
RELATIVE POSITION-BASED SPATIAL RELATIONSHIPS
USING MATHEMATICAL MORPHOLOGY

R. Gökberk Cinbiş and Selim Aksoy
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ABSTRACT

Spatial information is a crucial aspect of image understanding for
modeling context as well as resolving the uncertainties caused by
the ambiguities in low-level features. We describe intuitive, flexible
and efficient methods for modeling pairwise directional spatial rela-
tionships and the ternary between relation using fuzzy mathemati-
cal morphology. First, a fuzzy landscape is constructed where each
point is assigned a value that quantifies its relative position according
to the reference object(s) and the type of the relationship. Then, the
degree of satisfaction of this relation by a target object is computed
by integrating the corresponding landscape over the support of the
target region. Our models support sensitivity to visibility to handle
areas that are partially enclosed by objects and are not visible from
image points along the direction of interest. They can also cope with
the cases where one object is significantly spatially extended relative
to others. Experiments using synthetic and real images show that our
models produce more intuitive results than other techniques.

Index Terms— Spatial relationships, mathematical morphol-
ogy, fuzzy sets, relative position, between

1. INTRODUCTION

Traditional approaches to scene classification and retrieval have used
global features for image representation. However, the object vari-
ability and background complexity in realistic data sets have in-
creased the need for region-based analysis. More recently, local
feature-based methods have received significant attention due to their
invariance to translation, scale and rotation, and robustness to partial
occlusion and clutter. However, the visual polysemy caused by sim-
ilar local features (also called patches) occurring at semantically dif-
ferent parts of a scene leads to ambiguities if the classification meth-
ods do not exploit additional contextual information. Furthermore,
even when regions/patches can be classified correctly, two scenes
with similar regions/patches can have different interpretations if they
have different arrangements. This especially becomes important and
critical when the scenes contain complex structures like in medical
or remote sensing images.

Contextual information has long been acknowledged for play-
ing a very important role in both human and computer vision. A
structural method for modeling context in images is through quan-
tification of spatial relationships. Typical relationships studied in the
literature include topological, distance-based, and relative position-
based relationships. We have successfully used such relationships [1]
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for image classification and retrieval in scenarios that cannot be ex-
pressed by traditional pixel- and region-based approaches.

In this paper, we concentrate on binary directional relationships
and the ternary between relationship for modeling relative positions.
Most of the existing methods for defining binary spatial positions
rely on angle measurements between points of objects of interest [2].
The angle between object centroids or the histogram of angles be-
tween all pairs of points have been used for approximating relative
positions. Alternatives include histogram of forces, projections, and
morphological methods (see [2, 3] for reviews). The between rela-
tionship has not been studied as thoroughly as the binary relation-
ships. Example models of between include convex hulls, combina-
tions of line segments, and mathematical morphology (see [4] for
an extensive review and a comparative study). However, most of
these methods are computationally expensive, some give reasonable
results only for compact objects, and many cannot handle the cases
where one of the regions is spatially extended relative to the other or
if regions have concavities that are invisible from each other.

Intuitively, the influence of the shape of the object (e.g., concav-
ities, extent) and the influence of the distance between the objects
are important points to be considered in the design of an algorithm.
Mathematical morphology provides a strong basis for such studies.
Furthermore, the ambiguities and subjectiveness inherent in the def-
initions of the relationships make fuzzy representation a promising
approach for modeling the imprecision in both the images and the
results.

In this paper, we propose intuitive, flexible and efficient methods
for modeling pairwise directional relationships and the ternary be-
tween relation using fuzzy mathematical morphology. First, a fuzzy
landscape is defined where each point is assigned a value that quan-
tifies its relative position according to the reference object(s) and
the type of the relationship. Directional mathematical dilation with
fuzzy structuring elements is used to compute this landscape. Then,
the degree of satisfaction of this relation by a target object is com-
puted by integrating the corresponding landscape over the support of
the target region.

