in

Figure 7.1(b) as

p(a, u, c, s,m, k, t) = p(a)p(u)p(c)p(s)p(m|a, u, c)p(k|u, c, s)p(t|u, c, s) (7.48)

where the binary variables represent a = action, u = close-up, c = crowd, s = scene

setting, m = motion, k = skin and t = texture. A possible application is to compute

the probability of a video clip shot in a particular scene setting s given its measure-

ments m for motion, k for skin and t for texture. Using the Bayes rule, we obtain

p(s|m, k, t) = p(s,m, k, t)

p(m, k, t)

=

∑

a,u,c p(a, u, c, s,m, k, t)
∑

a,u,c,s p(a, u, c, s,m, k, t)
.

(7.49)

Another interesting application is to find video clips which have a high probability of

having a crowd in a specific setting but not having any action given the motion, skin

and texture measurements, i.e. p(ā, c, s|m, k, t).

7.3.3 Updating Parameters

This section discusses how to set the prior distributions and then how to update the

parameters of a network using new data given its current state.

Discrete Variables With Discrete Parents

The maximum likelihood estimate in Equation (7.23) is also called the relative fre-

quency estimate and involves only the counts of the states of discrete variables in the

training data. However, as mentioned in Section 7.3.1, maximum likelihood estimates

are known to be sensitive to sparse data. If we have only a few training examples,

the relative frequency estimate can give extreme values and becomes unreliable. The
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Bayes estimate in Equation (7.28) deals with this problem by making use of the prior

information. When there are a few training examples, the prior information has more

effect. When the number of training examples increases, the effect of training data

starts to increase.

An intuitive choice for the hyperparameters αij1, . . . , αijri for the Dirichlet prior is

to assume all ri states to be equally probable and set αijk = 1,∀k ∈ {1, . . . , ri}. This
corresponds to the prior distribution p(ϑij) = Γ(ri) which is equivalent to the number

of combinatorial subsets of the variables in ϑij . This special case is also called the

Laplace’s law of succession [123] where

θ̂ijk =
1 +Nijk

ri +Nij

. (7.50)

It is called a law of succession because it represents the conditional expectation that

θijk will have a particular value given its values in previous cases, i.e. training exam-

ples.

This can also be explained using the form of the Bayes estimate

θ̂ijk =
αβ +Nijk

α +Nij

(7.51)

where β is the prior estimate for αijk and α is the weight given to the prior (i.e.

equivalent sample size, the number of training examples required for the significance

of their estimate to be the same as the significance of the prior) [144]. It can also be

explained as a linear interpolation between the maximum likelihood estimate Nijk/Nij

and the prior β as

θ̂ijk =

(
α

α +Nij

)

β +

(
Nij

α +Nij

)
Nijk

Nij

. (7.52)

Laplace’s law of succession is a special case of a Bayesian estimate starting from the

uniform prior of β = 1/ri on {αijk}rik=1 and using α = ri.

Another choice is the Jeffreys-Perks’ law of succession

θ̂ijk =
0.5 +Nijk

0.5ri +Nij

(7.53)
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which is the special case with α = 0.5ri [123]. The Laplace and Jeffreys-Perks esti-

mates have been criticized for assigning either too much or too little probability to

specific events [165] but were also decided to be safe choices when the distribution of

the source is unknown and the number of possible states ri is fixed and known [123].

Witten and Bell [210] developed a Poisson process model and got small improvements

of the coding efficiency for text compression over the case where the Laplace’s law of

succession was used.

Yet another choice is Ristad’s law of succession [165] which can be explained as

follows. We consider each state to be a symbol in an alphabet. Then, a training session

is a string that is a subset of symbols in the alphabet. In the first interpretation, all

nonempty subsets of the alphabet are equally likely (uniform subsets prior)

θ̂ijk =







1
ri

if tij = 0

(Nijk+1)(Nij+1−tij)

(Nij+tij)(Nij+1−tij)+tij(ri−tij)
if Nijk > 0

tij
(Nij+tij)(Nij+1−tij)+tij(ri−tij)

otherwise

(7.54)

where tij = #{k : Nijk > 0}. In the second interpretation, all nonzero subset cardi-

nalities are equally likely (uniform cardinality prior)

θ̂ijk =







1+Nijk

ri+Nij
if tij = 0 or tij = ri

(Nijk+1)(Nij+1−tij)

N2
ij+Nij+2tij

if tij < ri and Nijk > 0

tij(tij+1)

(ri−tij)(N2
ij+Nij+2tij)

otherwise

. (7.55)

According to the uniform subsets prior, both very large and very small subsets are

relatively improbable. On the other hand, the uniform cardinality prior assigns more

probability to small and large subsets of the alphabet and less to subsets of moderate

cardinality. Both laws reduce to Laplace’s law of succession when all the states are

attested, i.e. tij = ri in our case.

Laplace’s law of succession and Jeffreys-Perks’ law of succession still have the

influence of the priors a lot if we do not have examples for some of the states. Ristad’s
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law of succession with uniform cardinality prior allocates more probability to unseen

states than the method with uniform subsets prior. When estimating the probability

of a specific state, Ristad’s laws of succession with uniform subsets and uniform

cardinality priors take into account the examples for other states of the same variable

as well. However, Laplace’s law of succession and Jeffreys-Perks’ law of succession

just count the examples for that particular state.

Given the current state of the network that was trained using the prior information

and the sample D, we can easily update the parameters when new data D′ is available.

The new posterior distribution for ϑij becomes

p(ϑij |D,D′) =
p(D′|ϑij)p(ϑij |D)

p(D′|D) . (7.56)

With the Dirichlet priors and the posterior distribution for p(ϑij |D) given in Equation

(7.27), the updated posterior distribution becomes

p(ϑij |D,D′) = Dir(ϑij |αij1 +Nij1 +N ′
ij1, . . . , αijri +Nijri +N ′

ijri
) (7.57)

where N ′
ijk is the number of cases in D′ in which xi = k and πi = j. This is equivalent

to defining a new prior distribution Dir(ϑij |α′
ij1, . . . , α

′
ijri

) with α′
ijk = αijk+Nijk, k =

1, . . . , ri, and using this new prior to compute the updated posterior distribution from

the new data using Equation (7.27). Hence, updating the network parameters involves

only updating the counts in the estimates for θ̂ijk.

Continuous Variables With Discrete Parents

A straightforward way of choosing the parameters for the prior distributions for con-

tinuous variables is to specify prior means and variances. When the continuous vari-

able xi is assumed to have a Gaussian(µij, σ
2
ij) distribution for each possible state j

of its parents, we start by assuming prior means and variances to its parameters as

E[µij], var(µij), E[σ−2
ij ] and var(σ−2

ij ). Then, the parameters for the prior distributions
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for µij and σ−2
ij can be computed as

µij0 = E[µij], (7.58)

αij0 =
E2[σ−2

ij ]

var(σ−2
ij )

, (7.59)

βij0 =
var(σ−2

ij )

E[σ−2
ij ]

, (7.60)

τij0 =
1

(αij0 − 1)βij0var(µij)
. (7.61)

After being given the data sample, the posterior distributions and Bayes estimates

for µij and σ2ij can be computed using the formulas in Section 7.3.1. The Bayes

estimate for µij can be written as a linear combination of the prior mean and the

maximum likelihood estimate as

µ̂ij =

(
τij0

τij0 +#Dj

)

µij0 +

(
#Dj

τij0 +#Dj

)

xi|j (7.62)

where τij0 acts as the equivalent sample size. When there are a few training exam-

ples, the prior information has more effect. When the number of training examples

increases, the effect of training data starts to increase.

Given the current state of the network that was trained using the prior information

and the sample D, the parameters can be easily updated using new data D′ as

µ̂ij =
τij0µij0 +#(Dj ∪ D′

j)xi|j

τij0 +#(Dj ∪ D′
j)

(7.63)

and

σ̂2ij =

2
βij0

+
∑

xi∈Dj∪D′j
(xi − xi|j)

2 +
τij0#(Dj∪D′j) (xi|j−µij0)

2

τij0+#(Dj∪D′j)

2αij0 +#(Dj ∪ D′
j)

(7.64)

where xi|j = 1
#(Dj∪D′j)

∑

xi∈Dj∪D′j
xi. A more efficient method is to first update the
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parameters µij0, αij0, βij0 and τij0 as

µ′ij0 =
τij0µij0 +#Dj xi|j

τij0 +#Dj

, (7.65)

α′
ij0 = αij0 +

#Dj

2
, (7.66)

β′
ij0 =




1

βij0

+
1

2

∑

xi∈Dj

(xi − xi|j)
2 +

τij0#Dj (xi|j − µij0)
2

2(τij0 +#Dj)





−1

, (7.67)

τ ′ij0 = τij0 +#Dj (7.68)

after each observation set D where xi|j =
1

#Dj

∑

xi∈Dj
xi, and then use the new values

as priors for the following case where D′ is observed. Then, the Bayes estimates

for µij0 and βij0 can be computed using the formulas in Equations (7.38) and (7.39)

respectively.

7.4 Combining Features and Similarity Measures

7.4.1 Combination in Combined Classifiers Framework

We described nine classifiers in Section 4.4 and described six methods to combine the

decisions made by individual classifiers in Section 7.2. As well as assigning its input to

either the relevance or the irrelevance class, each classifier also outputs the strength

of its decision in terms of posterior probabilities computed from its measurement

vector as shown in Figure 4.2. Using the notation and definitions in Section 4.4, the

straightforward extension of Figure 4.2 in the combined classifiers framework becomes:

1. Combine Z1 = {xijk, 1 ≤ k ≤ K}, the outputs of all classifiers for a particular

feature vector i and similarity model j,

2. Combine Z2 = {xijk, 1 ≤ i ≤ I, 1 ≤ j ≤ J}, the outputs of classifier k for all

feature vectors and similarity models,
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3. Combine Z3 = {xijk, 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ k ≤ K}, the outputs of all

classifiers for all feature vectors and similarity models.

Given the posterior probabilities computed by a combined classifier model, the

final similarity is measured using the posterior ratio

∆(Zl) =
p(A|Zl)

p(B|Zl)
, 1 ≤ l ≤ 3. (7.69)

Under the assumption of equal priors, the posterior probability for the relevance class

A in Equation (7.69) is computed for each classifier combination rule in Section 7.2

as follows:

1. Product rule:

p(A|Zl) = α
∏

x∈Zl

p(A|x), (7.70)

2. Sum rule:

p(A|Zl) = α
∑

x∈Zl

p(A|x), (7.71)

3. Max rule:

p(A|Zl) = αmax
x∈Zl

p(A|x), (7.72)

4. Min rule:

p(A|Zl) = αmin
x∈Zl

p(A|x), (7.73)

5. Median rule:

p(A|Zl) = α median
x∈Zl

p(A|x) (7.74)

where α is the normalization factor, and

6. Majority vote rule:

p(A|Zl) =

∑

x∈Zl
δAx + 1

#Zl + 2
(7.75)
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i.e. a Bayes estimate using Laplace’s prior (see Section 7.3.3) and the votes

from all classifiers where δAx is the vote for class A from the classifier with the

measurement vector x.

