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Abstract

The constant increase in the amount and resolution of remotely sensed imagery necessitates
development of intelligent systems for automatic processing and classification. We describe a
Bayesian framework that uses spatial information for classification of high-resolution images.
First, spectral and textural features are extracted for each pixel. Then, these features are
quantized and are used to train Bayesian classifiers with discrete non-parametric density models.
Next, an iterative split-and-merge algorithm is used to convert the pixel level classification
maps into contiguous regions. Then, the resulting regions are modeled using the statistical
summaries of their spectral, textural and shape properties, and are used with Bayesian classifiers
to compute the final classification maps. Experiments with three ground truth data sets show
the effectiveness of the proposed approach over traditional techniques that do not make strong
use of region-based spatial information.

1 Introduction

The amount of image data that is received from satellites is constantly increasing. For example,
nearly 3 terabytes of data are being sent to Earth by NASA’s satellites every day [1]. Advances in
satellite technology and computing power have enabled the study of multi-modal, multi-spectral,
multi-resolution and multi-temporal data sets for applications such as urban land use monitor-
ing and management, GIS and mapping, environmental change, site suitability, agricultural and
ecological studies. Automatic content extraction, classification and content-based retrieval have
become highly desired goals for developing intelligent systems for effective and efficient processing
of remotely sensed data sets.

There is an extensive literature on classification of remotely sensed imagery using parametric
or non-parametric statistical or structural techniques with many different features [2]. Most of the
previous approaches try to solve the content extraction problem by building pixel-based classifi-
cation and retrieval models using spectral and textural features. However, a recent study [3] that
investigated classification accuracies reported in the last 15 years showed that there has not been
any significant improvement in the performance of classification methodologies over this period.
The reason behind this problem is the large semantic gap between the low-level features used for
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classification and the high-level expectations and scenarios required by the users. This semantic
gap makes a human expert’s involvement and interpretation in the final analysis inevitable, and this
makes processing of data in large remote sensing archives practically impossible. Therefore, practi-
cal accessibility of large remotely sensed data archives is currently limited to queries on geographical
coordinates, time of acquisition, sensor type and acquisition mode [4].

The commonly used statistical classifiers model image content using distributions of pixels in
spectral or other feature domains by assuming that similar land cover/use structures will cluster
together and behave similarly in these feature spaces. However, the assumptions for distribution
models often do not hold for different kinds of data. Even when nonlinear tools such as neu-
ral networks or multi-classifier systems are used, the use of only pixel-based data often fails the
expectations.

An important element of image understanding is the spatial information because complex land
structures usually contain many pixels that have different feature characteristics. Remote sensing
experts also use spatial information to interpret the land cover because pixels alone do not give
much information about image content. Image segmentation techniques [5] automatically group
neighboring pixels into contiguous regions based on similarity criteria on pixels’ properties. Even
though image segmentation has been heavily studied in image processing and computer vision fields,
and despite the early efforts [6] that use spatial information for classification of remotely sensed
imagery, segmentation algorithms have only recently started receiving emphasis in remote sensing
image analysis. Examples of image segmentation in the remote sensing literature include region
growing [7] and Markov random field models [8] for segmentation of natural scenes, hierarchical
segmentation for image mining [9], region growing for object level change detection [10] and fuzzy
rule-based classification [11], and boundary delineation of agricultural fields [12].

We model spatial information by segmenting images into spatially contiguous regions and clas-
sifying these regions according to the statistics of their spectral and textural properties and shape
features. To develop segmentation algorithms that group pixels into regions, first, we use non-
parametric Bayesian classifiers that create probabilistic links between low-level image features and
high-level user-defined semantic land cover/use labels. Pixel level characterization provides clas-
sification details for each pixel with automatic fusion of its spectral, textural and other ancillary
attributes [13]. Then, each resulting pixel level classification map is converted into a set of con-
tiguous regions using an iterative split-and-merge algorithm [13, 14] and mathematical morphology.
Following this segmentation process, resulting regions are modeled using the statistical summaries
of their spectral and textural properties along with shape features that are computed from region
polygon boundaries [15, 14]. Finally, non-parametric Bayesian classifiers are used with these region
level features that describe properties shared by groups of pixels to classify these groups into land
cover/use categories defined by the user.