Our main contributions in this paper are the flexible definitions
for fuzzy structuring elements that are tunable along both radial and
angular dimensions. Furthermore, the proposed methods support the
notion of visibility to handle image areas that are fully or partially
enclosed by a reference object and are not visible from image points
along the direction of interest. Our definitions also handle the cases
where one object is significantly spatially extended relative to the
other by taking spatial proximity into consideration. The methods
are illustrated and compared to other techniques using synthetic im-
ages and real satellite scenes.
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(a) λ = 0.001
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(c) λ = 0.5

Fig. 1. Examples of gλ(x) with the shape of a cubic Bézier curve
and a single parameter λ.

2. DIRECTIONAL SPATIAL RELATIONSHIPS

Directional relationships describe the spatial arrangement of two ob-
jects relative to each other. Although it is common to use right, left,
above and below as the directions, it is more generalizable to use an
angle-based definition of these relations. Given a reference object
B and a direction specified by the angle α, the landscape βα(B)
around the reference object along the given direction can be defined
as a fuzzy set such that the membership value of an image point cor-
responds to the degree of satisfaction of the spatial relation.

This relationship can be defined in terms of the angle θα(x, b)
between the vector from a point b in the reference object to a point x
in the image and the unit vector along the direction α measured with
respect to the horizontal axis. Bloch [5] suggested that the small-
est such angle computed for a point in the image considering all
points in the reference object corresponds to the visibility of the im-
age point from the reference object in the direction α, and defined
the landscape using a function linearly decreasing with θ as

βα(B)(x) = max


0, 1− 2

π
min
b∈B

θα(x, b)

ff
. (1)

It can be shown that this is equivalent to the morphological dilation
of B,

βα(B)(x) = (B ⊕ να)(x) ∩Bc, (2)

using the fuzzy structuring element

να(x) = max


0, 1− 2

π
θα(x, o)

ff
(3)

where o is its origin (center) and B is removed from the result of
dilation in (2).

However, the linear function may not give realistic results for
many cases (see Figure 2 and Section 4 for examples). We propose
a more intuitive and flexible structuring element using a nonlinear
function with the shape of a Bézier curve:

να,λ(x) = gλ

„
2

π
θα(x, o)

«
(4)

where λ determines the inflection point (see [3] for the derivation)
and the nonlinear function enables different definitions of fuzziness
for different cases. Figure 1 shows examples for different λ values.

The definition of the structuring element can be further extended
to decrease the degree of a point’s spatial relation to a reference ob-
ject according to its distance to that object by introducing a new
linear term

να,λ,τ (x) = gλ

„
2

π
θα(x, o)

«
max


0, 1− ‖−→ox‖

τ

ff
(5)

(a) Synthetic image (b) να (c) βα

(d) να,λ (e) βα,λ (f) να,λ,τ (g) βα,λ,τ

Fig. 2. A synthetic image and directional landscapes for region 4
using the parameters α = π, λ = 0.3 and τ = 100.

where ‖−→ox‖ is the Euclidean distance of point x from the structur-
ing element’s center and τ is a threshold corresponding to the dis-
tance where a point is no longer visible from the reference object.
This definition also has a computational advantage because in (3)
and (4) the structuring element must be at least twice as large as the
landscape of interest in the image space (landscape computation has
quadratic complexity with respect to image size) whereas in (5) a
structuring element with size of at most 2τ × 2τ is sufficient (linear
complexity), leading to dramatical improvements in the efficiency of
the algorithm. As can be seen in Figure 2, definition να given in (3)
as proposed in [5] leads to a landscape with a large spread and unin-
tuitive transitions when the angle departs from α whereas να,λ given
in (4) and να,λ,τ given in (5) provide more intuitive landscapes with
more compact support (see [3] for more examples).

In directional dilation of (2), the areas that are fully or par-
tially enclosed by the reference object but are not visible from image
points along the direction of interest may have high values as in the
cavity of region 4 in Figure 2. To overcome this problem, we propose
the following definition

βα,λ,λ′,τ (B)(x) = (B ⊕ να,λ,τ )(x) ∩ (B ⊕ να+π,λ′)(x)c (6)

where the first dilation uses the structuring element defined in (5)
and the second dilation uses the structuring element defined in (4).
We compute fuzzy intersection using multiplication as the t-norm
operator and compute fuzzy complement by subtracting the original
values from 1. This definition of visibility is illustrated in Figure 3.