The posterior probability for the irrelevance class B is computed analogously. Clas-

sification and retrieval performances for the combined classifiers framework are given

in Sections 8.2 and 8.3.

7.4.2 Combination in Bayesian Network Framework

We showed that the class-conditional and posterior probabilities are very effective in

retrieval. However, the probabilistic models are estimated from noisy data so their

outputs are also noisy. This uncertainty is already incorporated as “probability of

probability” in the two-level modeling in the classification framework. Furthermore,

a Bayesian network can be considered as another classifier that can handle complex

relationships of its inputs.

Assume that the system is using a combination of n of the feature vectors, simi-

larity models and classifiers described in the previous chapters. Each model measures

the relevancy of a database image with respect to the query image. Denote the final

measurements by these models as x1, . . . , xn, which can be likelihood ratio values,

distance values or probabilities. Each of these measurements will also have an as-

sociated probability distribution. The joint posterior probability for the relevance

class is p(A|x1, . . . , xn) and the joint posterior probability for the irrelevance class is

p(B|x1, . . . , xn). Using the conditional independence assumption for the model out-

puts, the probability that a database image is relevant to the query image becomes

p(A|x1, . . . , xn) =
p(x1, . . . , xn|A)p(A)

p(x1, . . . , xn)

=
p(A)

∏n
i=1 p(xi|A)

p(A)∏n
i=1 p(xi|A) + p(B)∏n

i=1 p(xi|B)

(7.76)
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and the probability that they are irrelevant becomes

p(B|x1, . . . , xn) =
p(x1, . . . , xn|B)p(B)

p(x1, . . . , xn)

=
p(B)∏n

i=1 p(xi|B)
p(A)∏n

i=1 p(xi|A) + p(B)∏n
i=1 p(xi|B)

.

(7.77)

The conditional independence assumption reduces the Bayesian network into a

product rule like in Section 7.2. Here, the input values x1, . . . , xn are the scalar

random variables for the likelihood ratio values output by the probabilistic similarity

models and the distance values output by the geometric models. The final measure

for similarity between images is the combined posterior ratio

∆ =
p(A|x1, . . . , xn)

p(B|x1, . . . , xn)
. (7.78)

The resulting network is given in Figure 7.2. The root node c is a binary variable

representing whether two images belong to the relevance class or not, i.e. c = {1, 0} ≡
{A,B}. Leaf nodes represent the model outputs. The class-conditional probabilities

for the measurements x1, . . . , xn and the marginal probabilities for the classes A and

B can be estimated using the models described in Section 7.3.1. Experiments are

presented in Section 8.3.

7.5 Relevance Feedback

All of the similarity measures up to this point were based on the original query image.

The Bayesian framework can also be extended to the case when feedback from the

user is available. Given the original query feature vector and feature vectors for the

images in the database, initial search is done by computing the feature difference

vectors between the query image and all images in the database. Then, each image

in the database can be ranked according to the posterior ratios

∆ =
p(A|ξ(0))
p(B|ξ(0)) (7.79)
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Figure 7.2: The naive Bayesian network structure to combine multiple similarity
measures. The root node c is a binary variable representing whether two images
belong to the relevance class or not, and the leaf nodes are the outputs of the models
that measure the relevancy of database images with respect to the query image.
Details of the network are described in the text.

where ξ(0) represents the measurements based on the initial query image and can be

computed using any of the models described earlier.

1. Positive feedback:

When the user labels an image as relevant, new feature difference vectors be-

tween the labeled image and all images in the database are computed. Then,

using the class-conditional probabilities that are based on these feature differ-

ence vectors, each similarity model outputs the posterior probabilities and the

images are ranked according to the updated posterior ratios

∆ =
p(A|ξ(0), ξ(1)+ )

p(B|ξ(0), ξ(1)+ )
=
p(ξ

(1)
+ |A)p(A|ξ(0))

p(ξ
(1)
+ |B)p(B|ξ(0))

(7.80)

where ξ
(1)
+ represents the new measurements based on the first positive feedback

image. Given a sequence of n images labeled as relevant, the updated posteriors

are incrementally computed using the conditional independence assumption as

p(A|ξ(0), ξ(1)+ , . . . , ξ
(n)
+ ) ∝ p(ξ

(n)
+ |A)p(A|ξ(0), ξ(1)+ , . . . , ξ

(n−1)
+ ) (7.81)

and

p(B|ξ(0), ξ(1)+ , . . . , ξ
(n)
+ ) ∝ p(ξ

(n)
+ |B)p(B|ξ(0), ξ(1)+ , . . . , ξ

(n−1)
+ ) (7.82)
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where ξ
(n)
+ represents the measurements based on the n’th positive feedback

image.

2. Negative feedback:

When the user labels an image as irrelevant, search proceeds by computing new

feature difference vectors as above but the posteriors are updated differently.

The strength of the evidence of two images being relevant is a negative evidence

that they are irrelevant. Therefore, the likelihood of an image being relevant

to a negative example also represents its likelihood of being irrelevant to the

user’s desired image. Given the first image labeled as irrelevant by the user, the

posteriors are updated as

p(A|ξ(0), ξ(1)+ , . . . , ξ
(n)
+ , ξ

(1)
− ) ∝ p(ξ

(1)
− |B)p(A|ξ(0), ξ(1)+ , . . . , ξ

(n)
+ ) (7.83)

and

p(B|ξ(0), ξ(1)+ , . . . , ξ
(n)
+ , ξ

(1)
− ) ∝ p(ξ

(1)
− |A)p(B|ξ(0), ξ(1)+ , . . . , ξ

(n)
+ ) (7.84)

where ξ
(1)
− represents the measurements based on the first negative feedback im-

age. Given a sequence of m images labeled as irrelevant, the updated posteriors

are incrementally computed using the conditional independence assumption as

p(A|ξ(0), ξ(1)+ , . . . , ξ
(n)
+ , ξ

(1)
− , . . . , ξ

(m)
− ) ∝

p(ξ
(m)
− |B)p(A|ξ(0), ξ(1)+ , . . . , ξ

(n)
+ , ξ

(1)
− , . . . , ξ

(m−1)
− ) (7.85)

and

p(B|ξ(0), ξ(1)+ , . . . , ξ
(n)
+ , ξ

(1)
− , . . . , ξ

(m)
− ) ∝

p(ξ
(m)
− |A)p(B|ξ(0), ξ(1)+ , . . . , ξ

(n)
+ , ξ

(1)
− , . . . , ξ

(m−1)
− ). (7.86)

Experiments are presented in Section 8.5. Vasconcelos and Lippman [205] and Cox

et al. [49] proposed similar feedback algorithms with the conditional independence
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assumptions but the former paper used only one kind of feature vector and the latter

paper used only positive feedback with feature vector combination performed as a

weighted sum of L1 distances. Furthermore, the former paper used as many classes

as there are images in the database and having too many classes caused estimation

problems for the likelihood based on negative examples.
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Chapter 8

EXPERIMENTS

Experiments for testing individual algorithms were already presented in their cor-

responding chapters. In this chapter, we first give a short summary of our system

components. Then, the rest of the chapter presents extensive experiments for both

classification and retrieval algorithms proposed in Chapter 7. Comparative tests us-

ing two algorithms from the literature are also presented. In all of the experiments,

we use independent training (approximately one-third of the whole data) and testing

(approximately two-thirds of the whole data) sets as described in Section 1.5.2. Re-

sults show that the Bayesian framework gives significant performance improvements

and performs more robustly and much more powerful than the competing algorithms.

8.1 System Components

1. Databases: Details of three groundtruth databases were given in Section 1.5.1.

These databases are:

(a) ISL Database: 600 aerial and satellite images divided into 7 categories.

(b) VisTex Database: 736 texture images divided into 46 categories.

(c) COREL Database: 1575 stock photo images including nature, animals,

buildings, cars and airplanes divided into 18 categories.

2. Feature level: Descriptions of the features were given in Section 3.2. Each image

is associated with the following q-dimensional feature vectors:

(a) Line-angle-ratio statistics (LAR) (q = 20)
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(b) Co-occurrence variances (COOC) (q = 20)

(c) Gabor features (GABOR) (q = 60)

(d) Moments features (MOMENTS) (q = 36)

(e) Tamura features (TAMURA) (q = 4)

(f) Color histograms (COLHIST) (q = 27 for the VisTex Database and 64 for

the COREL Database)

3. Similarity level: Given the feature vectors for a pair of images, similarity mea-

sures compute a value that can be used to rank each image in the database

according to its similarity to the query image. These values have a distance-like

interpretation, i.e. a smaller value means that that image is more similar to the

query image than another image with a larger value. Our system includes both

probabilistic and geometric similarity measures and also supports combinations

of multiple measurements for similarity:

(a) Likelihood ratio with multivariate Gaussian (MVG)

This measure uses likelihood ratios that are derived from a Bayesian clas-

sifier that measure the relevancy of two images, one being the query image

and one being a database image, so that image pairs which have a high

likelihood value are classified as “relevant” and the ones which have a lower

likelihood value are classified as “irrelevant”. A multivariate Gaussian for

each class is used to estimate the class-conditional probabilities in the like-

lihood ratio.

(b) Likelihood ratio with independently fitted distributions (FIT)

This measure uses the same idea as the previous one but uses independently

fitted distributions for each component in the class-conditional densities.

(c) Likelihood ratio with mixtures of Gaussians (GMIX)

This measure uses the same idea as the previous ones but uses mixtures of
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Gaussians for the class-conditional densities.

(d) Minkowsky Lp metric (Lp)

This is the classical Lp metric. We use a classification-based approach with

a minimum error decision rule to select the best performing p for the Lp

metric for our datasets.

(e) Combined classifiers

Outputs of different classifiers trained on different combinations of feature

vectors and class-conditional models are combined to compute the similar-

ities between images based on multiple measurements.

(f) Bayesian network

A naive Bayesian network is used to have one more level of fusion of the

probabilities of likelihood ratio values, distance values or class-conditional

probabilities.

4. Post-processing level: Post-processing algorithms address the problem of re-

trieving images that are quite irrelevant to the query image simply because

they are close to it in the feature space, and also support relevance feedback.

Our system includes the following post-processing algorithms:

(a) Graph-theoretic clustering (GTC)

This graph-theoretic approach formulates the database search as a problem

of finding the cliques of a graph that is constructed from the top-ranked

results of successive queries. The “best” clique (according to the criteria

described in Chapter 5) is returned as the final set of relevant images to

the query. Each image in the database is also assigned a probability of its

being similar to the query image.

