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ABSTRACT:

Automatic mapping and monitoring of agricultural landscapes using remotely sensed imagery has been an important research problem.
This paper describes our work on developing automatic methods for the detection of target landscape features in very high spatial
resolution images. The target objects of interest consist of hedges that are linear strips of woody vegetation and orchards that are
composed of regular plantation of individual trees. We employ spectral, textural, and shape information in a multi-scale framework for
automatic detection of these objects. Extensive experiments show that the proposed algorithms provide good localization of the target
objects in a wide range of landscapes with very different characteristics.

1 INTRODUCTION

Several EU Member States have defined various regulations for
the planning, control, maintenance, and monitoring of agricul-
tural sites as part of the EU Common Agricultural Policy. Remote
sensing has long been acknowledged as an important tool for the
classification of land cover and land use, and provides potentially
effective and efficient solutions for the implementation of such
regulations. Consequently, development of automatic and robust
classification methods has become an important research problem
when the analysis goes beyond local sites to cover a wide range
of landscapes in national and even international levels.

We have been developing pattern recognition techniques for au-
tomatic detection of target landscape features in very high spa-
tial resolution (VHR) images. Classification of land cover has
traditionally been performed using pixel-based spectral informa-
tion given as input to statistical classifiers. However, detection
of specific objects is not necessarily accurate when the goal is to
classify the whole land cover. Furthermore, it may not be pos-
sible to discriminate between certain terrain classes using only
spectral information in VHR images with limited spectral reso-
lution. Therefore, it is of great interest to find new methods that
incorporate new types of information peculiar to such images.

This paper focuses on the detection of hedges that are linear strips
of woody vegetation and orchards that are composed of regular
plantation of individual trees. Hedge detection exploits the spec-
tral, textural, and shape properties of objects using hierarchical
feature extraction and decision making steps. Spectral and tex-
tural information are used to select groups of pixels that belong
to woody vegetation. Shape information is used to separate the
target objects from other tree groups and quantify the linearity of
these objects. Extensive experiments using QuickBird imagery
from three EU Member States show that the proposed algorithms
provide good localization of the target objects in a wide range of
landscapes with very different characteristics.

Orchard detection uses a structural texture model that is based
on the idea that textures are made up of primitives appearing in a
near-regular repetitive arrangement. The texture model for the or-
chards involves individual trees that can appear at different sizes
with spatial patterns at gradually changing orientations. The for-
mer is related to the granularity of the texture primitives, and the
latter corresponds to the structural properties of the texture. The
method uses an unsupervised signal analysis framework that can

localize regular textured areas along with estimates of granular-
ity and orientations of the texture primitives in complex scenes.
Experiments using Ikonos and QuickBird imagery of hazelnut or-
chards in Northern Turkey show good localization results even
when no sharp boundaries exist in the image data.

The rest of this paper is organized as follows. Section 2 describes
the approach for hedge detection. Section 3 provides an overview
of orchard detection. Section 4 concludes the paper. Full descrip-
tion of the proposed methodology, detailed discussion of related
work, and detailed performance evaluation can be found in (Ak-
soy et al., 2010, Yalniz and Aksoy, 2010, Yalniz et al., 2010).

2 HEDGE DETECTION

The framework that we developed for hedge detection exploits
spectral, textural, and object shape information using hierarchical
feature extraction and decision making steps. First, pixel-based
spectral and multi-scale textural features are extracted from the
input panchromatic and multispectral data. Then, discriminant
functions trained on combinations of these features are used to
obtain the candidate objects (woody vegetation). Finally, a shape
analysis step identifies the linear structures within the candidate
areas and separates the target objects of interest from other tree
groups. The parts of the candidate objects that satisfy the width
and length criteria are labeled as detected targets (hedges). These
steps are summarized below. Experiments are also presented us-
ing QuickBird imagery from three European sites with different
characteristics. More details can be found in (Aksoy et al., 2010).

