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Abstract—We present solutions to two problems that prevent
the effective use of population-based algorithms in clustering
problems. The first solution presents a new representation
for arbitrary covariance matrices that allows independent
updating of individual parameters while retaining the validity
of the matrix. The second solution involves an optimization
formulation for finding correspondences between different
parameter orderings of candidate solutions. The effectiveness
of the proposed solutions are demonstrated on a novel clus-
tering algorithm based on particle swarm optimization for the
estimation of Gaussian mixture models.

I. INTRODUCTION

Clustering is an unsupervised classification technique
where unlabeled data are partitioned into groups of similar
objects. Among many, iterative partitioning methods such
as k-means and its extensions have been widely used.
Like most other clustering algorithms, these methods share
common problems. For instance, cluster modeling capability
of the k-means algorithm is limited to spherical clusters
with similar number of data points. Fitting parametric den-
sity models such as Gaussian mixture models (GMM) by
using the Expectation-Maximization (EM) algorithm can
be interpreted as model-based clustering methods where
each mixture component is viewed as a cluster. Due to
its capability of discovering clusters of arbitrary ellipsoidal
shapes, the GMM-EM algorithm is a superior version of
k-means. However, as the number of dimensions increases,
significant difficulties arise in the estimation of covariance
matrices for GMMs. Furthermore, due to their objective of
interest being a non-convex optimization problem, k-means
and GMM-EM easily get trapped in local minima, and are
very sensitive to initializations. The common practice is to
run these algorithms many times from different initial values
and to employ several local search heuristics.

With the advent of inexpensive high-speed computers,
many researchers are increasingly turning to population-
based stochastic search algorithms to solve complicated
problems. Similarly, there is a growing interest in the use
of these methods to solve clustering problems. For example,
Chang et al. [1] designed a genetic algorithm for improving

k-means, Maulik and Saha [2] proposed a modified dif-
ferential evolution algorithm for fuzzy c-means clustering,
and Schroeter et al. [3] used a genetic algorithm for the
estimation of GMMs. In the past decade, the applications
of GMMs have widened substantially. In addition to their
applications in mainstream statistical analyses, they are
widely used in unsupervised pattern recognition, medical
imaging, and speech recognition [4]. Hence, it is of great
interest to improve the effectiveness and broaden the use
of population-based search algorithms to the estimation of
GMMs.

In this paper, we propose solutions to problems that
prevent the effective use of population-based algorithms in
clustering problems, and present a novel clustering algorithm
based on particle swarm optimization (PSO) for maximum
likelihood estimation of GMMs. Solutions to two vital prob-
lems are presented and their uses are demonstrated in this
paper. First of all, in clustering problems with K clusters,
there exist K! ways to represent parameters of different clus-
ters as a candidate solution. A correspondence identification
problem arises when different candidates are required to
interact with each other. Furthermore, there is no suitable
parametrization and a corresponding algorithm to represent
and estimate arbitrary covariance matrices from data. Section
II gives general description of the PSO algorithm. Section
III discusses the limitations of existing methods and presents
the proposed clustering algorithm. Section IV illustrates its
effectiveness in the clustering of various data sets.

II. PARTICLE SWARM OPTIMIZATION

PSO is a population-based stochastic search algorithm
based on the social interaction among different swarm
animals. In PSO, each member of the population is called
a particle. Each particle Z consists of a position vector ZX

and velocity vector ZV . Position of each particle ZX ∈ Rm

corresponds to a candidate solution for an m-dimensional
optimization problem. A fitness function defined for the
optimization problem of interest is used to assign a goodness
value to a particle based on its position. The particle having
the best fitness value is called the global best (ZGB). In addi-



tion, each particle keeps track of its own best position since
the first iteration and it is called the personal best (ZPB).
In the first iteration, particles are initialized with random
positions and small random velocities. In the subsequent
iterations, each of the m velocity components in ZV is
computed independently using its previous value, the global
best, and the particle’s own personal best in a stochastic
manner as

ZVt+1 = w ZVt + c1 U1t (ZPBt − ZXt)
+ c2 U2t (ZGBt − ZXt) (1)

where w is called the inertia weight, U1t and U2t stand for
random numbers sampled from Uniform[0, 1], c1 and c2 are
called acceleration weights, and t is the iteration. The new
position of the particle is computed using its old position
and its current velocity as

ZXt+1 = ZXt + ZVt+1 , (2)

and its personal best is updated based on its new fitness
value. In addition, the global best of the population is
updated after each iteration using particles’ new fitness
values.