(b) Relevance feedback with weighted distances

This post-processing method uses a weighted distance approach with two
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ways of weight updating. In the first one, weights are the ratios of standard

deviations of the features both for the whole database and also among the

images selected as relevant by the user. In the second one, weight updating

problem is formulated as a regression problem where the optimal weights

are found using different least-squares methods. The distance values are

then used as similarity measures to rank images in the database. An

iterative approach is used to update the weights to find new sets of relevant

images.

(c) Bayesian relevance feedback

Posterior probabilities in the probabilistic similarity measures are updated

using the positive and negative relevance feedback information according

to the Bayes’ formula.

8.2 Classification Performance

Classifier combination methods of Section 7.2 were used to perform classification ex-

periments in the framework described in Section 7.4.1. The following tables present

classification errors for training and testing datasets using a combination of n classi-

fiers for different databases. The smallest classification errors for each case are marked

with boxes.

Table 8.1: Outputs of all classifiers (Gaussian linear, Gaussian quadratic, Fisher’s

linear, Logistic linear, scaled nearest mean) for a particular feature vector and

similarity model were combined for the ISL Database (n = 5).

Table 8.2: Outputs of a particular classifier for all feature vectors (LAR+COOC,

GABOR, MOMENTS, TAMURA) and all similarity models (MVG, FIT) were

combined for the ISL Database (n = 8).

Table 8.3: Outputs of all classifiers (Gaussian linear, Gaussian quadratic, Fisher’s
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linear, Logistic linear, scaled nearest mean, neural network) for a particular

feature vector and similarity model were combined for the VisTex Database

(n = 6).

Table 8.4: Outputs of a particular classifier for all feature vectors (LAR+COOC,

GABOR, MOMENTS, TAMURA, COLHIST) and all similarity models (MVG,

FIT) were combined for the VisTex Database (n = 10).

Table 8.5: Outputs of all classifiers (Gaussian linear, Gaussian quadratic, Fisher’s

linear, Logistic linear, scaled nearest mean) for a particular feature vector and

similarity model were combined for the COREL Database (n = 5).

Table 8.6: Outputs of a particular classifier for all feature vectors (LAR+COOC,

GABOR, MOMENTS, COLHIST) and all similarity models (MVG, FIT) were

combined for the COREL Database (n = 8).

Table 8.7: Outputs of all classifiers (Gaussian linear, Gaussian quadratic, Fisher’s

linear, Logistic linear, scaled nearest mean) for all feature vectors (LAR+COOC,

GABOR, MOMENTS, TAMURA) and all similarity models (MVG, FIT) were

combined for the ISL Database (n = 40); outputs of all classifiers (Gaussian

linear, Gaussian quadratic, Fisher’s linear, Logistic linear, scaled nearest mean,

neural network) for all feature vectors (LAR+COOC, GABOR, MOMENTS,

TAMURA, COLHIST) and all similarity models (MVG, FIT) were combined

for the VisTex Database (n = 60); and outputs of all classifiers (Gaussian lin-

ear, Gaussian quadratic, Fisher’s linear, Logistic linear, scaled nearest mean)

for all feature vectors (LAR+COOC, GABOR, MOMENTS, COLHIST) and

all similarity models (MVG, FIT) were combined for the COREL Database

(n = 40).
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Table 8.1: Classification performance in terms of classification error for training and testing datasets by combining the
outputs of all classifiers for a particular feature vector and similarity model for the ISL Database. The best performing
combination rules (that gave the smallest classification errors) are marked by boxes.

Classification error in probability space
MVG FIT GMIX

Feature Classifier Training Testing Training Testing Training Testing

LAR+COOC Product rule 0.084762 0.187910 0.319048 0.313506 0.242302 0.326281
Sum rule 0.085397 0.188571 0.318968 0.313459 0.242222 0.325691
Max rule 0.077857 0.181015 0.322937 0.314569 0.247857 0.329067
Min rule 0.077857 0.181015 0.322937 0.314569 0.247857 0.329067
Median rule 0.098810 0.197851 0.314841 0.312893 0.238333 0.324557
Maj. vote rule 0.098810 0.197851 0.314841 0.312893 0.238333 0.324557

GABOR Product rule 0.019286 0.086068 0.250635 0.251570 0.025079 0.091712
Sum rule 0.025079 0.088170 0.250794 0.251523 0.029365 0.092822
Max rule 0.016746 0.092774 0.250476 0.254309 0.022143 0.096128
Min rule 0.016746 0.092774 0.250476 0.254309 0.022143 0.096128
Median rule 0.054921 0.108571 0.245952 0.247981 0.056905 0.111854
Maj. vote rule 0.054921 0.108571 0.245952 0.247981 0.056905 0.111854

MOMENTS Product rule 0.140159 0.219504 0.250238 0.257450 0.175317 0.271830
Sum rule 0.140556 0.219811 0.250238 0.256104 0.149841 0.235372
Max rule 0.135317 0.220897 0.253175 0.261346 0.181032 0.276151
Min rule 0.135317 0.220897 0.253175 0.261346 0.181032 0.276151
Median rule 0.154524 0.224935 0.251746 0.255679 0.173810 0.270697
Maj. vote rule 0.154524 0.224935 0.251746 0.255679 0.173810 0.270697

TAMURA Product rule 0.270159 0.287438 0.272302 0.289728 0.275397 0.292727
Sum rule 0.269762 0.287934 0.274444 0.292515 0.277302 0.294404
Max rule 0.269048 0.283943 0.276825 0.291523 0.268968 0.287532
Min rule 0.269048 0.283943 0.276825 0.291523 0.268968 0.287532
Median rule 0.268730 0.288028 0.282063 0.295348 0.290635 0.310484
Maj. vote rule 0.268730 0.288028 0.282063 0.295348 0.290635 0.310484
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Table 8.2: Classification performance in terms of classification error for training and
testing datasets by combining the outputs of a particular classifier for all feature
vectors and similarity models for the ISL Database. The best performing combination
rules (that gave the smallest classification errors) are marked by boxes.

Classification error in probability space
Product rule Sum rule Max rule

Database Training Testing Training Testing Training Testing

Gaussian linear classifier 0.060159 0.106942 0.082302 0.122527 0.041349 0.108028

Gaussian quadratic classifier 0.023254 0.088052 0.040873 0.095159 0.032222 0.101960

Fisher’s linear classifier 0.060159 0.106942 0.082302 0.122527 0.041349 0.108028

Logistic linear classifier 0.020794 0.079764 0.047460 0.098347 0.014048 0.085148

Scaled nearest mean classifier 0.198333 0.277875 0.203413 0.256954 0.199444 0.303400
Min rule Median rule Maj. vote rule

Training Testing Training Testing Training Testing

Gaussian linear classifier 0.041349 0.108028 0.118810 0.154758 0.115397 0.145502
Gaussian quadratic classifier 0.032222 0.101960 0.117460 0.158772 0.108254 0.150035

Fisher’s linear classifier 0.041349 0.108028 0.118810 0.154758 0.115397 0.145502

Logistic linear classifier 0.014048 0.085148 0.093730 0.133908 0.095159 0.136080

Scaled nearest mean classifier 0.199444 0.303400 0.230794 0.246328 0.226349 0.248335

Using combined classifiers usually did not improve classification performance when

classifiers for a particular feature vector and similarity model were used (Tables 8.1,

8.3, 8.5). This is consistent with other results [119, 120, 67] that using different

classifiers for the same feature vector often violates the conditional independence as-

sumptions in the derivations of the combination rules. On the other hand, combining

the outputs of a particular classifier for different feature vectors and similarity models

highly improved the results of the experiments without combination (Tables 8.2, 8.4,

8.6), which is the actual goal of our combination framework.

The most successful combination rule was the product rule when multiple feature

vectors were used. The sum, max and min rules were also successful. The most

successful classifiers were again the Logistic linear and Gaussian quadratic classifiers.

Combining the outputs of all classifiers for all feature vectors and all similarity models

did not give much improvement and is not worth the heavy computation (Table 8.7).

Q statistics values for all feature vectors, similarity models and classifiers (as

described above for different databases) were computed using Equation (7.16) and
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Table 8.3: Classification performance in terms of classification error for training and testing datasets by combining
the outputs of all classifiers for a particular feature vector and similarity model for the VisTex Database. The best
performing combination rules (that gave the smallest classification errors) are marked by boxes.

Classification error in probability space
MVG FIT GMIX

Feature Classifier Training Testing Training Testing Training Testing

LAR+COOC Product rule 0.129529 0.168043 0.186896 0.197609 0.151268 0.203478
Sum rule 0.130435 0.171630 0.187198 0.197174 0.150060 0.200761

Max rule 0.128623 0.162935 0.184481 0.197065 0.226751 0.278804

Min rule 0.128623 0.162935 0.184481 0.197065 0.226751 0.278804

Median rule 0.153986 0.191957 0.195048 0.200109 0.146739 0.197174

Maj. vote rule 0.126510 0.177826 0.189312 0.201196 0.146135 0.199891

GABOR Product rule 0.010568 0.060761 0.081824 0.090217 0.015097 0.064239
Sum rule 0.013587 0.061304 0.082729 0.091739 0.020531 0.064457
Max rule 0.009360 0.075000 0.075483 0.081848 0.012681 0.064565
Min rule 0.009360 0.075000 0.075483 0.081848 0.012681 0.064565
Median rule 0.022947 0.061087 0.097524 0.102826 0.030495 0.064674

Maj. vote rule 0.008454 0.075978 0.072464 0.081087 0.011171 0.071957

MOMENTS Product rule 0.131643 0.161087 0.186896 0.183370 0.138889 0.175543
Sum rule 0.131944 0.163478 0.187198 0.183587 0.140097 0.178913

Max rule 0.122283 0.157391 0.179952 0.180000 0.121377 0.165870

Min rule 0.122283 0.157391 0.179952 0.180000 0.121377 0.165870
Median rule 0.140700 0.170435 0.194143 0.194457 0.146437 0.187174
Maj. vote rule 0.131341 0.165543 0.183273 0.182500 0.137077 0.181739

TAMURA Product rule 0.182065 0.182283 0.174215 0.172283 0.175423 0.172174

Sum rule 0.182367 0.182500 0.174215 0.173370 0.175423 0.172174

Max rule 0.177234 0.178804 0.174215 0.172065 0.175725 0.172609

Min rule 0.177234 0.178804 0.174215 0.172065 0.175725 0.172609
Median rule 0.190217 0.189130 0.176932 0.173696 0.177234 0.175109

Maj. vote rule 0.180857 0.176522 0.169988 0.170435 0.176027 0.177065

COLHIST Product rule 0.054952 0.066413 0.118659 0.121957 0.069746 0.075870
Sum rule 0.054348 0.065326 0.118961 0.121413 0.071558 0.078804

Max rule 0.049517 0.065870 0.113829 0.117283 0.060688 0.070435

Min rule 0.049517 0.065870 0.113829 0.117283 0.060688 0.070435
Median rule 0.057669 0.067283 0.125000 0.125000 0.088768 0.094022

Maj. vote rule 0.047705 0.061413 0.110809 0.113370 0.086353 0.090435
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Table 8.4: Classification performance in terms of classification error for training and
testing datasets by combining the outputs of a particular classifier for all feature vec-
tors and similarity models for the VisTex Database. The best performing combination
rules (that gave the smallest classification errors) are marked by boxes.