The rest of the chapter is organized as follows. An overview of feature data used for modeling
pixels is given in Section 2. Bayesian classifiers used for classifying these pixels are described in
Section 3. Algorithms for segmentation of regions are presented in Section 4. Feature data used
for modeling resulting regions are described in Section 5. Application of the Bayesian classifiers
to region level classification is described in Section 6. Experiments are presented in Section 7 and
conclusions are given in Section 8.
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2 Pixel Feature Extraction

The algorithms presented in this chapter will be illustrated using three different data sets:

1. DC Mall : HYDICE (Hyperspectral Digital Image Collection Experiment) image with 1, 280×
307 pixels and 191 spectral bands corresponding to an airborne data flightline over the Wash-
ington DC Mall area.

The DC Mall data set includes 7 land cover/use classes: roof, street, path, grass, trees, water,
and shadow. A thematic map with ground truth labels for 8,079 pixels was supplied with the
original data [2]. We used this ground truth for testing and separately labeled 35,289 pixels
for training. Details are given in Figure 1.

2. Centre: DAIS (Digital Airborne Imaging Spectrometer) and ROSIS (Reflective Optics System
Imaging Spectrometer) data with 1, 096 × 715 pixels and 102 spectral bands corresponding
to the city center in Pavia, Italy.

The Centre data set includes 9 land cover/use classes: water, trees, meadows, self-blocking
bricks, bare soil, asphalt, bitumen, tiles, and shadow. The thematic maps for ground truth
contain 7,456 pixels for training and 148,152 pixels for testing. Details are given in Figure 2.

3. University : DAIS and ROSIS data with 610×340 pixels and 103 spectral bands corresponding
to a scene over the University of Pavia, Italy.

The University data set also includes 9 land cover/use classes: asphalt, meadows, gravel, trees,
(painted) metal sheets, bare soil, bitumen, self-blocking bricks, and shadow. The thematic
maps for ground truth contain 3,921 pixels for training and 42,776 pixels for testing. Details
are given in Figure 3.

The Bayesian classification framework that will be described in the rest of the chapter supports
fusion of multiple feature representations such as spectral values, textural features, and ancillary
data such as elevation from DEM. In the rest of the chapter, pixel level characterization consists
of spectral and textural properties of pixels that are extracted as described below.

To simplify computations and to avoid the curse of dimensionality during the analysis of hyper-
spectral data, we apply Fisher’s linear discriminant analysis (LDA) [16] that finds a projection to
a new set of bases that best separate the data in a least-squares sense. The resulting number of
bands for each data set is one less than the number of classes in the ground truth.

We also apply principal components analysis (PCA) [16] that finds a projection to a new set
of bases that best represent the data in a least-squares sense. Then, we keep the top 10 principal
components instead of the large number of hyper-spectral bands. In addition, we extract Gabor
texture features [17] by filtering the first principal component image with Gabor kernels at different
scales and orientations shown in Figure 4. We use kernels rotated by nπ/4, n = 0, . . . , 3, at 4 scales
resulting in feature vectors of length 16. In previous work [13], we observed that, in general, micro-
texture analysis algorithms like Gabor features smooth noisy areas and become useful for modeling
neighborhoods of pixels by distinguishing areas that may have similar spectral responses but have
different spatial structures.

Finally, each feature component is normalized by linear scaling to unit variance [18] as

x̃ =
x− µ

σ
(1)

3



(a) DC Mall data (b) Training map (c) Test map

Figure 1: False color image of the DC Mall data set (generated using the bands 63, 52 and 36) and
the corresponding ground truth maps for training and testing. The number of pixels for each class
are shown in parenthesis in the legend.
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(a) Centre data

(b) Training map

(c) Test map

Figure 2: False color image of the Centre data set (generated using the bands 68, 30 and 2) and
the corresponding ground truth maps for training and testing. The number of pixels for each class
are shown in parenthesis in the legend. (A missing vertical section in the middle was removed.)
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(a) University data