3. BETWEEN RELATIONSHIP

Given two reference objects B and C, the landscape βG(B, C) be-
tween them can also be defined as a fuzzy set. This landscape can be
computed as the intersection of the directional dilations of the refer-
ence regions along the directions α = θG and α = θG + π where
θG is the relative position of the reference objects. This relative po-
sition can be calculated using the maximum or average value in the
histogram of angles between all pairs of points of the reference ob-
jects [4]. Then, the landscape is computed as

βG(B, C)(x) = βα=θG,λ,λ′(B)(x) ∩ βα=θG+π,λ,λ′(C)(x) (7)

where the directional landscape βα,λ,λ′ is computed as in (6) without
considering τ (using (4) instead of (5)). Since the landscape should
include only the areas that are visible from both reference objects,
the notion of visibility described in Section 2 is used.



(a) βα,λ,τ for region 3
w/o visibility

(b) βα,λ,λ′,τ for region
3 w/ visibility

(c) βα,λ,λ′,τ for region 4
w/ visibility

(d) Difference between
landscapes of region 4 w/
and w/o visibility

Fig. 3. Directional landscapes with and without visibility using the
parameters α = π, λ = 0.3, λ′ = 0.001 and τ = 100.

Although histogram of angles generally provides a good approx-
imation to the relative position of two objects, it fails in the cases
where one object is significantly spatially extended relative to the
other [4] (see Figure 4 for examples). We propose to solve this prob-
lem by taking into account only the part of the spatially extended
region close to the other region. (Bloch et al. [4] called this the “my-
opic vision” and suggested to use line segments to approximate close
parts of the regions but did not specify the details of the method.)

Spatial proximity for handling extended regions is incorporated
into our morphological approach using a weighted histogram of an-
gles where the contribution of the angle between each point pair in
the histogram is weighted by the term max{0, 1 − ‖

−→
bc‖/τmyopic}

(instead of a constant weight of 1 in [4]) where
−→
bc is the Euclidean

distance between the points b and c, and τmyopic is the threshold for
the maximum distance between two points for allowing them to con-
tribute to the histogram. The proposed definition of myopic vision is
illustrated in Figure 4.

Finally, after calculating the landscape β for a spatial relation
as in Sections 2 or 3, the degree of satisfaction of this relation by a
target object A can be computed as

µ(A) =
1

area(A)

X
a∈A

β(a). (8)

4. ILLUSTRATIVE EXAMPLES

In Tables 1, 2 and 3, experimental statistics using the synthetic image
in Figure 2(a) are given (see [3] for more details). For the landscapes
calculated using our definitions, the constants are set as: λ = 0.3,
λ′ = 0.001, τ = 150. Table 1 presents the directional relationship
satisfaction degrees of several object pairs in the directions left, right,
above and below, where α value corresponds to π, 0, π/2 and−π/2,
respectively. For reference region 1 and target region 4, our method
decides that 4 is mostly above 1. This decision is consistent with
intuition. However, the centroid-based method says that 4 is more to
the right than above, and Bloch’s definition erroneously gives 0.41
for left because of its large spread in the landscape. Bloch’s defi-
nition also gives conflicting results for the reference-target relations
1-2, 1-3 and 3-4 because of the same problem. The rest of the cases
give similar results for all methods.

(a) w/o myopic vision;
λ = 0.15

(b) w/ myopic vision;
λ = 0.15

(c) w/o myopic vision;
λ = 0.5

(d) w/ myopic vision;
λ = 0.5

Fig. 4. Between landscape examples for regions 1 and 4 where 1
is spatially extended relative to 4. τmyopic is set to half of image
width and λ′ = 0.001. The relative angles are 42.28◦ and 63.40◦

for figures without and with myopic vision, respectively. For larger
values of λ, the error in landscape without myopic vision becomes
more significant.