Classification error in probability space
Product rule Sum rule Max rule

Database Training Testing Training Testing Training Testing

Gaussian linear classifier 0.060688 0.056630 0.092995 0.085761 0.041063 0.055000

Gaussian quadratic classifier 0.009662 0.052500 0.022947 0.034130 0.034420 0.101087

Fisher’s linear classifier 0.060688 0.056630 0.092995 0.085761 0.041063 0.055000

Logistic linear classifier 0.007246 0.031087 0.022041 0.034022 0.008756 0.056087

Scaled nearest mean classifier 0.078200 0.086196 0.091787 0.088043 0.084239 0.118587

Nearest neighbor classifier 0.000000 0.059783 0.000000 0.066848 0.000000 0.066739

Parzen classifier 0.001812 0.077283 0.008454 0.043370 0.001510 0.092609

Binary decision tree classifier 0.000000 0.059674 0.000000 0.063261 0.000000 0.090543

Neural network classifier 0.015097 0.033152 0.016908 0.034348 0.015399 0.049239
Min rule Median rule Maj. vote rule

Training Testing Training Testing Training Testing

Gaussian linear classifier 0.041063 0.055000 0.119565 0.115652 0.104469 0.097283
Gaussian quadratic classifier 0.034420 0.101087 0.050423 0.053804 0.045894 0.047826

Fisher’s linear classifier 0.041063 0.055000 0.119565 0.115652 0.104469 0.097283
Logistic linear classifier 0.008756 0.056087 0.037440 0.043261 0.035628 0.045870
Scaled nearest mean classifier 0.084239 0.118587 0.130133 0.121413 0.112319 0.109130

Nearest neighbor classifier 0.000000 0.066739 0.000000 0.074239 0.000000 0.091957

Parzen classifier 0.001510 0.089239 0.017814 0.048261 0.019324 0.054239

Binary decision tree classifier 0.000000 0.090543 0.000000 0.070000 0.000000 0.093804
Neural network classifier 0.015399 0.049239 0.033213 0.045217 0.033213 0.049022
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Table 8.5: Classification performance in terms of classification error for training and testing datasets by combining
the outputs of all classifiers for a particular feature vector and similarity model for the COREL Database. The best
performing combination rules (that gave the smallest classification errors) are marked by boxes.

Classification error in probability space
MVG FIT GMIX

Feature Classifier Training Testing Training Testing Training Testing

LAR+COOC Product rule 0.276852 0.321225 0.287901 0.290671 0.313889 0.363065
Sum rule 0.276852 0.321481 0.287840 0.290671 0.313920 0.363650

Max rule 0.266914 0.314103 0.289012 0.291347 0.313333 0.362225

Min rule 0.266914 0.314103 0.289012 0.291347 0.313333 0.362225

Median rule 0.279784 0.325444 0.286667 0.290032 0.312469 0.364745

Maj. vote rule 0.279784 0.325444 0.286667 0.290032 0.312469 0.364745

GABOR Product rule 0.213117 0.258711 0.326636 0.331836 0.212160 0.259369
Sum rule 0.213333 0.258657 0.326728 0.331927 0.212160 0.259551

Max rule 0.200494 0.255022 0.333056 0.335525 0.199444 0.254876

Min rule 0.200494 0.255022 0.333056 0.335525 0.199444 0.254876

Median rule 0.220494 0.262127 0.322623 0.335653 0.219012 0.262747

Maj. vote rule 0.220494 0.262127 0.322623 0.335653 0.219012 0.262747

MOMENTS Product rule 0.286790 0.315198 0.343179 0.340237 0.287284 0.328001

Sum rule 0.286728 0.315070 0.343272 0.340164 0.287562 0.314797

Max rule 0.276420 0.310194 0.348704 0.343670 0.278735 0.338903

Min rule 0.276420 0.310194 0.348704 0.343670 0.278735 0.338903

Median rule 0.291667 0.318559 0.340031 0.339944 0.292870 0.332968

Maj. vote rule 0.291667 0.318559 0.340031 0.339944 0.292870 0.332968

TAMURA Product rule 0.337191 0.353422 0.335463 0.349441 0.366451 0.370571

Sum rule 0.337284 0.353642 0.335432 0.349496 0.366389 0.370590

Max rule 0.333642 0.347304 0.339136 0.350482 0.358395 0.364654

Min rule 0.333642 0.347304 0.339136 0.350482 0.358395 0.364654
Median rule 0.338272 0.360381 0.335617 0.350720 0.369938 0.373420
Maj. vote rule 0.338272 0.360381 0.335617 0.350720 0.369938 0.373420

COLHIST Product rule 0.127253 0.177917 0.250556 0.263624 0.123642 0.173205
Sum rule 0.127377 0.178008 0.249290 0.262894 0.123765 0.173826

Max rule 0.123519 0.179305 0.255617 0.268701 0.119691 0.172785

Min rule 0.123519 0.179305 0.255617 0.268701 0.119691 0.172785

Median rule 0.136698 0.185514 0.245031 0.259935 0.134105 0.180966

Maj. vote rule 0.136698 0.185514 0.245031 0.259935 0.134105 0.180966
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Table 8.6: Classification performance in terms of classification error for training and
testing datasets by combining the outputs of a particular classifier for all feature
vectors and similarity models for the COREL Database. The best performing com-
bination rules (that gave the smallest classification errors) are marked by boxes.

Classification error in probability space
Product rule Sum rule Max rule

Database Training Testing Training Testing Training Testing

Gaussian linear classifier 0.111883 0.155672 0.130093 0.167507 0.105556 0.165187

Gaussian quadratic classifier 0.094815 0.151052 0.103395 0.147052 0.111235 0.173205

Fisher’s linear classifier 0.111883 0.155672 0.130093 0.167507 0.105556 0.165187

Logistic linear classifier 0.084568 0.144824 0.095988 0.146212 0.098302 0.173460

Scaled nearest mean classifier 0.235278 0.245051 0.235340 0.240102 0.251852 0.277906
Min rule Median rule Maj. vote rule

Training Testing Training Testing Training Testing

Gaussian linear classifier 0.105556 0.165187 0.185309 0.212744 0.160278 0.193294
Gaussian quadratic classifier 0.111235 0.173205 0.220586 0.239608 0.195864 0.217036

Fisher’s linear classifier 0.105556 0.165187 0.185309 0.212744 0.160278 0.193294
Logistic linear classifier 0.098302 0.173460 0.140123 0.177533 0.132778 0.176693
Scaled nearest mean classifier 0.251852 0.277906 0.276759 0.268811 0.261667 0.262747

Table 8.7: Classification performance in terms of classification error for training and
testing datasets by combining the outputs of all classifiers for all feature vectors and
similarity models for all databases. The best performing combination rules (that gave
the smallest classification errors) are marked by boxes.

Classification error in probability space
Product rule Sum rule Max rule

Database Training Testing Training Testing Training Testing

ISL Database 0.028810 0.081865 0.072778 0.115348 0.024286 0.099504

VisTex Database 0.008152 0.028804 0.044988 0.045326 0.017512 0.088696

COREL Database 0.096173 0.149134 0.116142 0.155435 0.098519 0.170703
Min rule Median rule Maj. vote rule

Training Testing Training Testing Training Testing

ISL Database 0.024286 0.099504 0.133651 0.163636 0.130794 0.161015
VisTex Database 0.017512 0.088696 0.070652 0.068261 0.067935 0.066522
COREL Database 0.098519 0.170703 0.193179 0.212470 0.185679 0.206900
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are given in Figures 8.1, 8.2 and 8.3. We can see that classifiers trained on the same

feature vector were highly positively correlated (hence, they violated the independence

assumptions and gave poor results classification tests). On the other hand, classifiers

that used training data from different models were closer to the ideal independence

case. Gabor and color histogram feature vectors performed better than other features

and the multivariate Gaussian model performed better than other models. Tamura

feature vectors gave the worst performance.

8.3 Retrieval Performance

8.3.1 Retrieval Using Combined Classifiers

Classifier combination methods can also be used for retrieval based on the posterior

ratios as described in Section 7.4.1. The following figures present precision vs. recall

using a combination of n classifiers for different databases.

Figure 8.4: Outputs of a particular classifier for all feature vectors (LAR+COOC,

GABOR, MOMENTS, TAMURA) and all similarity models (MVG, FIT) were

combined for the ISL Database (n = 8).

Figure 8.5: Outputs of a particular classifier for all feature vectors (LAR+COOC,

GABOR, MOMENTS, TAMURA, COLHIST) and all similarity models (MVG,

FIT) were combined for the VisTex Database (n = 10).

Figure 8.6: Outputs of a particular classifier for feature vectors (LAR+COOC, GA-

BOR, MOMENTS, COLHIST) and one similarity model (MVG) were combined

for the COREL Database (n = 4). (Additional classifiers can be used with in-

creased computational requirements.)