(b) Training map

(c) Test map

Figure 3: False color image of the University data set (generated using the bands 68, 30 and 2)
and the corresponding ground truth maps for training and testing. The number of pixels for each
class are shown in parenthesis in the legend.
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Figure 4: Gabor texture filters at different scales (s = 1, . . . , 4) and orientations (o ∈
{0◦, 45◦, 90◦, 135◦}). Each filter is approximated using 31× 31 pixels.
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where x is the original feature value, x̃ is the normalized value, µ is the sample mean, and σ is the
sample standard deviation of that feature, so that the features with larger ranges do not bias the
results. Examples for pixel level features are shown in Figures 5-7.

3 Pixel Classification

We use Bayesian classifiers to create subjective class definitions that are described in terms of
easily computable objective attributes such as spectral values, texture, and ancillary data [13].
The Bayesian framework is a probabilistic tool to combine information from multiple sources in
terms of conditional and prior probabilities. Assume there are k class labels, w1, . . . , wk, defined
by the user. Let x1, . . . , xm be the attributes computed for a pixel. The goal is to find the most
probable label for that pixel given a particular set of values of these attributes. The degree of
association between the pixel and class wj can be computed using the posterior probability

p(wj |x1, . . . , xm)

=
p(x1, . . . , xm|wj)p(wj)

p(x1, . . . , xm)

=
p(x1, . . . , xm|wj)p(wj)

p(x1, . . . , xm|wj)p(wj) + p(x1, . . . , xm|¬wj)p(¬wj)

=
p(wj)

∏m
i=1 p(xi|wj)

p(wj)
∏m

i=1 p(xi|wj) + p(¬wj)
∏m

i=1 p(xi|¬wj)

(2)

under the conditional independence assumption. The conditional independence assumption simpli-
fies learning because the parameters for each attribute model p(xi|wj) can be estimated separately.
Therefore, user interaction is only required for the labeling of pixels as positive (wj) or negative
(¬wj) examples for a particular class under training. Models for different classes are learned sepa-
rately from the corresponding positive and negative examples. Then, the predicted class becomes
the one with the largest posterior probability and the pixel is assigned the class label

w∗
j = arg max

j=1,...,k
p(wj |x1, . . . , xm). (3)

We use discrete variables and a non-parametric model in the Bayesian framework where contin-
uous features are converted to discrete attribute values using the unsupervised k-means clustering
algorithm for vector quantization. The number of clusters (quantization levels) is empirically chosen
for each feature. (An alternative is to use a parametric distribution assumption, e.g., Gaussian, for
each individual continuous feature but these parametric assumptions do not always hold.) Schröder
et al. [19] used similar classifiers to retrieve images from remote sensing archives by approximating
the probabilities of images belonging to different classes using pixel level probabilities. In the fol-
lowing, we describe learning of the models for p(xi|wj) using the positive training examples for the
j’th class label. Learning of p(xi|¬wj) is done the same way using the negative examples.

For a particular class, let each discrete variable xi have ri possible values (states) with proba-
bilities

p(xi = z|θi) = θiz > 0 (4)

where z ∈ {1, . . . , ri} and θi = {θiz}ri
z=1 is the set of parameters for the i’th attribute model. This

corresponds to a multinomial distribution. Since maximum likelihood estimates can give unreliable
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Figure 5: Pixel feature examples for the DC Mall data set. From left to right: the first LDA band,
the first PCA band, Gabor features for 90 degree orientation at the first scale, Gabor features for
0 degree orientation at the third scale, and Gabor features for 45 degree orientation at the fourth
scale. Histogram equalization was applied to all images for better visualization.
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Figure 6: Pixel feature examples for the Centre data set. From left to right, first row: the first LDA
band, the first PCA band, Gabor features for 135 degree orientation at the first scale; second row:
Gabor features for 45 degree orientation at the third scale, Gabor features for 45 degree orientation
at the fourth scale, and Gabor features for 135 degree orientation at the fourth scale. Histogram
equalization was applied to all images for better visualization.
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Figure 7: Pixel feature examples for the University data set. From left to right, first row: the first
LDA band, the first PCA band, Gabor features for 45 degree orientation at the first scale; second
row: Gabor features for 45 degree orientation at the third scale, Gabor features for 135 degree
orientation at the third scale, and Gabor features for 135 degree orientation at the fourth scale.
Histogram equalization was applied to all images for better visualization.
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results when the sample is small and the number of parameters is large, we use the Bayes estimate
of θiz that can be computed as the expected value of the posterior distribution.