The most important property of PSO is its use of the
global best to coordinate the movement of all particles and
the use of personal bests to remember the history of each
particle where the global best serves as the current state of
the problem and the personal bests serve as the current states
of the particles.

III. PROPOSED CLUSTERING ALGORITHM

We consider a family of mixtures of K multivariate Gaus-
sian distributions on Rd indexed by the set of parameters
Θ = {π1, µ1,Σ1, . . . , πK , µK ,ΣK} such that µk ∈ Rd

are the means, Σk ∈ Sd
++ are the covariance matrices,

and πk ∈ [0, 1] are the prior probabilities for clusters
k = 1, . . . ,K, where

∑K
k=1 πk = 1. All data points {xj}N

j=1

are assumed to be i.i.d. according to the mixture probability
density function pΘ(xj) =

∑K
k=1 πkpk(xj |µk,Σk). The

objective is to find the parameters Θ̂ by maximizing the
likelihood of the data points. We solve this estimation
problem by minimizing the negative log-likelihood, i.e.,

minimize
µ1,...,µK ,Σ1,...,ΣK

−
N∑

j=1

log
( K∑

k=1

πkpk(xj |µk,Σk)
)

(3)

where only the means {µk}K
k=1 and covariances {Σk}K

k=1

are to be estimated, and the prior probabilities are calculated
based on the probabilistic assignments of the data points.

A. Particle definition

Each mean vector is parametrized with d real numbers.
Parametrization of arbitrary covariance matrices requires
d(d + 1)/2 parameters. An important problem is the lack
of a suitable parametrization for covariance matrices. It is

not possible to directly use upper (or lower) triangular part of
a covariance matrix because each component in the particle
position vector ZX is independently updated using the cor-
responding component in the velocity vector ZV in (2), and
independent updates of the covariance components will very
often violate the requirement for the matrix being positive
definite. Hence, existing population-based stochastic search
algorithms limit their covariance matrices to be diagonal [5]
or do not use any covariance structure at all [1], [2].

We propose a new parametrization where the parameters
are unique, are independently modifiable, and have certain
upper and lower bounds. The proposed parametrization is
based on eigenvalue decomposition (Σ = V ΛV T where Λ
is a diagonal and V is an orthogonal matrix). Let {λi}d

i=1,
λi ∈ R++ denote the eigenvalues and {vi}d

i=1, vi ∈ Rd de-
note the eigenvectors of the d-dimensional covariance matrix
Σ ∈ Sd

++. The covariance matrix can be written in terms of
its eigenvalues and eigenvectors as Σ =

∑d
i=1 λiviv

T
i . How-

ever, there is no order relation among the eigenvalues in this
summation, and the multiplication of any eigenvector by −1
does not change the representation of covariance matrices.
Therefore, there exist 2dd! different representations.

We propose to parametrize the eigenvalues with d pos-
itive real numbers in the order determined by the cyclic
Jacobi eigenvalue decomposition algorithm. In the cyclic
Jacobi algorithm, for a given symmetric matrix Σ ∈ Sd

and a minimum error value ε > 0, Σ is overwritten
with V T ΣV where V is an orthogonal matrix until the
absolute sum of the off-diagonal entries of V T ΣV is less
than ε. The cyclic Jacobi algorithm starts with V initial-
ized to the identity matrix. Then, while the absolute sum
of off-diagonal entries of V T ΣV are greater than ε, it
computes cosine-sine pairs (cos φpq, sinφpq) such that if
Σ̂ = G(p, q, φpq)T ΣG(p, q, φpq) then Σ̂pq = Σ̂qp = 0 and
V = V G(p, q, φpq) for p = 1, . . . , d − 1, q = p + 1, . . . , d.
G(p, q, φpq) stands for a Givens rotation matrix [6] with 3
input parameters, 2 indices p and q, and an angle φpq. A
Givens rotation matrix G(p, q, φpq) has the form

G(p, q, φpq) =



1 ··· 0 ··· 0 ··· 0
...