Figure 8.7: Outputs of all classifiers (Gaussian linear, Gaussian quadratic, Fisher’s

linear, Logistic linear, scaled nearest mean) for all feature vectors (LAR+COOC,



202

−0.2

0   

0.2 

0.4 

0.6 

0.8 

1   5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

L
A

R
+C

O
O

C
G

A
B

O
R

M
O

M
E

N
T

S
T

A
M

U
R

A

GABOR MOMENTS TAMURA
MVG MVG MVGFIT FIT FIT

M
V

G
FI

T
M

V
G

M
V

G
M

V
G

FI
T

FI
T

FI
T

GL GQ FL LL SM GL GQ FL LL SM

MVG FIT
LAR+COOC

Figure 8.1: Q statistics values (mapped to gray levels according to the scale shown on
the right side of the figure) for all feature vectors, similarity models and classifiers for
the ISL Database. Each group of 10 classifiers correspond to one of the feature vectors
(LAR+COOC, GABOR, MOMENTS, TAMURA). Within each group, groups of 5
classifiers (Gaussian linear, GL; Gaussian quadratic, GQ; Fisher’s linear, FL; Logistic
linear, LL; scaled nearest mean, SM) correspond to similarity models (multivariate
Gaussian, MVG; independently fitted distributions, FIT). Q is positive, zero and
negative for classifier pairs that are positively correlated, statistically independent,
and negatively correlated, respectively.
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Figure 8.2: Q statistics values (mapped to gray levels according to the scale shown
on the right side of the figure) for all feature vectors, similarity models and classifiers
for the VisTex Database. Each group of 18 classifiers correspond to one of the fea-
ture vectors (LAR+COOC, GABOR, MOMENTS, TAMURA, COLHIST). Within
each group, groups of 9 classifiers (Gaussian linear, GL; Gaussian quadratic, GQ;
Fisher’s linear, FL; Logistic linear, LL; scaled nearest mean, SM; nearest neighbor,
NN; Parzen, PW; binary decision tree, DT; neural network, NW) correspond to simi-
larity models (multivariate Gaussian, MVG; independently fitted distributions, FIT).
Q is positive, zero and negative for classifier pairs that are positively correlated, sta-
tistically independent, and negatively correlated, respectively.
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Figure 8.3: Q statistics values (mapped to gray levels accordingh to the scale shown
on the right side of te figure) for all feature vectors, similarity models and classifiers
for the COREL Database. Each group of 10 classifiers correspond to one of the feature
vectors (LAR+COOC, GABOR, MOMENTS, TAMURA, COLHIST). Within each
group, groups of 5 classifiers (Gaussian linear, GL; Gaussian quadratic, GQ; Fisher’s
linear, FL; Logistic linear, LL; scaled nearest mean, SM) correspond to similarity
models (multivariate Gaussian, MVG; independently fitted distributions, FIT). Q is
positive, zero and negative for classifier pairs that are positively correlated, statisti-
cally independent, and negatively correlated, respectively.
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GABOR, MOMENTS, TAMURA) and all similarity models (MVG, FIT) were

combined for the ISL Database (n = 40); outputs of all classifiers (Gaussian

linear, Gaussian quadratic, Fisher’s linear, Logistic linear, scaled nearest mean,

neural network) for all feature vectors (LAR+COOC, GABOR, MOMENTS,

TAMURA, COLHIST) and all similarity models (MVG, FIT) were combined

for the VisTex Database (n = 60); and outputs of all classifiers (Gaussian lin-

ear, Gaussian quadratic, Fisher’s linear, Logistic linear, scaled nearest mean)

for feature vectors (LAR+COOC, GABOR, MOMENTS, COLHIST) and one

similarity model (MVG) were combined for the COREL Database (n = 20).

The results were similar to those of the classification experiments. Using combined

classifiers did not always improve the retrieval performance. However, some classifiers

(e.g. Logistic linear classifier) and some combination methods (e.g. product rule),

which also performed the best in classification experiments, consistently gave better

results than the individual models (Figures 8.4, 8.5, 8.6).

The reasons for low precision in the low recall parts of some of the precision-

recall curves were the small number of classifiers used during combination and the

relatively small training data set used for training both the individual classifiers and

the combination rules. Since the testing sets and training sets were different, the

query images could not always be retrieved as the very top images in the retrieval

set and we could not have a perfect retrieval when only a few images were retrieved.

However, the precision-recall curves stayed flat for a large range of recall because

the classifiers consistently retrieved more relevant images compared to the individual

models. Using two-thirds of the whole data for training and one-third for testing

slightly improved the results. Adding more classifiers to the combination set had a

larger positive impact on the results but also increased computational requirements.

Q statistics values can be useful in deciding which classifiers will be included in the

combination.
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Figure 8.4: Retrieval performance in terms of precision (y-axis) and recall (x-axis) by
combining the outputs of a particular classifier for all feature vectors and similarity
models for the ISL Database. Different curves within the same plot represent the
classifier combination methods product rule (black), sum rule (red), max rule (blue),
min rule (green), median rule (magenta), and majority vote rule (cyan).
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Gaussian linear classifier Gaussian quadratic classifier Fisher’s linear classifier
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Figure 8.5: Retrieval performance in terms of precision (y-axis) and recall (x-axis) by
combining the outputs of a particular classifier for all feature vectors and similarity
models for the VisTex Database. Different curves within the same plot represent the
classifier combination methods product rule (black), sum rule (red), max rule (blue),
min rule (green), median rule (magenta), and majority vote rule (cyan).
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Figure 8.6: Retrieval performance in terms of precision (y-axis) and recall (x-axis) by
combining the outputs of a particular classifier for all feature vectors and similarity
models for the COREL Database. Different curves within the same plot represent the
classifier combination methods product rule (black), sum rule (red), max rule (blue),
min rule (green), median rule (magenta), and majority vote rule (cyan).
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Figure 8.7: Retrieval performance in terms of precision (y-axis) and recall (x-axis) by
combining the outputs of a particular classifier for all feature vectors and similarity
models for all databases. Different curves within the same plot represent the classifier
combination methods product rule (black), sum rule (red), max rule (blue), min rule
(green), median rule (magenta), and majority vote rule (cyan).

The best performing classifier combination contained the Logistic linear classifier

with the product rule for ISL and VisTex Databases and the max rule for the COREL

Database. This combination especially achieved an almost perfect retrieval for the

VisTex Database, which has been used as the test dataset in most of the content-

based retrieval papers. Combining the outputs of all classifiers for all feature vectors

and all similarity models did not give much improvement and is not worth the heavy

computation (Figure 8.7).

This significant performance of the simple linear classifiers in improving the re-

trieval results shows the power of the probabilistic framework which simplifies the

problem and allows the estimation of less complex models in multiple levels while still

being very effective.

8.3.2 Retrieval Using Bayesian Network

The second part of the retrieval experiments presents results using the naive Bayesian

network described in Section 7.4.2. As described in Section 7.3.1, we estimated the
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parameters for Gaussian and Gamma distributions from training data for the likeli-

hood ratio and distance values for relevance and irrelevance classes. The final choice

for a Gaussian or Gamma was made according to the Kolmogorov-Smirnov statistic.

Example histograms and fitted distributions are given in Figure 8.8.

The results of retrieval experiments in terms of precision vs. recall are given in

Figure 8.9 for all databases. We used only a small number of models because models

trained on the same feature vectors may violate the conditional independence assump-

tions as discussed in Section 8.2. Small number of models also requires less amount

of computation while giving significant performance improvements. The models used

were chosen according to the classification results in Chapter 4. The leaf nodes in the

networks used in these particular experiments are the measurements by the following

models:

x1 : Line-angle-ratio and co-occurrence feature vectors with the multivariate Gaus-

sian model (LAR+ COOC + MVG),

x2 : Gabor feature vectors with the multivariate Gaussian model (GABOR + MVG),

x3 : Color histogram feature vectors with the multivariate Gaussian model (COL-

HIST + MVG) (for VisTex and COREL only).

Precision and recall for individual models are also given for comparison.

Combining feature vectors and similarity models using the proposed naive Bayesian

network gave an improvement over the individual models in all cases. A relative im-

provement1 of 1.31% for precision and recall (computed at the knee of the precision

vs. recall curve) over the individually best performing model for the ISL Database,

7.14% precision and recall for the VisTex Database and 16.03% precision and 14.18%

recall for the COREL Database were obtained. The improvements were not too sig-

nificant for the ISL and VisTex Databases which are relatively simple enough that

1Relative improvement is computed as new value - old value

old value
× 100.
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Figure 8.8: Example histograms and fitted Gaussian (green) and Gamma (red) distributions for training likelihood
ratio and distance values for relevance (solid black) and irrelevance (dashed black) classes for different databases.
Kolmogorov-Smirnov statistic was used to choose the best fit. Gamma model was usually a better fit than the
Gaussian. (Note that likelihood ratio values are reversed to have smaller values for similar images.)
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Figure 8.9: Retrieval performance in terms of precision (y-axis) and recall (x-axis) by
the naive Bayesian networks for all databases. Different curves within the same plot
show the best retrival performances obtained using line-angle-ratio and co-occurrence
feature vector (red), Gabor feature vector (blue) and color histogram feature vector
(green) individually, and retrieval using their combination with the Bayesian network
model (black).

the Gabor feature vectors and the multivariate Gaussian model already achieved an

acceptable performance when used alone. However, the improvement for the COREL

Database was very high even when only three models were combined.

The performance of the naive Bayesian network model was almost the same as

the performance of combined classifiers for the ISL and VisTex Databases. However,

the improvement for the COREL Database was very significant. We did not have

the training sample size and overfitting problems here because the Bayesian network

model is simpler (and also more efficient) than the combined classifier models.

Example queries are given in Figure 8.10. These examples use the same query im-

ages as in the examples given at the end of Chapter 4 where only one feature vector

was used at a time. We could get perfect retrieval except for the cheetah example

in Figure 8.3.2 where false positives still remained after combination. However, one

feedback iteration successfully removed the false positives from the retrieval list for

that query. Both visual examples and precision-recall curves show that the combina-
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(a) An example query for landscape using
Bayesian network (12/12)

(b) An example query for leaves using
Bayesian network (12/12)

Figure 8.10: Example queries using combined feature vectors and similarity models.
The query images are same as the ones used in the examples in Chapter 4. The
numbers in parentheses in sub-captions show the number of correct matches for each
case.

tion methods we proposed can get rid of most of the false alarms and provide effective

retrieval.

8.4 Competing Algorithms

The main goals of the framework we proposed is to combine multiple feature vectors

and also incorporate relevance feedback for interactive searches. Therefore, competing

algorithms should also support feature combination and relevance feedback. Among

the methods discussed in Chapter 2, the ones that were proposed by Rui et al. [172]

and Schroder et al. [177] support feature combination, online learning and iterative

retrieval.

Rui et al.’s MARS system [172] at the University of Illinois supports a multimedia
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(a) An example query for glaciers and moun-
tains using Bayesian network (12/12)

(b) An example query for cheetahs using
combined classifiers (8/12)

(c) An example query for residential interiors
using Bayesian network (12/12)

(d) An example query for fields using
Bayesian network (12/12)

Figure 8.10: (continued)
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object model where multiple image representations with dynamically updated weights

are used. An object is represented in terms of visual features such as color, texture,

and shape in one level, and specific implementations of these feature types such as

color histograms, co-occurrence matrices, Fourier descriptors in the next level. The

system computes the overall similarity between images using weighted linear com-

binations of weighted Euclidean distances for different representations at each level.

Weights at each level are independently updated by incrementing or decrementing

them according to the user feedback in terms of positive and negative scores for each

image. Gaussian normalization was used (like in Section 3.3.2) for the features before

computing the distances and for the distances before taking linear combinations.

The MARS system is described in detail in [172] and it neither requires data-

specific tuning nor has ambiguity in the implementation. In our implementation we

used all 6 feature vectors listed in Section 8.1. Note that only a subset of these feature

vectors were used for the proposed combined classifier and naive Bayesian network

models. Both the MARS model and our models used the same training image sets.

Precision vs. recall curves are given in Figure 8.11 for all databases. Although,

feature combination in the MARS model improved the results over individual cases,

the results of combination in our Bayesian network model were significantly better.