2.1 Study Sites

Panchromatic and pan-sharpened QuickBird-2 sensor data with
60 cm spatial resolution were employed in this study. The data
used were from three EU member states with a hedge conser-
vation standard: Baden-Württemberg, Germany; Decin, Czech
Republic; and Paphos, Cyprus. These sites were chosen to col-
lect a diverse sample of hedges with different characteristics. The
Baden-Württemberg site is a rolling agricultural landscape typi-
cal of large parts of the temperate EU, with large clumps of vari-
ably sized agricultural parcels intersticed with medium and large
forest patches. Hedges are nearly exclusively parcel separations.
Pasture dominated Decin site hedges are much larger on average
and riparian vegetation is more frequent. Paphos site represents
a rather extreme situation of thin hedges in a very fragmented
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Figure 1: Example QuickBird images (pan-sharpened visible
bands) containing hedges marked with a yellow boundary by an
expert. Raster images in this paper are 1000×1000 pixels in size
corresponding to 600× 600 m.

environment containing many other small linear features. Perfor-
mance evaluation was done using a total of 33 subscenes with 11
subscenes of size 1000× 1000 pixels cut from each site. Exam-
ples are shown in Figure 1.

2.2 Pre-processing

The first step of the analysis consisted of low-level image pro-
cessing tasks where pixel-based spectral and multi-scale tex-
tural features were extracted from the input panchromatic and
multispectral data. The normalized difference vegetation index
(NDVI) was computed from the pan-sharpened multispectral data
to separate green vegetation from the rest of the land cover. Tex-
ture features were used for identifying areas that have similar
spectral responses but different spatial structures. In particular,
Gabor features and granulometry features were used to model
the arrangements of individual trees and the appearance of lin-
ear structures with respect to their surroundings. Gabor features
were extracted by applying a bank of scale and orientation selec-
tive filters to the panchromatic band. Six scales were designed
to include both the fine texture of individual trees within a hedge
and the coarse texture of hedges among agricultural fields. Gran-
ulometry features were extracted using morphological opening
and closing of the panchromatic image with a family of struc-
turing elements with increasing sizes. These features were used
to summarize the size distribution of image structures brighter or
darker than their neighborhood.

2.3 Identification of Candidate Objects

The next step was to find the image areas that gave high responses
to the extracted features so that they could be considered as can-
didate objects. We used a two-step decision process. First, a
threshold on NDVI was used to separate green vegetation from
the rest of the land cover. The threshold was selected so that
there was no omission of any hedge structure. However, we ob-
served that such thresholding could not distinguish hedges from
other types of vegetation and kept many fields, large groups of
trees and other vegetated areas in the output. On the other hand,
the thresholding eliminated some linear human-made structures
that gave high responses to the texture features.

Given the obtained vegetation mask, the next step was to iden-
tify candidate objects according to their texture characteristics.
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Figure 2: Example results for woody vs. non-woody vegetation
classification. The image areas identified as woody vegetation are
marked as green on the panchromatic image. Note that woody
vegetation can have very different appearances in different sites.

Pixel-based texture modeling was not sufficient for detecting the
linearity of a structure but was capable of modeling its woodiness.
Hence, we concentrated on the separation of woody vegetation
from the rest of the areas in the vegetation mask. Manual label-
ing of image areas as woody vs. non-woody vegetation was used
to generate the ground truth for training and evaluation. Different
combinations of features and different classifiers were studied.
The Gaussian maximum likelihood classifier was found to per-
form as good as any other classifier with an overall classification
accuracy of 94.83%, and was used in the rest of the analysis.

After the discriminant function identified the pixels that could be-
long to targets of interest (woody vegetation), connected sets of
these pixels were grouped to obtain the candidate objects. Exam-
ple results are shown in Figure 2.