We can choose any prior for θi in the computation of the posterior distribution but there is
a big advantage to use conjugate priors. A conjugate prior is one which, when multiplied with
the direct probability, gives a posterior probability having the same functional form as the prior,
thus allowing the posterior to be used as a prior in further computations [20]. The conjugate
prior for the multinomial distribution is the Dirichlet distribution [21]. Geiger and Heckerman [22]
showed that if all allowed states of the variables are possible (i.e., θiz > 0) and if certain parameter
independence assumptions hold, then a Dirichlet distribution is indeed the only possible choice for
the prior.

Given the Dirichlet prior p(θi) = Dir(θi|αi1, . . . , αiri) where αiz are positive constants, the
posterior distribution of θi can be computed using the Bayes rule as

p(θi|D) =
p(D|θi)p(θi)

p(D)
= Dir(θi|αi1 + Ni1, . . . , αiri + Niri)

(5)

where D is the training sample and Niz is the number of cases in D in which xi = z. Then, the
Bayes estimate for θiz can be found by taking the conditional expected value

θ̂iz = Ep(θi|D)[θiz] =
αiz + Niz

αi + Ni
(6)

where αi =
∑ri

z=1 αiz and Ni =
∑ri

z=1 Niz.
An intuitive choice for the hyper-parameters αi1, . . . , αiri of the Dirichlet distribution is the

Laplace’s uniform prior [23] that assumes all ri states to be equally probable (αiz = 1,∀z ∈
{1, . . . , ri}) which results in the Bayes estimate

θ̂iz =
1 + Niz

ri + Ni
. (7)

Laplace’s prior is regarded to be a safe choice when the distribution of the source is unknown and
the number of possible states ri is fixed and known [24].

Given the current state of the classifier that was trained using the prior information and the
sample D, we can easily update the parameters when new data D′ is available. The new posterior
distribution for θi becomes

p(θi|D,D′) =
p(D′|θi)p(θi|D)

p(D′|D)
. (8)

With the Dirichlet priors and the posterior distribution for p(θi|D) given in (5), the updated
posterior distribution becomes

p(θi|D,D′) = Dir(θi|αi1 + Ni1 + N ′
i1, . . . , αiri + Niri + N ′

iri
) (9)

where N ′
iz is the number of cases in D′ in which xi = z. Hence, updating the classifier parameters

involves only updating the counts in the estimates for θ̂iz.
The Bayesian classifiers that are learned from examples as described above are used to compute

probability maps for all land cover/use classes and assign each pixel to one of these classes using the
maximum a posteriori probability (MAP) rule given in (3). Example probability maps are shown
in Figures 8-10.
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Figure 8: Pixel level probability maps for different classes of the DC Mall data set. From left to
right: roof, street, path, trees, shadow. Brighter values in the map show pixels with high probability
of belonging to that class.
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Figure 9: Pixel level probability maps for different classes of the Centre data set. From left to
right, first row: trees, self-blocking bricks, asphalt; second row: bitumen, tiles, shadow. Brighter
values in the map show pixels with high probability of belonging to that class.
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Figure 10: Pixel level probability maps for different classes of the University data set. From left
to right, first row: asphalt, meadows, trees; second row: metal sheets, self-blocking bricks, shadow.
Brighter values in the map show pixels with high probability of belonging to that class.
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4 Region Segmentation

Image segmentation is used to group pixels that belong to the same structure with the goal of
delineating each individual structure as an individual region. In previous work [25], we used an
automatic segmentation algorithm that breaks an image into many small regions and merges them
by minimizing an energy functional that trades off the similarity of regions against the length of their
shared boundaries. We have also recently experimented with several segmentation algorithms from
the computer vision literature. Algorithms that are based on graph clustering [26], mode seeking
[27] and classification [28] have been reported to be successful in moderately sized color images with
relatively homogeneous structures. However, we could not apply these techniques successfully to
our data sets because the huge amount of data in hyper-spectral images made processing infeasible
due to both memory and computational requirements, and the detailed structure in high-resolution
remotely sensed imagery prevented the use of sampling that has been often used to reduce the
computational requirements of these techniques.