To perform content-based retrieval from a large remote sensing image archive at

the Swiss Federal Institute of Technology at Zurich (ETHZ), Schroder et al. [177]

use a Bayesian network with discrete variables to learn the relationships between a

user-specific land cover type and low-level texture features. After feature vectors are

extracted for each image, they are clustered using the k-means algorithm to obtain

class labels for each feature type. These labels and a binary label for the specific land

cover type are used in a naive Bayes structure by using discrete probability tables

to encode the relationships. The attribute values for each pixel (or image) are the

class labels for its corresponding feature vectors. Searching starts with uniform priors

and relevance feedback is used to update the conditional probabilities using relative
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frequencies. Then, this trained classifier is used to perform a search in the database

with the criterion being the posterior probabilities of a pixel (or image) belonging to

the specific cover type given its feature classes. If two images have similar feature

vectors (i.e. they are close to each other in the feature space), there is a high chance

that they will have the same attribute value. If a particular attribute value (i.e. a

cluster in the feature space) is found relevant by the user in the training examples

for a particular land cover type, the pixels (or images) that have the same attribute

value will have a high probability of belonging to that cover type.

Schroder et al. used feature vectors computed for each pixel and labeled them

using the posterior probabilities, i.e. searching is done in the pixel level. In our

implementation we used feature vectors computed for the whole image and ranked

images according to their posterior probabilities, i.e. searching is done in the image

level. The only data-specific design choice in our implementation was the choice of

k in k-means clustering. Since the original paper [177] does not talk about how to

choose the number of clusters in k-means, we set it to 20 by trial and error. We used

all 6 feature vectors listed in Section 8.1. Training for the feature class labels was done

using all images in the database; therefore, training and testing images sets were the

same. Precision vs. recall curves are given in Figure 8.11 for all databases. Feature

combination in the ETHZ model also improved the results over individual cases but

combination using our Bayesian network model performed significantly better than

both the ETHZ model and the MARS model.

Note that the numbers given in the comparisons correspond to the best performing

models for the databases used in this dissertation. On the other hand, the competing

algorithms were implemented using the descriptions in the corresponding journal pa-

pers (implementation details given above). The algorithms from this dissertation had

the advantage of being chosen after extensive experiments in multiple levels while the

competing algorithms were favored by training on the whole data (equal training and

testing sets).
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Figure 8.11: Retrieval performance in terms of precision (y-axis) and recall (x-axis) by
the combined classifiers model (black), the Bayesian network model (red), the MARS
model (blue) and the ETHZ model (green) for all databases. The Bayesian frame-
work proposed in this dissertation performed significantly better than the competing
algorithms.

8.5 Relevance Feedback

Retrieval experiments in the previous sections were done using only the original query

image. This section presents the results of the Bayesian relevance feedback algorithm

proposed in Section 7.4 and makes comparisons to the performances with relevance

feedback in the MARS and ETHZ models. Since the Graphical User Interface (GUI)

of our system shows the first 12 matches in the first screen, we used the feedback

available from only the first 12 images in the retrieval experiments. In addition, user

is allowed to select one or more of the 4 most irrelevant images for feedback in case

those images are mistakenly labeled as irrelevant by the system. Automatic scripts

were used to do the iterations for all test images. Each test image was used as the

query and the retrieved images that belonged to the same groundtruth group as the

query image were fed back as positive matches and the rest of the 12 were fed back as

negative matches. The 4 irrelevant images in the last row of the GUI were not used

in the automatic scripts.
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Figures 8.12 - 8.14 show precision and recall results for the Bayesian relevance

feedback algorithm that was run up to 5 iterations. The classifier combination rule

that gave the best results in the classification experiments was used for each database

(i.e. product rule for ISL and VisTex and max rule for COREL) for the combined

classifiers model. Table 8.8 summarizes average precisions when 12 images were re-

trieved. We can see that each iteration gave an improvement over the case without

feedback while the first iteration had the largest improvement. This is a desired situa-

tion because many relevant images are already available to the user after only the first

feedback. We could get almost perfect retrieval (precision above 99%) for ISL and

VisTex Databases and obtained significant improvement for the COREL Database.

Feedback experiments using the same test images and same feedback images were

also done for the MARS feedback model and the ETHZ feedback model. The results

are also given in Figures 8.12 - 8.14. Both models showed significant improvements

over the cases without feedback except that the MARS model gave worse results for

the COREL Database. The ETHZ model gave large improvements in subsequent

iterations but required more iterations than other models to achieve similar perfor-

mance. However, it appeared to be more robust than the MARS model because it also

used probabilities instead of heuristic weight assignments in the geometric similarity

framework.

Figures 8.15 - 8.21 show example queries for the Bayesian relevance feedback algo-

rithm. These examples show results of searches by first using a single feature vector,

then using one of the combination methods and finally using relevance feedback. The

queries were chosen among the images that performed poorly under both single fea-

ture vectors and combination models. We can see that Bayesian relevance feedback

gave perfect retrieval after one or two iterations even though the initial results were

quite bad.

The bald eagle example in Figure 8.20 shows a case where presenting the worst

matches as well as the best matches can help the user understand the results and
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Table 8.8: Average precision when 12 images were retrieved using different feedback algorithms on all databases. “n
r.f.” represents the n’th feedback iteration. Improvements for each iteration over the case without feedback (0 r.f.)
are given in parentheses. Bayesian relevance feedback achieved almost perfect retrieval.

Database Method 0 r.f. 1 r.f. 2 r.f. 3 r.f. 4 r.f.

ISL Comb.class. 0.9790 0.9923 (1.36%) 0.9957 (1.70%) 0.9966 (1.80%) 0.9966 (1.80%)
Bayes.net. 0.9752 0.9860 (1.10%) 0.9895 (1.46%) 0.9887 (1.38%) 0.9904 (1.55%)
MARS 0.9066 0.9490 (4.68%) 0.9568 (5.54%) 0.9572 (5.59%) 0.9571 (5.57%)
ETHZ 0.7459 0.8556 (14.71%) 0.8880 (19.06%) 0.9072 (21.63%) 0.9169 (22.93%)

VisTex Comb.class. 0.9879 0.9945 (0.66%) 0.9946 (0.68%) 0.9946 (0.68%) 0.9946 (0.68%)
Bayes.net. 0.9903 0.9989 (0.87%) 0.9986 (0.85%) 0.9986 (0.85%) 0.9986 (0.85%)
MARS 0.8225 0.9078 (10.38%) 0.9220 (12.10%) 0.9206 (11.94%) 0.9230 (12.22%)
ETHZ 0.7773 0.8946 (15.09%) 0.9134 (17.51%) 0.9293 (19.56%) 0.9348 (20.26%)

COREL Comb.class. 0.8342 0.9113 (9.24%) 0.9363 (12.24%) 0.9407 (12.77%) 0.9421 (12.93%)
Bayes.net. 0.8639 0.8857 (2.52%) 0.8904 (3.06%) 0.8924 (3.29%) 0.8931 (3.37%)
MARS 0.7860 0.7441 (-5.34%) 0.7612 (-3.16%) 0.7716 (-1.83%) 0.7894 (0.42%)
ETHZ 0.5757 0.7492 (30.12%) 0.7809 (35.63%) 0.8081 (40.36%) 0.8282 (43.85%)
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(a) Precision vs. recall for feedback
iterations with combined classifiers
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(b) Precision vs. recall for feedback
iterations with Bayesian network
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(c) Precision vs. recall for feedback it-
erations with MARS model
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(d) Precision vs. recall for feedback
iterations with ETHZ model

Figure 8.12: Precision and recall for multiple feedback iterations for the ISL Database.
Feedback from only the first 12 images were used and precision was averaged for all
images used in the tests. After obtaining the initial search results, groundtruth infor-
mation was used to label images as relevant and irrelevant, and then this information
was used as positive and negative feedback for iterative searches. Each curve labeled
as “n feedback” within each plot shows precision and recall for the n’th feedback
iteration for a particular feedback model.



221

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

No feedback
1 feedback
2 feedback
3 feedback
4 feedback

(a) Precision vs. recall for feedback
iterations with combined classifiers

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

No feedback
1 feedback 
2 feedback 
3 feedback 
4 feedback 

(b) Precision vs. recall for feedback
iterations with Bayesian network
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(c) Precision vs. recall for feedback it-
erations with MARS model
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(d) Precision vs. recall for feedback
iterations with ETHZ model

Figure 8.13: Precision and recall for multiple feedback iterations for the VisTex
Database. Feedback from only the first 12 images were used and precision was av-
eraged for all images used in the tests. After obtaining the initial search results,
groundtruth information was used to label images as relevant and irrelevant, and
then this information was used as positive and negative feedback for iterative searches.
Each curve labeled as “n feedback” within each plot shows precision and recall for
the n’th feedback iteration for a particular feedback model.
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(b) Precision vs. recall for feedback
iterations with Bayesian network
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(c) Precision vs. recall for feedback it-
erations with MARS model
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(d) Precision vs. recall for feedback
iterations with ETHZ model

Figure 8.14: Precision and recall for multiple feedback iterations for the COREL
Database. Feedback from only the first 12 images were used and precision was av-
eraged for all images used in the tests. After obtaining the initial search results,
groundtruth information was used to label images as relevant and irrelevant, and
then this information was used as positive and negative feedback for iterative searches.
Each curve labeled as “n feedback” within each plot shows precision and recall for
the n’th feedback iteration for a particular feedback model.
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(a) Using only Gabor features (3/12) (b) Using four texture features (no feedback)
(6/12)

(c) After first feedback (12/12)

Figure 8.15: An example query for parking lots from the ISL Database. Only Gabor
features were used for the first search. Then, four texture features were used together
using the combined classifiers framework. Green labels under each image show images
that were marked as relevant by the user. Red labels show images that were marked
as irrelevant by the user. These images were used as feedback data for the following
iteration. The numbers in parentheses in sub-captions show the number of correct
matches for each case.
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(a) Using only color histograms (5/12) (b) Using color and texture (no feedback)
(7/12)

(c) After first feedback (12/12)

Figure 8.16: An example query for bark from the VisTex Database. Bayesian network
was used for combination and feedback. The numbers in parentheses in sub-captions
show the number of correct matches for each case.
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(a) Using only color histograms (1/12) (b) Using color and texture (no feedback)
(6/12)

(c) After first feedback (12/12)

Figure 8.17: An example query for sunsets from the COREL Database. Combined
classifiers were used for combination and feedback. The numbers in parentheses in
sub-captions show the number of correct matches for each case.
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(a) Using only color histograms (3/12) (b) Using color and texture (no feedback)
(9/12)

(c) After first feedback (12/12)

Figure 8.18: An example query for auto racing from the COREL Database. Bayesian
network was used for combination and feedback. The numbers in parentheses in
sub-captions show the number of correct matches for each case.
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(a) Using only color histograms (4/12) (b) Using color and texture (no feedback)
(8/12)

(c) After first feedback (11/12) (d) After second feedback (12/12)

Figure 8.19: An example query for polar bears from the COREL Database. Bayesian
network was used for combination and feedback. The numbers in parentheses in
sub-captions show the number of correct matches for each case.
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(a) Using only color histograms (3/12) (b) Using color and texture (no feedback)
(4/12)

(c) After first feedback using all non-eagle
(coast and air shows) images as negative
feedback (0/12)

Figure 8.20: An example query for bald eagles from the COREL Database. Bayesian
network was used for combination and feedback. The numbers in parentheses in
sub-captions show the number of correct matches for each case.
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(a) Using color and texture (no feedback)
(4/12)

(b) After first feedback using only coast im-
ages as negative feedback (5/12)

(c) After second feedback (11/12)

Figure 8.21: Same query as in Figure 8.20 for bald eagles from the COREL Database.
Bayesian network was used for combination and feedback. The numbers in parenthe-
ses in sub-captions show the number of correct matches for each case. See text for a
detailed discussion.
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form the feedback. Part (b) in Figure 8.20 shows that combining color and texture

cannot still prevent some airplane and coast images showing up in the retrieval list

for the eagle query. The reason for this is the presence of both sky and sea in the

eagle image. We can also see that door images are the worst matches to the eagle.