2.4 Detection of Target Objects

After the candidate objects were found, object shape informa-
tion was used so that the objects could be labeled as target or
are rejected. An important observation was that the results of
the pixel grouping in the previous step were not directly suitable
for computing object level features. The reasons were twofold:
hedges were often connected to other larger groups of trees, and
they often followed natural boundaries where they did not nec-
essarily exhibit a perfectly straight structure. Hence, an impor-
tant step was the separation of hedges from other tree groups and
piecewise linearization of the object regions where linearity was
defined as piecewise elongation along the major axis while hav-
ing an approximately constant width, not necessarily in the strict
sense of a perfectly straight line.

The object-based feature extraction process used morphological
top-hat filtering to locate the woody vegetation areas that fell
within the width limits of an acceptable hedge and skeletoniza-
tion and an iterative least-squares fitting procedure to quantify the
linearity of the objects. Given two thresholds that specified the
maximum and minimum acceptable width of a hedge, the mor-
phological filtering step eliminated the structures that were too
wide or too narrow. This also decreased the computation time by
excluding the structures that were not within the shape limits of
an acceptable hedge from further processing. However, it did not
guarantee that the remaining structures were linear.

The next step used skeletonization as a structural representation
of the object shapes, and an iterative least-squares fitting based
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Figure 3: Example results for object-based feature extraction.
The first column shows initial skeletons overlayed on the woody
classification maps. The second column shows the parts that re-
mained after morphological top-hat filtering. The third column
shows the objects corresponding to the final set of segments se-
lected as linear using the least-squares fitting procedure.

segment selection procedure was employed to extract the parts
of this representation that might correspond to a hedge. First,
the skeleton of the binary classification map of candidate objects
was computed as an approximation of the symmetry axis of the
objects. The output of this step was the set of points on the skele-
ton, and, for each point an estimate of the radius (width) of the
shape around that point. We assumed that the linearity of a seg-
ment could be modeled by the uniformity of the radii along the
skeleton points that corresponded to the uniformity of the width
perpendicular to the symmetry axis. This assumption was imple-
mented using an iterative least-squares procedure for selecting the
group of pixels having uniform radii. The measure of how well a
set of points were uniform in radii was computed using the least-
squares error criterion, and the subsegments passing this criterion
were kept as candidates for the final decision. This idea is simi-
lar to a least-squares procedure of fitting a line to pixel locations
along a uniform slope, but the main difference is that the fitting
is done to the radii values instead of the position values because
the hedges that follow natural paths do not necessarily exhibit
straight structures in terms of positions along a fixed slope but
can be discriminated according to the uniformity of their width
along a symmetry axis. Examples are shown in Figure 3.

The final set of shape features consisted of the aspect
(length/width) ratio for each resulting object. The length was
calculated as the number of points on the skeleton of the cor-
responding subsegment, and the width was calculated as the av-
erage diameter for the points on the skeleton of the subsegment.
The final decision for accepting a segment as a target object was
done using a threshold on aspect ratio.

2.5 Performance Evaluation

Manual photo-interpretation was used to produce the reference
data. Object-based performance evaluation was done in terms of
the overlaps between the skeletons of the reference objects and
the detected objects. The objects whose skeletons had an over-
lap of at least 60% were considered as matches. Object-based
precision (the number of true positives divided by the total num-
ber of objects labeled as hedges by the algorithm) and recall (the
number of true positives divided by the total number of objects
labeled as hedges by the expert) were used as the quantitative per-
formance criteria. Overall precision was 35.23% and recall was
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Figure 4: Example results for hedge detection. The objects de-
tected as hedges are marked with a yellow boundary.

58.69%. Example results are shown in Figure 4. Visual interpre-
tation showed that the performance was actually better than the
quantitative results due to limitations in the reference data. False
negatives were mainly caused by the errors during the identifica-
tion of candidate objects. False positives were mainly caused by
groups of individual but nearby trees in orchards, groups of trees
in residential areas, and linear vegetation that did not look woody
enough and was not included in the reference data.