The segmentation approach we have used in this work consists of smoothing filters and math-
ematical morphology. The input to the algorithm includes the probability maps for all classes
where each pixel is assigned either to one of these classes or to the reject class for probabilities
smaller than a threshold (latter type of pixels are initially marked as background). Since pixel-
based classification ignores spatial correlations, the initial segmentation may contain isolated pixels
with labels different from those of their neighbors. We use an iterative split-and-merge algorithm
[13] to convert this intermediate step into contiguous regions as follows:

1. Merge pixels with identical class labels to find the initial set of regions and mark these regions
as foreground,

2. Mark regions with areas smaller than a threshold as background using connected components
analysis [5],

3. Use region growing to iteratively assign background pixels to the foreground regions by placing
a window at each background pixel and assigning it to the class that occurs the most in its
neighborhood.

This procedure corresponds to a spatial smoothing of the clustering results. We further process
the resulting regions using mathematical morphology operators [5] to automatically divide large
regions into more compact sub-regions as follows [13]:

1. Find individual regions using connected components analysis for each class,

2. For all regions, compute the erosion transform [5] and repeat:

(a) Threshold erosion transform at steps of 3 pixels in every iteration,

(b) Find connected components of the thresholded image,

(c) Select sub-regions that have an area smaller than a threshold,

(d) Dilate these sub-regions to restore the effects of erosion,

(e) Mark these sub-regions in the output image by masking the dilation using the original
image,

until no more sub-regions are found,
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3. Merge the residues of previous iterations to their smallest neighbors.

The merging and splitting process is illustrated in Figure 11. The probability of each region
belonging to a land cover/use class can be estimated by propagating class labels from pixels to
regions. Let X = {x1, . . . , xn} be the set of pixels that are merged to form a region. Let wj and
p(wj |xi) be the class label and its posterior probability, respectively, assigned to pixel xi by the
classifier. The probability p(wj |x ∈ X ) that a pixel in the merged region belongs to the class wj

can be computed as

p(wj |x ∈ X )

=
p(wj , x ∈ X )

p(x ∈ X )
=

p(wj , x ∈ X )∑k
t=1 p(wt, x ∈ X )

=
∑

x∈X p(wj , x)∑k
t=1

∑
x∈X p(wt, x)

=
∑

x∈X p(wj |x)p(x)∑k
t=1

∑
x∈X p(wt|x)p(x)

=
Ex{Ix∈X (x)p(wj |x)}∑k
t=1 Ex{Ix∈X (x)p(wt|x)}

=
1
n

n∑
i=1

p(wj |xi)

(10)

where IA(·) is the indicator function associated with the set A. Each region in the final segmentation
are assigned labels with probabilities using (10).

5 Region Feature Extraction

Region level representations include properties shared by groups of pixels obtained through region
segmentation. The regions are modeled using the statistical summaries of their spectral and textural
properties along with shape features that are computed from region polygon boundaries. The
statistical summary for a region is computed as the means and standard deviations of features
of the pixels in that region. Multi-dimensional histograms also provide pixel feature distributions
within individual regions. The shape properties [5] of a region correspond to its

• area,

• orientation of the region’s major axis with respect to the x axis,

• eccentricity (ratio of the distance between the foci to the length of the major axis; e.g., a
circle is an ellipse with zero eccentricity),

• Euler number (1 minus the number of holes in the region),

• solidity (ratio of the area to the convex area),

• extent (ratio of the area to the area of the bounding box),

• spatial variances along the x and y axes, and

• spatial variances along the region’s principal (major and minor) axes,

resulting in a feature vector of length 10.
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(a) A large
connected
region formed
by merging
pixels labeled
as street in DC
Mall data