. . .
...

...
...

0 ··· cos(φpq) ··· sin(φpq) ··· 0

...
...

. . .
...

...
0 −sin(φpq) ··· cos(φpq) ··· 0

...
...

...
. . .

...
0 ··· 0 ··· 0 ··· 1


. (4)

By avoiding the aforementioned problems, the eigenvector
matrix is parametrized with d(d− 1)/2 Givens rotation an-
gles. These angles can be computed using QR factorization.
QR factorization of an orthogonal matrix V = QR can be
done via Givens rotation matrices where the Q matrix can
be written as a multiplication of L = d(d − 1)/2 Givens
rotation matrices (Gi’s), i.e., Q = G1G2 . . . GL [6]. In the
QR algorithm, for the given indices p and q, the angle φpq



is calculated using the V (p, p) and V (q, p) values, and then,
V is premultiplied with the transpose of the Givens rotation
matrix as V = G(p, q, φpq)T V which zeros the V (p, q). This
process is performed for p = 1, . . . , d− 1, q = p+1, . . . , d,
and the resulting matrix R is a diagonal matrix with entries
being either +1 or −1, and the angles φpq ∈ [−π

2 , π
2 ].

B. Correspondence identification

Another important problem in parameter updates in
stochastic search algorithms as in Section II is the un-
known correspondence between different components of
two particles. In clustering problems with K clusters, there
exist K! different particle representations due to different
parameter orderings for the same candidate solution. For
instance, for K = 2, means can be written as either [µ1, µ2]
or [µ2, µ1]. Suppose that one particle is in the first form
and the global best is in the second. When that particle
is updated, it will use µ2 to update µ1 erroneously. This
problem is often ignored in the literature but it causes major
problems for population-based algorithms because due to
random movement of particles, the correspondences between
cluster parameters of different particles are never known,
and particle updates using (1) become based on wrong
interactions.

We propose a matching algorithm to find the right cor-
respondence relation between the components of a particle
and the global best for correct updates. The correspondence
identification problem is formulated as a minimum cost net-
work flow optimization problem. The objective is to find the
correspondence relation that minimizes the sum of weighted
cluster mean distances where {µ(i)

XP B
}K

i=1 represent the set of
personal best means of a particle of interest and {µ(j)

XGB
}K

j=1

represent the set of means for the global best particle.
In addition, the global best particle’s covariance matrices
{Σ(j)

XGB
}K

j=1 are used for weighting purposes. The cost of
matching the former particle’s i’th cluster parameters to the
global best particle’s j’th cluster parameters is computed as

cij = (µ(i)
XP B

− µ
(j)
XGB

)T (Σ(j)
XGB

)−1(µ(i)
XP B

− µ
(j)
XGB

), (5)

and the correspondences are found by solving the following
optimization problem:

minimize
y11,...,yKK

∑K
i=1

∑K
j=1 cijyij

subject to
∑K

i=1 yij = 1, ∀j ∈ {1, . . . ,K}∑K
j=1 yij = 1, ∀i ∈ {1, . . . ,K}

yij =

1, correspondence between
i’th and j’th clusters

0, otherwise.