3 ORCHARD DETECTION

Our framework for orchard detection is based on texture analysis
of panchromatic data. The approach starts with a pre-processing
step involving multi-granularity isotropic filters for enhancing
tree-like objects in the image. The local maxima in the filter re-
sponses are assumed to correspond to potential tree locations, and
the regularity of these locations along a scan line with a particular
orientation in the image is measured using periodicity analysis of
projection profiles within oriented sliding windows. The period-
icity analysis is performed at multiple orientations and granulari-
ties to compute a regularity score at each pixel. Finally, a regular-
ity index is computed for each pixel as the maximum regularity
score and the principal orientation and granularity for which this
score is maximized. The image areas that contain an orchard
composed of regular arrangements of trees can be localized by
thresholding this regularity index. These steps are summarized
below. Experiments are also presented using Ikonos and Quick-
Bird imagery of a site in Turkey containing hazelnut orchards.
More details can be found in (Yalniz and Aksoy, 2010, Yalniz et
al., 2010).

3.1 Study Sites

Panchromatic Ikonos and QuickBird-2 sensor data were em-
ployed in this study. The area experimented corresponded to the
Merkez county in the province of Giresun in the Black Sea region
of Turkey. A specific property of the region is the strong relief,
which makes hazelnut production the main cultivation there. In
addition, the hazelnut orchards in the region are often small and
have a high planting density relative to orchards in other coun-
tries. Performance evaluation was done using a total of 15 sub-
scenes with five subscenes of size 1000 × 1000 pixels cut from
each of one Ikonos and two QuickBird images. Seven images,
each with size 1680× 1031 pixels, that were saved from Google
Earth over Izmir, Turkey were also used in the experiments. Ex-
amples are shown in Figure 5.
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Figure 5: Example images containing orchards. Color data are
shown but only the panchromatic information was used in the
study.

3.2 Pre-processing

The tree model was assumed to correspond to a filter for which
the image areas with a high response were more likely to contain
trees than areas with a low response without any strict require-
ment for exact detections. We used the Laplacian of Gaussian
filter as a spot filter for a generic tree model sensitive to contrast
differences in any orientation. The isotropic spot filter had a sin-
gle scale parameter corresponding to the Gaussian function, and
this parameter could be selected according to the sizes (granular-
ities) of the trees of interest. Note that any other filter could also
be used because the following step will use the filter responses
that enhance the tree-like objects in the image.

3.3 Regularity Detection

After the tree-like objects were enhanced in an image, the pixels
having high responses (local maxima) on a scan line along the
image indicated possible locations of such objects. In a neigh-
borhood with a regular repetitive structure, the locations of local
maxima along the scan line with an orientation that matched the
dominant direction of this structure also had a regular repetitive
pattern. The next step involved converting the image data into
1D signals using projection profiles at particular orientations, and
quantifying the regularity of the trees along these orientations in
terms of periodicity analysis of these profiles.

Given a scan line representing a particular orientation, the ver-
tical projection profile was computed as the summation of the
values in individual columns (in perpendicular direction to the
scan line) of an oriented image window constructed symmetri-
cally on both sides of this scan line. This profile would contain
successive peaks with similar shapes if the orientation of the scan
line matched the orientation of the texture pattern. The regular-
ity of the texture along a particular orientation was assumed to
be represented in the periodicity of the corresponding projection
profile. Since it might not always be possible to find a perfect
period, especially for natural textures, we designed an algorithm

(a) A window cropped from the filter response of an image

(b) Vertical projection profile of the window

(c) Segmentation of the projection profile into its peaks and valleys

(d) Periodic intervals located in the profile signal

Figure 6: Periodicity analysis of the projection profile of an im-
age window.
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Figure 7: Example windows for computing the projection pro-
files. Each window is marked as green together with the scan line
that passes through its symmetry axis that is marked as yellow.

that measured the amount of periodicity and located the periodic
part within the larger profile signal. This was achieved using three
constraints. The first constraint used the peaks and valleys of the
profile signal where the peaks were assumed to correspond to the
trees and the valleys represented the distance between consecu-
tive trees. A regularity score between 0 and 1 was computed for
each pixel using signal analysis so that pixels with a score close
to 1 were candidates to be part of a regular periodic signal. The
second constraint selected the parts of the signal where there were
alternating peaks and valleys corresponding to a regular planting
pattern of trees and the spacing between the trees. Finally, the
third constraint checked the width of each peak and eliminated
the ones that were too narrow or too wide with respect to the sizes
of the trees of interest. Figure 6 shows an example for periodicity
analysis.