However, giving all eagle images in the relevant image list as positive feedback and all

airplane and coast images in the relevant image list as negative feedback modifies the

decision boundaries drastically and the door images which were the worst matches

in the previous iteration now become the best matches. On the other hand, giving

only the coast images as the negative feedback as in Figure 8.21 modifies the decision

boundaries slightly so that only eagle and airplane images remain in the relevant image

list while still keeping the door images as the worst matches. One more iteration of

feedback can now result in 11 of the 12 best matches to be eagles.

Both visual examples as qualitative performance evaluation and precision-recall

curves as quantitative performance evaluation show that the Bayesian combination

methods give significant improvements over using only one feature vector, and fur-

thermore, incorporating relevance feedback in the Bayesian framework achieves almost

perfect retrieval. However, there were still some images that caused error cases. Fig-

ures 8.22, 8.23 and 8.24 show the images for which the Bayesian framework could not

achieve a “perfect” retrieval2 after at most 5 iterations. Out of 600 images in the

ISL Database, the combined classifiers model could not perform perfectly for only 2

images and the naive Bayesian network model could not perform perfectly for only

7 images. These 7 images are shown in Figure 8.22. On the other hand, the MARS

and ETHZ models could not achieve a perfect retrieval for 89 and 153 images respec-

tively. Out of 736 images in the VisTex Database, the combined classifiers model

could not perform perfectly for only 4 images and the naive Bayesian network model

could not perform perfectly for only 1 image. These 4 images are shown in Figure

2In the visual examples we define perfect retrieval to be the case where all of the 12 best matches
to a query image belong to the same category as the query image.
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image014 image133 image173 image344 image346 image528 image529

Figure 8.22: ISL Database images for which the Bayesian framework could not achieve
a “perfect” (12/12) retrieval.

image004 image016 image063 image477

Figure 8.23: VisTex Database images for which the Bayesian framework could not
achieve a “perfect” (12/12) retrieval.

8.23. On the other hand, the MARS and ETHZ models could not achieve a perfect

retrieval for 177 and 157 images respectively. Out of 1,575 images in the COREL

Database, the combined classifiers model could not perform perfectly for 100 images

and the naive Bayesian network model could not perform perfectly for 212 images.

76 of these images were common and they are shown in Figure 8.24. On the other

hand, the MARS and ETHZ models could not achieve a perfect retrieval for 780 and

662 images respectively. These results are summarized in Table 8.9.

8.6 Summary of Observations

A summary of observations from the experiments presented in this chapter is given

below.

• Classification effectiveness in terms of minimizing the classification error in our

two-class problem reflects well on the retrieval performance in terms of precision
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Figure 8.24: COREL Database images for which the Bayesian framework could not
achieve a “perfect” (12/12) retrieval.
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Table 8.9: Number of images where a “perfect” (12/12) retrieval could not be achieved
after 5 feedback iterations.

Total number Error images Error images Error images
Database of images for Bayesian for MARS for ETHZ

ISL 600 7 89 153
VisTex 736 4 177 157
COREL 1,575 212 780 662

and recall. The models that performed the best in classification and retrieval

were consistent, as in the experiments presented in Chapter 4.

• Combining the decisions made by classifiers that were trained on different fea-

ture vectors significantly improved both classification and retrieval performances

over the cases where classifiers were used individually.

• The most successful classifier combination rule was the product rule for the ISL

and VisTex Databases and the max rule for the COREL Database. The most

successful classifiers were the Logistic linear and Gaussian quadratic classifiers.

They gave both the smallest classification error and the highest precision and

recall.

• Classifiers trained on Gabor and color histogram feature vectors and the multi-

variate Gaussian model performed better than other models.

• Combining the outputs of all classifiers for all feature vectors and similarity

models did not give much improvement and was not worth the computation.

Although adding more classifiers improved the performance, blindly adding clas-

sifiers increased the chance of some highly correlated unsuccessful classifiers

dominating the results. The Q statistics which measure the amount of correla-
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tion in the decisions of pairs of classifiers can be useful to choose the classifiers

that will be used in the combination.

• The Bayesian retrieval algorithms achieved almost perfect retrieval for the Vis-

Tex Database which has been used as the test dataset in most of the content-

based image retrieval papers. The performance improvements for both the ISL

Database and the COREL Database were also very significant. Both the com-

bined classifiers-based combination and the Bayesian network with the naive

Bayes classifier structure performed significantly better than the MARS model

from the University of Illinois and the discrete variable naive Bayesian network

model from the Swiss Federal Institute of Technology.

• The proposed naive Bayesian network model resulted in 1.31% relative improve-

ment in precision for the ISL Database, 7.14% relative improvement in precision

for the VisTex Database and 16.03% relative improvement in precision for the

COREL Database (computed at the knee of the precision vs. recall curves) over

the cases where the best feature vectors were used individually. The methods

described in Chapter 7 can be used to further refine the probability estimates.

A more complex Bayesian network can be designed to encode more complex

relationships between features and similarity models.

• The proposed Bayesian relevance feedback model was also very effective. We

could obtain 99.66% precision for the ISL Database, 99.86% precision for the

VisTex Database and 94.21% for the COREL Database when 12 images were

retrieved after a few iterations. The Bayesian feedback model was more ro-

bust and much more powerful than the feedback models of the two competing

algorithms.

• The significant performance of the simple linear classifiers in improving the
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retrieval results shows the power of the probabilistic framework which simplifies

the problem and allows the estimation of less complex models while still being

very effective. Both visual examples as qualitative performance evaluation and

precision-recall curves as quantitative performance evaluation show that the

Bayesian combination methods give significant improvements over using only

one feature vector, and furthermore, incorporating relevance feedback in the

Bayesian framework achieves almost perfect retrieval.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

9.1 Summary and Conclusions

Content-based image retrieval (CBIR) has become one of the most popular research

areas in computer vision. The retrieval process can be divided into three levels; the

pre-processing level (feature extraction and normalization), the similarity level (simi-

larity computation between the query image and the images in the database), and the

post-processing level (iterative retrievals to improve the performance). In the rapidly

growing CBIR literature, there has been an enormous amount of work on developing

features for usually restricted domains of images. However, similarity measures have

not received significant attention. There is also no generally applicable and effective

framework to combine multiple features and similarity measures. The most common

approach has been to treat images as points in the feature space and use the nearest

neighbor decision rule with geometric distance measures like the Euclidean distance to

measure image similarities. Besides, most of the algorithms and decision criteria are

developed by trial and error thresholds with insufficient performance evaluation that

use only a few examples. The commonly used geometric framework is summarized in

Figure 9.1(a).

In this dissertation, our goal has been to design each level of the content-based

retrieval process with a well-defined formulation. Furthermore, we attempted to pro-

vide a solution to the challenging problem of combining decisions based on multiple

feature vectors and similarity models, which also has a high potential of giving a big

improvement in retrieval performance.
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Feature vectors

Simple scaling

Distances

Weighted combination

Weight updating using
relevance feedback

(a) Geometric framework

Feature vectors

Optimized normalization

Class−conditional models

relevance feedback
Bayesian

probability of probability
Joint likelihood using 

(b) Probabilistic framework

Figure 9.1: Main steps of processing in the commonly used geometric framework and
the proposed probabilistic framework.



238

We posed the retrieval problem in a classification framework where the goal was

to minimize the classification error in a setting of two classes: the relevance class and

the irrelevance class. When the problem became the minimization of the classification

error, the obvious choice was the Bayes classifier which is known to give the theo-

retical minimum. Since it uses the posterior probabilities to make the decision, the

posteriors were the ideal features for classification. This setting could be interpreted

as a mapping from the high-dimensional feature space to the two-dimensional prob-

ability space. Therefore, we proposed models to compute the posterior probabilities

or other classification information to find solutions to the three levels of the retrieval

problem. However, these posterior probabilities also had uncertainty due to factors

like imperfect density modeling in the feature space, quantization, high dimension-

ality, etc. To model these uncertainties as “probability of probability”, we proposed

a two-level modeling where the first level included models to compute probabilities

of feature vectors, and the second level included models to compute probabilities of

these probabilities to compensate for errors in modeling in the first level. Given the

posterior probabilities for the relevance and irrelevance classes, similarity could then

be computed as likelihood in the probabilistic setting instead of computing distances

in the geometric setting.

Given multiple feature vectors to measure different color and texture properties

for each image, our solution for the pre-processing level (feature normalization) was

to choose the normalization method according to a class separability criterion. We

studied five normalization methods; linear scaling to unit range, linear scaling to unit

variance, transformation to a uniform random variable using the cumulative distri-

bution function, rank normalization and normalization by fitting distributions. Even

though there was no single best normalization method for all databases, normal-

ization after fitting distributions was usually among the best and class separability

proved effective for choosing the normalization method that gave the best retrieval

performance.
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In the similarity level, we developed probabilistic similarity measures that com-

puted the likelihood of two images being similar or dissimilar, one being the query

image and the other one being an image in the database. We also studied the ef-

fects of operating in the probability space versus operating in the feature space. The

simplification of the problem by doing the estimation and making the decision in the

two-dimensional probability space allowed us to effectively train simple linear classi-

fiers while complex non-linear classifiers had to be developed in the high-dimensional

feature space. Furthermore, these linear classifiers gave smaller classification errors

than the non-linear classifiers. The comparisons between classification performances

in the probability space and the feature space, and retrieval performances of the

probabilistic similarity measures and the geometric similarity measures showed that

our probabilistic framework performed significantly better than the commonly used

geometric framework.

Given multiple classifiers trained on different feature vectors and similarity mod-

els, classifier combination rules from the pattern recognition literature were used to

combine the decisions made by individual classifiers to obtain a final measure of sim-

ilarity. In addition, uncertainties in the estimation of the probabilities and likelihood

values from noisy data were further incorporated in a naive Bayesian network frame-

work. All of these solutions were very effective and efficient by using simple models

like univariate or multivariate Gaussians. A more complex Bayesian network can

be designed to encode more complex relationships between features and similarity

models.