(b) More
compact sub-
regions after
splitting the
region in (a)

(c) A large connected region
formed by merging pixels la-
beled as tiles in Centre data

(d) More compact sub-regions
after splitting the region in (c)

Figure 11: Examples for the region segmentation process. The iterative algorithm that uses math-
ematical morphology operators is used to split a large connected region into more compact sub-
regions.
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6 Region Classification

In the remote sensing literature, image classification is usually done by using pixel features as input
to classifiers such as minimum distance, maximum likelihood, neural networks or decision trees.
However, large within-class variations and small between-class variations of these features at the
pixel level and the lack of spatial information limit the accuracy of these classifiers.

In this work, we perform final classification using region level information. To be able to use
the Bayesian classifiers that were described in Section 3, different region-based features such as
statistics and shape features are independently converted to discrete random variables using the
k-means algorithm for vector quantization. In particular, for each region, we obtain 4 values from

• clustering of the statistics of the LDA bands (6 bands for DC Mall data, 8 bands for Centre
and University data),

• clustering of the statistics of the 10 PCA bands,

• clustering of the statistics of the 16 Gabor bands,

• clustering of the 10 shape features.

In the next section, we evaluate the performance of these new features for classifying regions
(and the corresponding pixels) into land cover/use categories defined by the user.

7 Experiments

Performances of the features and the algorithms described in the previous sections were evaluated
both quantitatively and qualitatively. First, pixel level features (LDA, PCA and Gabor) were
extracted and normalized for all three data sets as described in Section 2. The ground truth maps
shown in Figures 1-3 were used to divide the data into independent training and test sets. Then,
the k-means algorithm was used to cluster (quantize) the continuous features and convert them to
discrete attribute values, and Bayesian classifiers with discrete non-parametric models were trained
using these attributes and the training examples as described in Section 3. The value of k was set
to 25 empirically for all data sets. Example probability maps for some of the classes were given in
Figures 8-10. Confusion matrices, shown in Tables 1-3, were computed using the test ground truth
for all data sets.

Next, the iterative split-and-merge algorithm described in Section 4 was used to convert the
pixel level classification results into contiguous regions. The neighborhood size for region growing
was set to 3×3. The minimum area threshold in the segmentation process was set to 5 pixels. After
the region level features (LDA, PCA and Gabor statistics, and shape features) were computed and
normalized for all resulting regions as described in Section 5, they were also clustered (quantized)
and converted to discrete values. The value of k was set to 25 again for all data sets. Then, Bayesian
classifiers were trained using the training ground truth as described in Section 6, and were applied
to the test data to produce the confusion matrices shown in Tables 4-6.

Finally, comparative experiments were done by training and evaluating traditional maximum
likelihood classifiers with the multivariate Gaussian with full covariance matrix assumption for
each class (quadratic Gaussian classifier) using the same training and test ground truth data.
The classification performances of all three classifiers (pixel level Bayesian, region level Bayesian,

19



Table 1: Confusion matrix for pixel level classification of the DC Mall data set (testing subset)
using LDA, PCA and Gabor features.

Assigned Total % Agreeroof street path grass trees water shadow

True

roof 3771 49 12 0 1 0 1 3834 98.3568
street 0 412 0 0 0 0 4 416 99.0385
path 0 0 175 0 0 0 0 175 100.0000
grass 0 0 0 1926 2 0 0 1928 99.8963
trees 0 0 0 0 405 0 0 405 100.0000
water 0 0 0 0 0 1223 1 1224 99.9183

shadow 0 4 0 0 0 0 93 97 95.8763
Total 3771 465 187 1926 408 1223 99 8079 99.0840

Table 2: Confusion matrix for pixel level classification of the Centre data set (testing subset) using
LDA, PCA and Gabor features.