3.4 Multi-orientation and Multi-granularity Analysis

An image may contain periodic textures at multiple orientations
composed of multiple granularities of texture primitives. There-
fore, different granularities were approximated using different
spot filters, and the projection profiles for different orientations
were analyzed by sliding image-wide oriented windows over each
spot filter output. Example windows are shown in Figure 7. The
windows were parametrized by a distance parameter d, an orien-
tation parameter θ, and a height parameter δ with respect to the
center pixel of the image as the origin. The resulting regularity
scores for all orientations and all granularities for all pixels were
stored in a four dimensional matrix denoted as ρ(r, c; θ, g) where
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Figure 8: Example results for orchard detection. The areas detected by thresholding the regularity index are marked as green on the
panchromatic image, along with orientation estimates marked as yellow line segments (top row) and scale estimates marked using
shades of red and yellow (bottom row).

(r, c) were the pixel locations, θ ∈ [−90◦, 90◦) were the orien-
tations, and g represented the granularities.

3.5 Texture Segmentation

The goal of the last step was to compute a regularity index for
each pixel to quantify the structure of the texture in the neigh-
borhood of that pixel along with estimates of the orientation of
the regularity as well as its granularity. For robustness, it was
expected that the regularity values were consistent among neigh-
boring pixels for a certain range of orientations and granularities.
The noisy cases were suppressed by convolving ρ(r, c; θ, g) with
a four dimensional Gaussian filter with size 11 × 11 × 11 × 3.
A final regularity index was defined as the maximum regularity
score at each pixel and the principal orientation and granularity
for which this score was maximized. Texture segmentation was
performed by thresholding this regularity index.

3.6 Performance Evaluation

The performance of orchard detection was also evaluated us-
ing reference data produced using manual photo-interpretation.
Pixel-based precision and recall were used as the quantitative
performance criteria. Overall precision for Giresun data was ob-
tained as 47.07% and recall was obtained as 78.11%. When the
performances on Ikonos data and QuickBird data were compared,
higher accuracy was observed for the QuickBird data due to the
increased spatial resolution. We also observed that the time of
the image capture affected the results as higher accuracy was
obtained when the individual trees were more apparent in the
panchromatic image. Overall precision for the Izmir data taken
from Google Earth was obtained as 85.46% and recall was ob-
tained as 88.35%. The lower accuracy for the Giresun data was
mainly due to the irregularities in the planting patterns, mixed ap-
pearances of other trees within the orchards, and the deformations
in the visual appearance of the patterns due to the strong relief
in the region. Example results for local details of orchard detec-
tion along with orientation and granularity estimates are shown in
Figure 8. Most of the false positives were observed along roads
where there was a repetitive contrast difference on both sides, and
around some building groups where a similar regular contrast dif-
ference was observed due to neighboring edges. False negatives
mostly occurred at small vegetation patches that were marked in

the reference data due to a few rows of regularly planted trees but
were not large enough for the algorithm.

4 CONCLUSIONS

We presented new methods for automatic detection of hedges that
are defined as linear strips of woody vegetation and orchards that
are composed of regular plantation of individual trees as target
objects in VHR images. The approach for hedge detection ex-
ploited the spectral, textural, and shape properties of objects us-
ing hierarchical feature extraction and decision making steps. Or-
chard detection used a structural texture model that was based on
the idea that textures were made up of primitives (trees) appearing
in a near-regular repetitive arrangement (plantation patterns). An
important design goal was to minimize the amount of supervision
needed so that the methods could be applied on a wide range of
landscapes with very different characteristics. Experiments us-
ing Ikonos and QuickBird imagery showed good detection and
localization results on a diverse set of test sites.
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