Table 2 presents the relative angles for several object pairs. For
our myopic vision definition, Inf represents that objects under con-
sideration are too distant to be related (determined by τmyopic). This
behavior is an advantage of the proposed method because it also
identifies the reference object pairs where the between relationship is
meaningless. For all cases, our myopic vision definition gives more
intuitive results.

Table 3 presents the between relationship satisfaction degrees.
We can intuitively say that object 4 is between 1 and 3 more than
it is between 1 and 2. We can also see that object 4 is not between
2 and 3, and 2 is not between 3 and 4. Our results are much closer
to these expectations than the results of the method proposed in [4].
Both methods perform similarly for the rest of the cases.

Figure 5 shows a LANDSAT scene of British Columbia in Canada
and its segmentation using the method in [1]. Figure 6 illustrates
the scenario for searching for bridges where a bridge is defined as
a region classified as asphalt or concrete and is between two water
regions. Figure 7 illustrates the scenario of finding the fields to the
north (above) of a river (water). The directional landscape without
visibility in Figure 7(a) erroneously covers some areas that are to the
south of the river. Introducing visibility using the structuring ele-
ment in (5) with α = π/2, λ = 0.5, τ = 150 for the first dilation in
(6) and α = −π/2, λ = 0.001, τ = 100 for the second dilation in
(6) produces the landscape in Figure 7(b) where areas with water re-
gions closer to them from below than above have high membership
values for the “field above water” relationship. Finally, restricting
the size of the structuring element to 200 × 200 in the second di-
lation in (6) gives the landscape in Figure 7(c) where areas with a
water region closer than 200 pixels (corresponding to 6 km) from
above are ignored in the relationship.

5. CONCLUSIONS

We presented new, flexible and efficient definitions for modeling bi-
nary directional relationships and the ternary between relationship
using fuzzy mathematical morphology techniques. Our definitions
support the notion of visibility for handling areas that are partially



Table 1. Satisfaction degrees of the directional relationships for object pairs in the synthetic image in Figure 2(a).
Centroid-based [2] Bloch’s definition (3) Our definition (6)

Ref. Target left right above below left right above below left right above below
1 2 0.24 0.00 0.76 0.00 0.60 0.13 1.00 0.00 0.05 0.01 0.46 0.00
1 3 0.00 0.38 0.62 0.00 0.19 0.70 0.98 0.00 0.03 0.14 0.53 0.00
1 4 0.00 0.72 0.28 0.00 0.41 0.87 1.00 0.00 0.05 0.40 0.79 0.00
3 4 0.01 0.00 0.00 0.99 1.00 0.99 0.34 1.00 0.05 0.01 0.00 0.72

Table 2. Relative angles (in degrees) between object pairs in the
synthetic image in Figure 2(a).

Obj.1 Obj.2 Centroid Hist. of angles Hist. of angles
with myopic vision

1 2 119.25 115.98 93.98
1 4 31.88 42.29 63.41
2 3 -10.99 -12.03 -21.97
2 4 -29.92 -30.04 Inf

Table 3. Satisfaction degrees of the between relationship for object
triplets in the synthetic image in Figure 2(a).

Ref.1 Ref.2 Target Bloch et al.’s Our defn. (7)defn. (17) in [4]
1 2 3 0.12 0.10
1 2 4 0.52 0.22
1 3 4 0.77 0.95
2 3 4 0.41 0.02
3 4 2 0.27 0.00

enclosed by objects and are not visible from image points along the
direction of interest. They also cover the cases where one object
is significantly spatially extended relative to the other. Numerical
and visual examples showed that our models often produce more
intuitive results than the state-of-the-art techniques. Future work in-
cludes using these models for image classification and retrieval.
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Fig. 5. LANDSAT scene of British Columbia in Canada.

(a) Zoomed sub-image (b) Between landscape of
two water regions using st.
el. of size 10× 10

Fig. 6. Searching for bridges in the sub-image marked with a red
rectangle in Figure 5 (see text for details).

(a) Without visibility (b) With visibility (c) With visibility using
restricted st. el.

Fig. 7. Searching for fields to the north of a river in the sub-image
marked with a yellow rectangle in Figure 5 (see text for details).