Assigned Total % Agreewater trees meadows bricks bare soil asphalt bitumen tiles shadow

True

water 65877 0 1 0 1 7 0 0 85 65971 99.8575
trees 1 6420 1094 5 0 45 4 0 29 7598 84.4959

meadows 0 349 2718 0 22 1 0 0 0 3090 87.9612
bricks 0 0 0 2238 221 139 87 0 0 2685 83.3520

bare soil 0 9 110 1026 5186 191 59 3 0 6584 78.7667
asphalt 4 0 0 317 30 7897 239 5 756 9248 85.3914
bitumen 4 0 1 253 22 884 6061 9 53 7287 83.1755

tiles 0 1 0 150 85 437 116 41826 211 42826 97.6650
shadow 12 0 0 3 0 477 0 0 2371 2863 82.8152

Total 65898 6779 3924 3992 5567 10078 6566 41843 3505 148152 94.8985

Table 3: Confusion matrix for pixel level classification of the University data set (testing subset)
using LDA, PCA and Gabor features.

Assigned Total % Agreeasphalt meadows gravel trees metal sheets bare soil bitumen bricks shadow

True

asphalt 4045 38 391 39 1 105 1050 875 87 6631 61.0014
meadows 21 14708 14 691 0 3132 11 71 1 18649 78.8675

gravel 91 14 1466 0 0 3 19 506 0 2099 69.8428
trees 5 76 1 2927 0 40 1 2 12 3064 95.5287

metal sheets 0 2 0 1 1341 0 0 1 0 1345 99.7026
bare soil 34 1032 7 38 20 3745 32 119 2 5029 74.4681
bitumen 424 1 7 1 0 1 829 67 0 1330 62.3308
bricks 382 45 959 2 1 87 141 2064 1 3682 56.0565
shadow 22 0 0 0 0 0 0 2 923 947 97.4657

Total 5024 15916 2845 3699 1363 7113 2083 3707 1026 42776 74.9205
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Table 4: Confusion matrix for region level classification of the DC Mall data set (testing subset)
using LDA, PCA and Gabor statistics, and shape features.

Assigned Total % Agreeroof street path grass trees water shadow

True

roof 3814 11 5 0 0 1 3 3834 99.4784
street 0 414 0 0 0 0 2 416 99.5192
path 0 0 175 0 0 0 0 175 100.0000
grass 0 0 0 1928 0 0 0 1928 100.0000
trees 0 0 0 0 405 0 0 405 100.0000
water 0 1 0 0 0 1223 0 1224 99.9183

shadow 1 2 0 0 0 0 94 97 96.9072
Total 3815 428 180 1928 405 1224 99 8079 99.6782

Table 5: Confusion matrix for region level classification of the Centre data set (testing subset)
using LDA, PCA and Gabor statistics, and shape features.

Assigned Total % Agreewater trees meadows bricks bare soil asphalt bitumen tiles shadow

True

water 65803 0 0 0 0 0 0 0 168 65971 99.7453
trees 0 6209 1282 28 22 11 5 0 41 7598 81.7189

meadows 0 138 2942 0 10 0 0 0 0 3090 95.2104
bricks 0 0 1 2247 173 31 233 0 0 2685 83.6872

bare soil 1 4 59 257 6139 11 102 0 11 6584 93.2412
asphalt 0 1 2 37 4 8669 163 0 372 9248 93.7392
bitumen 0 0 0 24 3 726 6506 0 28 7287 89.2823

tiles 0 0 0 39 13 220 2 42380 172 42826 98.9586
shadow 38 0 2 2 0 341 12 0 2468 2863 86.2033

Total 65842 6352 4288 2634 6364 10009 7023 42380 3260 148152 96.7675

Table 6: Confusion matrix for region level classification of the University data set (testing subset)
using LDA, PCA and Gabor statistics, and shape features.

Assigned Total % Agreeasphalt meadows gravel trees metal sheets bare soil bitumen bricks shadow

True

asphalt 4620 7 281 4 0 52 344 1171 152 6631 69.6727
meadows 8 17246 0 1242 0 19 6 7 121 18649 92.4768

gravel 9 5 1360 2 0 0 0 723 0 2099 64.7928
trees 39 37 0 2941 0 4 13 14 16 3064 95.9856

metal sheets 0 0 0 0 1344 0 0 1 0 1345 99.9257
bare soil 0 991 0 5 0 4014 0 19 0 5029 79.8171
bitumen 162 0 0 0 0 0 1033 135 0 1330 77.6692
bricks 248 13 596 33 5 21 125 2635 6 3682 71.5644
shadow 16 0 0 0 1 0 0 1 929 947 98.0993

Total 5102 18299 2237 4227 1350 4110 1521 4706 1224 42776 84.4445
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Table 7: Summary of classification accuracies using the pixel level and region level Bayesian clas-
sifiers and the quadratic Gaussian classifier.