Our solutions for the post-processing level (iterative retrievals) can be divided into

three parts. The first two parts, graph-theoretic clustering for image grouping and a

weighted distance approach for relevance feedback operated on a single feature vector

for each image. To address a common problem in retrieval results that sometimes

images that were quite irrelevant to the query image were also retrieved simply because

they were close to it in the feature space, we developed a graph-theoretic approach for
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image grouping and retrieval by formulating the database search as a graph clustering

problem using a constraint that the retrieved images should be consistent with each

other as well as being similar to the query image in the feature space. We also

described a model to estimate the probability of each image being relevant to the

query image under the graph-theoretic framework.

In the second part for post-processing, we used a weighted distance formulation

to include the user in the retrieval loop via positive and negative labeling of the

retrieved images. After formulating the weight updating problem in an estimation and

regression framework, we computed the optimum weights that were used to iteratively

refine the effects of different feature components in the database search.

As the third and the main part of post-processing, the probabilistic framework

was extended to support relevance feedback. Given the images that were labeled

by the user as relevant and irrelevant, a Bayesian formulation was used to update

the posterior probabilities for two images being relevant or irrelevant. In effect, this

formulation used multiple images as the query and multiple measurements for each

image to compute the similarity. The ratios of these updated posteriors were used

in iterative retrievals to rank database images according to their similarities to the

query image. The proposed probabilistic framework is summarized in Figure 9.1(b).

Testing content-based image retrieval systems and comparing their performances

is still an open question. In most of the content-based retrieval literature, researchers

presented example queries to visually evaluate the performance of their systems.

Performance evaluation was an important part of this dissertation. We used three

groundtruth databases, namely the ISL Database that included aerial and satellite

images, the VisTex Database that included images with relatively homogeneous tex-

tures, and the COREL Database that included images from a stock photo library.

The performance of each proposed method was evaluated using quantitative criteria

like precision, recall, misdetection and false alarm, and qualitative criteria in terms

of visual examples. The results were also compared to those of the commonly used
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geometric framework and two competing algorithms from the CBIR literature (imple-

mentation details given in Section 8.4). The proposed framework achieved a better

performance than the best performing competitor in each level. In particular, we

obtained 8-20% relative improvement1 in precision in the similarity level where mul-

tiple feature vectors were combined, and 4-14% relative improvement in precision

after relevance feedback. In the final level, we could obtain 99.66% precision for the

ISL Database, 99.86% precision for the VisTex Database and 94.21% precision for

the COREL Database when 12 images were retrieved after a few feedback iterations.

These extensive experiments showed that the probabilistic framework allowed an ef-

fective way of combining feature vectors and similarity measures with incorporated

relevance feedback. Therefore, one can do the design in the classification framework

and expect better results in retrieval.

9.2 Future Work

We showed that a probabilistic framework can give significant improvements in the

CBIR performance. In the current setting, our probabilistic models use only low-

level visual features as the source of information. However, the proposed feature and

similarity combination algorithms use only the class-conditional probabilities and do

not directly depend on the low-level features in the sense that any model that has an

image as an input and the class-conditional or posterior probabilities as the output

can be included in the Bayesian framework.

A promising research direction is to find probabilistic models for higher-level image

features, for example object features and their spatial relationships. Requirements for

segmentation [89, 90, 183] accuracy are quite different for precise object recognition

problems and region-based image retrieval problems. An accurate segmentation is

highly desirable for the former, while a coarse segmentation may be sufficient for

1Relative improvement is computed as new value - old value

old value
× 100.
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the latter. Since most of the complex objects and scenes do not consist of a single

homogeneous region, we can use regions of locally homogeneous features and their

combination for representation. When feature measurements are computed for each

region in the image, the relationships between them can be encoded in graph struc-

tures and graph matching algorithms can be used to find matches between objects

or scenes. Relational matching have been extensively studied for structural pattern

recognition. Shapiro and Haralick [182] described a relational distance measure that

was a metric and argued that class-conditional probabilities could be defined as mono-

tonic decreasing functions of the distance between two relational descriptions. Matas

et al. [139] developed a color adjacency graph which combined the advantages of

both histograms and the region adjacency graph representation. Christmas et al.

[46] described a probabilistic relaxation technique for relational graph matching. The

Bayesian edit distance in [148] supported matchings between corrupted relational

graphs. Fuh et al. [77] described a relationship tree where parent-child relationships

represented sub-regions in a region growing-based segmentation process. The dissim-

ilarity score between two trees was the summation of the dissimilarity scores between

each corresponding region pair in the trees. These kinds of algorithms can be either

directly used or modified to output the strength of the match as a probability and

can therefore be included in our Bayesian framework.

Information about an image can come from a number of different sources: the

image content, keywords attached to the image, and text surrounding the image (e.g.

captions and HTML tags) [187]. Even though obtaining keyword information for

images may not be always feasible because of the requirement of an enormous amount

of human involvement during manual annotation, keywords can also be quite useful if

they are available. Information like time and place of image capture as well as special

names for objects or scenes in the image most probably cannot be captured by visual

information alone. For example, a query for “sunrise in Seattle” can be made feasible

by searching among the images with an associated keyword “Seattle”. Information
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retrieval literature provides many algorithms for probabilistic modeling of relevancies

between documents indexed by keywords [175, 115] and the Bayesian setting is a

promising framework to incorporate this information. Furthermore, the probabilistic

framework can help the database designer assign keywords to the images. If there

are some database images that already have labels assigned to them, the probabilistic

measures can be used to propagate those labels to new images based on the likelihood

values, and therefore facilitate automatic keyword assignment.

Another popular and increasingly common source of information is video [33]. It

can be considered as the next dimension after an image. It is much larger in size

and is also more complex. However, it also has its own advantages. One advantage

is the temporal information. For example, we can get more information about the

importance of objects in the video by looking at their or camera’s motion. We can

guess what is the main point of interest and what is the background. The MPEG-4

standard has been developed to separately code multiple video objects. Video also

contains audio. Integration of audio and speech recognition [118] with visual informa-

tion will help improve the overall quality of recognition and will give us information

that cannot be captured with images alone.

The Moving Picture Experts Group (MPEG) of the International Organization of

Standardization (ISO) is currently developing the MPEG-7 standard which aims at

providing standardized core technologies to allow description of audiovisual data con-

tent in multimedia environments [137, 138]. The other MPEG standards, MPEG-1, -2

and -4 are designed to represent the information itself, while MPEG-7 describes how

to represent information about the information. Therefore, the MPEG-7 standard will

not standardize the feature extraction and searching methods but will standardize the

description of various types of multimedia content that may include [137]:

• information describing the creation and production processes of the content

(director, title, short feature movie),



244

• information related to the usage of the content (copyrights, usage history, broad-

cast schedule),

• information of the storage of the content (storage format, encoding),

• structural information on spatial, temporal or spatio-temporal components of

the content (scene cuts, segmentation in regions, region motion tracking),

• information about low-level features in the content (colors, textures, sound tim-

bres, melody description), and

• conceptual information of the reality captured by the content (objects and

events, interactions among objects).

Therefore, new methods have to be developed to extract information from data at

different levels of abstraction. Information fusion is imperative for improving retrieval

performance and building practical systems for browsing, searching and retrieving

multimedia data, and the probability theory is a strong candidate for doing that.
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Appendix A

ISL DATABASE GROUNDTRUTH



274

(i) Parking lots (ii) Roads

Figure A.1: ISL Database groundtruth.



275

(i) Residential areas (ii) Landscapes

Figure A.1: ISL Database groundtruth (continued).



276

(iii) LANDSAT USA (iv) DMSP North Pole

Figure A.1: ISL Database groundtruth (continued).



277

(v) LANDSAT Chernobyl

Figure A.1: ISL Database groundtruth (continued).
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Appendix B

VISTEX DATABASE GROUNDTRUTH



279

(vi) Bark.0000 (vii) Bark.0001 (viii) Bark.0006

(ix) Bark.0008 (x) Bark.0012 (xi) Brick.0000

Figure B.1: VisTex Database groundtruth.



280

(i) Brick.0002 (ii) Brick.0005 (iii) Fabric.0002

(iv) Fabric.0005 (v) Fabric.0007 (vi) Fabric.0009

Figure B.1: VisTex Database groundtruth (continued).



281

(vii) Fabric.0011 (viii) Fabric.0013 (ix) Fabric.0015

(x) Fabric.0017 (xi) Fabric.0019 (xii) Flowers.0000

Figure B.1: VisTex Database groundtruth (continued).



282

(xiii) Flowers.0002 (xiv) Flowers.0007 (xv) Food.0000

(xvi) Food.0001 (xvii) Food.0004 (xviii) Food.0005

Figure B.1: VisTex Database groundtruth (continued).



283

(xix) Food.0006 (xx) Grass.0002 (xxi) Leaves.0003

(xxii) Leaves.0008 (xxiii) Leaves.0010 (xxiv) Leaves.0011

Figure B.1: VisTex Database groundtruth (continued).



284

(xxv) Leaves.0014 (xxvi) Leaves.0016 (xxvii) Metal.0000

(xxviii) Metal.0002 (xxix) Metal.0004 (xxx) Misc.0000

Figure B.1: VisTex Database groundtruth (continued).



285

(xxxi) Misc.0002 (xxxii) Sand.0000 (xxxiii) Sand.0005

(xxxiv) Stone.0002 (xxxv) Stone.0005 (xxxvi) Tile.0007

Figure B.1: VisTex Database groundtruth (continued).
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(xxxvii) Water.0002 (xxxviii) Water.0003 (xxxix) Water.0004

(xl) Wood.0002

Figure B.1: VisTex Database groundtruth (continued).
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Appendix C

COREL DATABASE GROUNDTRUTH



288

(xli) Air shows (xlii) Arabian horses

Figure C.1: COREL Database groundtruth.



289

(i) Auto racing (ii) Bald eagles

Figure C.1: COREL Database groundtruth (continued).



290

(iii) Cheetahs (iv) Coasts

Figure C.1: COREL Database groundtruth (continued).



291

(v) Divers and diving (vi) Doors of San Francisco

Figure C.1: COREL Database groundtruth (continued).



292

(vii) English country gardens (viii) Fields

Figure C.1: COREL Database groundtruth (continued).



293

(ix) Fireworks (x) Glaciers and mountains

Figure C.1: COREL Database groundtruth (continued).



294

(xi) Land of the pyramids (xii) Owls

Figure C.1: COREL Database groundtruth (continued).



295

(xiii) Polar bears (xiv) Residential interiors

Figure C.1: COREL Database groundtruth (continued).



296

(xv) Roses (xvi) Sunsets and sunrises

Figure C.1: COREL Database groundtruth (continued).
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