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Abstract—We introduce an unsupervised method that com-
bines both spectral and structural information for automatic
object detection. First, a segmentation hierarchy is constructed
by combining structural information extracted by morphological
processing with spectral information summarized using principal
components analysis. Then, segments that maximize a measure
consisting of spectral homogeneity and neighborhood connectivity
are selected as candidate structures for object detection. Given
the observation that different structures appear more clearly in
different principal components, we present an algorithm that
is based on probabilistic Latent Semantic Analysis (PLSA) for
grouping the candidate segments belonging to multiple segmen-
tations and multiple principal components. The segments are
modeled using their spectral content and the PLSA algorithm
builds object models by learning the object-conditional probabil-
ity distributions. Labeling of a segment is done by computing the
similarity of its spectral distribution to the distribution of object
models using Kullback-Leibler divergence. Experiments on two
data sets show that our method is able to automatically detect,
group, and label segments belonging to the same object classes.

I. INTRODUCTION

There is an extensive literature on classification of remotely
sensed imagery where pixel level processing has been the
common choice for remote sensing image analysis systems.
However, even though high success rates have been published
in the literature using limited ground truth data, visual inspec-
tion of the results can show that most of the urban structures
still cannot be delineated as accurately as expected in high
resolution images.

We believe that spatial and structural information should
also be used for more intuitive and accurate classification.
However, image segmentation is still an unsolved problem.
Even though several approaches such as region growing,
Markov random field models, and energy minimization have
been shown to be useful in small data sets with limited detail,
no generally applicable segmentation algorithm exists.

Morphological processing has recently become a popular
approach for remote sensing image analysis. For example,
Pesaresi and Benediktsson [1] successfully applied opening
and closing operations with increasing structuring element
sizes to an image to generate morphological profiles for all
pixels, and assigned a segment label to each pixel using the
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structuring element size corresponding to the largest derivative
of these profiles. Even though morphological profiles are
sensitive to different pixel neighborhoods, the segmentation
decision is performed by evaluating pixels individually without
considering the neighborhood information, and the assumption
that all pixels in a structure have only one significant derivative
maximum occurring at the same structuring element size may
not always hold.

In [2], we described a method that used the neighborhood
and spectral information as well as the morphological infor-
mation for segmentation. After principal components analysis
(PCA), morphological profiles were generated for each PCA
band separately. These operations produced a set of connected
components forming a hierarchy of segments for each PCA
band. Then, a measure that combined spectral homogeneity
and neighborhood connectivity was designed to select mean-
ingful segments at different levels of the hierarchy.

The experiments in [2] showed that the combined measure
was able to detect structures in the image that were more
precise and more meaningful than the structures detected
by the approach in [1]. An important observation was that
different structures appeared more clearly in different prin-
cipal components. For example, buildings could be detected
accurately in one component but roads, trees, fields and paths
could be detected accurately in other components.

In this paper, we propose an unsupervised method for
automatic selection of connected components corresponding
to meaningful structures among a set of candidate segments
from multiple hierarchical segmentations and multiple PCA
bands. The input to the algorithm is a set of segmentations
corresponding to different PCA bands. The goal is to find
coherent groups of segments that correspond to meaningful
structures. Given multiple objects/structures of interest, this
setting can also be seen as a grouping problem within the
space of a large number of candidate segments obtained
from multiple segmentations. We use the probabilistic Latent
Semantic Analysis (PLSA) algorithm [3] to solve the grouping
problem.

The rest of the paper is organized as follows. Extraction
of candidate segments in an image is described in Section II.
The algorithm for grouping segments for object detection is
presented in Section III. Experiments are discussed in Section
IV and conclusions are given in Section V.



Fig. 1. Example segmentation results (overlaid as white on false color and
zoomed) for the DC Mall data set. The left, middle and right images show
the extracted segments in the first, second and third PCA bands, respectively.

II. HIERARCHICAL SEGMENT EXTRACTION

In this section, we summarize the segmentation algorithm in
[2] for completeness. Given a multi- or hyper-spectral image,
first, principal components analysis (PCA) is performed to ex-
tract the principal components that represent the 99% variance
of the whole data. Next, morphological opening/closing by
reconstruction operations are performed on each PCA band
separately using structuring elements (SE) in increasing sizes.
These operations produce a set of connected components
forming a hierarchy of segments for each PCA band. Then, the
components at different levels of the hierarchy, represented as
a tree, are evaluated as candidates for meaningful structures.

Ideally, we expect a meaningful segment to be as homoge-
neous as possible. However, in the extreme case, a single pixel
is the most homogeneous. Hence, we also want a segment to
be as large as possible. In general, a segment stays almost
the same (both in homogeneity and size) for some number
of SEs, and then faces a large change at a particular scale
either because it merges with its surroundings to make a new
structure or because it is completely lost. The size we are
interested in corresponds to the scale right before this change.

With this motivation, to check the meaningfulness of a
node, we define a measure consisting of two factors: spectral
homogeneity, which is calculated in terms of variances of
multi-spectral features, and neighborhood connectivity, which
is calculated using sizes of connected components. The com-
ponents that optimize this measure are selected as meaningful
structures in the image using a two-pass algorithm on the tree.