DC Mall Centre University
Pixel level Bayesian 99.0840 94.8985 74.9205
Region level Bayesian 99.6782 96.7675 84.4445
Quadratic Gaussian 99.3811 93.9677 81.2792

quadratic Gaussian) are summarized in Table 7. For qualitative comparison, the classification maps
for all classifiers for all data sets were computed as shown in Figures 12-14.

The results show that the proposed region level features and Bayesian classifiers performed
better than the traditional maximum likelihood classifier with the Gaussian density assumption for
all data sets with respect to the ground truth maps available. Using texture features, that model
spatial neighborhoods of pixels, in addition to the spectral-based ones improved the performances
of all classifiers. Using the Gabor filters at the third and fourth scales (corresponding to 8 features)
improved the results the most. (The confusion matrices presented show the performances of using
these features instead of the original 16.) The reason for this is the high spatial image resolution
where filters with a larger coverage include mixed effects from multiple structures within a pixel’s
neighborhood.

Using region level information gave the most significant improvement for the University data
set. The performances of pixel level classifiers for DC Mall and Centre data sets using LDA- and
PCA-based spectral and Gabor-based textural features were already quite high. In all cases, region
level classification performed better than pixel level classifiers.

One important observation to note is that even though the accuracies of all classifiers look quite
high, some misclassified areas can still be found in the classification maps for all images. This is
especially apparent in the results of pixel level classifiers where many isolated pixels that are not
covered by test ground truth maps (e.g., the upper part of the DC Mall data, tiles on the left of
the Centre data, many areas in the University data) were assigned wrong class labels because of
the lack of spatial information and, hence, the context. The same phenomenon can be observed
in many other results published in the literature. A more detailed ground truth is necessary for a
more reliable evaluation of classifiers for high-resolution imagery. We believe that there is still a
large margin for improvement in the performance of classification techniques for data received from
state-of-the-art satellites.

8 Conclusions

We have presented an approach for classification of remotely sensed imagery using spatial tech-
niques. First, pixel level spectral and textural features were extracted and used for classification
with non-parametric Bayesian classifiers. Next, an iterative split-and-merge algorithm was used
to convert the pixel level classification maps into contiguous regions. Then, spectral and textural
statistics and shape features extracted from these regions were used with similar Bayesian classifiers
to compute the final classification maps.

Comparative quantitative and qualitative evaluation using traditional maximum likelihood
Gaussian classifiers in experiments with three different data sets with ground truth showed that the
proposed region level features and Bayesian classifiers performed better than the traditional pixel
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(a) Pixel level
Bayesian

(b) Region level
Bayesian

(c) Quadratic Gaus-
sian

Figure 12: Final classification maps with the Bayesian pixel and region level classifiers and the
quadratic Gaussian classifier for the DC Mall data set. Class color codes were listed in Figure 1.
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(a) Pixel level Bayesian (b) Region level Bayesian (c) Quadratic Gaussian

Figure 13: Final classification maps with the Bayesian pixel and region level classifiers and the
quadratic Gaussian classifier for the Centre data set. Class color codes were listed in Figure 2.
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(a) Pixel level Bayesian (b) Region level Bayesian (c) Quadratic Gaussian

Figure 14: Final classification maps with the Bayesian pixel and region level classifiers and the
quadratic Gaussian classifier for the University data set. Class color codes were listed in Figure 3.
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level classification techniques. Even though the numerical results already look quite impressive,
we believe that selection of the most discriminative subset of features and better segmentation of
regions will bring further improvements in classification accuracy. We are also in the process of
gathering ground truth data with a larger coverage for better evaluation of classification techniques
for images from high-resolution satellites.
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