(6)

C. Update equations

The correspondence relation computed in (6) is denoted
with a function f(k) that maps the current particle’s cluster
index k to the corresponding global best particle’s cluster

index f(k). Mean and covariance parameters of particles are
updated as in (1) and (2) but by using correct correspondence
relations as follows:

• Mean update equations

µ
(k)
Vt+1

= wµ
(k)
Vt

+ c1(µ
(k)
PBt

− µ
(k)
Xt

) + c2(µ
(f(k))
GBt

− µ
(k)
Xt

)
(7)

µ
(k)
Xt+1

= µ
(k)
Xt

+ µ
(k)
Vt+1

(8)

• Covariance update equations — Angle updates

φ
pq,(k)
Vt+1

= wφ
pq,(k)
Vt

+ c1(φ
pq,(k)
PBt

− φ
pq,(k)
Xt

)

+ c2(φ
pq,(f(k))
GBt

− φ
pq,(k)
Xt

) (9)

φ
pq,(k)
Xt+1

= φ
pq,(k)
Xt

+ φ
pq,(k)
Vt+1

(10)

• Covariance update equations — Eigenvalue updates

λ
i,(k)
Vt+1

= wλ
i,(k)
Vt

+ c1(λ
i,(k)
PBt

− λ
i,(k)
Xt

)

+ c2(λ
i,(f(k))
GBt

− λ
i,(k)
Xt

) (11)

λ
i,(k)
Xt+1

= λ
i,(k)
Xt

+ λ
i,(k)
Vt+1

(12)

IV. EXPERIMENTS

We evaluated the performance of the proposed algorithm
using four data sets from the UCI Machine Learning Repos-
itory. The wine data set consists of 178 points having 13
features and 3 classes. The glass data set has 214 points with
9 features and 6 classes. The Statlog image segmentation
data set contains 2310 points with 19 features and 7 classes.
The Statlog Landsat satellite data set has 4435 points with
36 features and 7 classes. Comparative experiments were
performed using GMM-EM as well.

In each experiment, the proposed PSO algorithm was run
using 50 particles with different random initializations. To
be comparable, the GMM-EM procedure was run using 50
different initializations where one of the GMM-EM runs
and one of the PSO particles used the same initialization.
For each initialization, first, K mean vectors were randomly
selected from the data points. Then, initial clusters were
formed by assigning each data point to the closest mean.
Finally, the covariance matrix of each cluster was computed
and the angles and eigenvalues were estimated using the
cyclic Jacobi algorithm and QR factorization. After the
initialization, both the PSO algorithm and each GMM-EM
procedure were run for 500 iterations. At the end of the
experiment, the parameters corresponding to the global best
particle constituted the result of the PSO algorithm, and
the parameters of the best GMM-EM run (among the 50
runs with different initializations) with the highest likelihood
value were used as the competing GMM-EM result. These
experiments were repeated 50 times, corresponding to a total
of 50 PSO runs with 50 particles for each run and a total of
2500 GMM-EM runs.

Quantitative performance of unsupervised clustering was
measured using the average of cluster entropies computed



from the distribution of the true class labels within individual
clusters and class entropies computed from the distribution
of individual classes to multiple clusters. A smaller overall
entropy value indicates better performance. Figure 1 shows
the plots of overall entropy versus the number of clusters
for all four data sets. The results for 50 experiments are
summarized using average values with error bars at one
standard deviation. In addition to obtaining a smaller neg-
ative log-likelihood value in all experiments for all data
sets, the proposed clustering algorithm also resulted in better
(i.e., smaller) entropy values than the GMM-EM algorithm
in all cases. We can argue that the reason behind this
performance is that the proposed algorithm does not need
data for explicit estimation of the cluster parameters because
it generates the parameters via update equations, whereas
EM is highly data dependent in the calculation of the
parameters. In the absence of sufficient data at certain places
in the feature space, PSO can still generate different means
and covariances, and can find a direction which decreases the
negative log-likelihood function. However, EM needs data
and even when there is data, GMM-EM is highly affected
by the noise and irregularities on its path.

V. CONCLUSIONS

We presented solutions to two important problems that
prevent the effective use of population-based algorithms
for clustering. We demonstrated their effectiveness with a
clustering algorithm based on PSO on various data sets.
As future work, we are planning to integrate fast local
search algorithms like EM with PSO to increase the PSO’s
capability of fast detection of local minima. Mechanisms
that lead to more efficient and robust coverage of the search
space become vital as the dimensionality increases and the
feature space gets sparser.
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