After selecting the most meaningful structures in each
principal component, an important observation is that dif-
ferent structures appear more clearly in different principal
components. For example, buildings can be detected accurately
in one component but roads and vegetation can be detected
accurately in other components (see Figures 1 and 2 for
examples). Information from multiple PCA components must
be combined for better overall detection.

Fig. 2. Example segmentation results (overloaded as white on false color
and zoomed) for the Centre data set. The left, middle and right images show
the extracted segments in the first, second and third PCA bands, respectively.

III. GROUPING SEGMENTS FOR OBJECT DETECTION

We present an unsupervised algorithm for automatic se-
lection of segments from multiple segmentations and PCA
bands in this section. The input to the algorithm is a set
of hierarchical segmentations corresponding to different PCA
bands. The goal is to find coherent groups of segments that
correspond to meaningful structures. The assumption here is
that, for a particular structure (e.g., building), the “good” seg-
ments (i.e., the ones containing a building) will all have similar
features whereas the “bad” segments (i.e., the ones containing
multiple objects or corresponding to overlapping partial object
boundaries) will be described by a random mixture of features.
Therefore, the selection process is formulated as a grouping
problem. The resulting groups correspond to different types of
objects in the image.

A. Modeling segments

The grouping algorithm consists of three steps: extracting
segment features, grouping segments, detecting objects. In
the first step, each segment is modeled using the statistical
summary of its pixel content. First, all pixels in the image are
clustered by applying the k-means algorithm in the spectral
(PCA) domain. This corresponds to quantization of the spectral
values. Then, a histogram is constructed for each segment to
approximate the distribution of the quantized spectral values
belonging to the pixels in that segment. This histogram is used
to represent the segment in the rest of the algorithm. (Note that
any discrete model of the segment’s content can also be used
by the grouping algorithm in the next section.)

B. Grouping segments

In this work, we use the probabilistic Latent Semantic
Analysis (PLSA) algorithm [3] to solve the grouping problem.
PLSA was originally developed for statistical text analysis
to discover topics in a collection of documents that are
represented using the frequencies of words from a vocabulary.
In our case, the documents correspond to image segments,
the word frequencies correspond to histograms of pixel-level



features, and the topics to be discovered correspond to the
set of objects/structures of interest in the image. Russell et
al. [4] used a different graphical model in a similar setting
where multiple segmentations of natural images were obtained
using the normalized cut algorithm by changing its parameters,
and instances of segments corresponding to objects such as
cars, bicycles, faces, sky, etc. were successfully grouped and
retrieved from a large data set of images.

The PLSA technique uses a graphical model for the joint
probability of the segments and their features in terms of the
probability of observing a feature given an object and the
probability of an object given the segment. Suppose there
are N segments (documents) having content coming from a
distribution (vocabulary) with M pixel spectral values (words).
The collection of segments is summarized in an N -by-M
co-occurrence table n where n(di, wj) stores the number of
occurrences of spectral value wj in segment di. In addition,
there is a latent object type (topic) variable zk associated with
each observation, an observation being the occurrence of a
spectral value in a particular segment.

Let P (wj |zk) denote the object-conditional probability of
spectral value wj occurring in object zk, and P (zk|di) denote
the probability of object zk observed in segment di. The
generative model P (di, wj) = P (di)P (wj |di) for spectral
content of segments can be computed using the conditional
probability

P (wj |di) =
K∑

k=1

P (wj |zk)P (zk|di). (1)

Then, the object specific spectral distribution P (wj |zk) and
the segment specific spectral distribution P (wj |di) can be used
to determine similarities between object types and segments
(explained in the next section).

In PLSA, the goal is to identify the probabilities P (wj |zk)
and P (zk|di). These probabilities are learned using the
Expectation-Maximization (EM) algorithm [3]. In the E-step,
the posterior probability of the latent variables are computed
based on the current estimates of the parameters as

P (zk|di, wj) =
P (wj |zk)P (zk|di)∑K
l=1 P (wj |zl)P (zl|di)

. (2)

In the M-step, the parameters are updated to maximize the
expected complete data log-likelihood as

P (wj |zk) =
∑N

i=1 n(di, wj)P (zk|di, wj)∑M
m=1

∑N
i=1 n(di, wm)P (zk|di, wm)

, (3)

P (zk|di) =

∑M
j=1 n(di, wj)P (zk|di, wj)

n(di)
. (4)

The E-step and the M-step are iterated until the difference
between consecutive expected complete data log-likelihoods
is less than a threshold or the number of iterations exceeds a
threshold.

C. Detecting objects

After learning the parameters of the model, we want to
find good segments belonging to each object type. This
is done by comparing the spectral distribution within each
segment, p(w|d), and the spectral distribution for a given
object type, p(w|z). The similarity between two distributions
can be measured using the Kullback-Leibler (KL) divergence
D(p(w|d)‖p(w|z)). Then, for each object type, the segments
in an image can be sorted according to their KL divergence
scores, and the most representative segments for that object
type can be selected.

IV. EXPERIMENTS

We applied the proposed object detection algorithm to
Purdue’s DC Mall and Pavia’s Centre data sets. The first
step was hierarchical segment extraction. Disk structuring
elements with radii from 3 to 15 were used for both opening
and closing profiles for both data sets. The tree structure
described in Section II was constructed for each PCA band
separately, and the segments were selected from each tree
independently. For the DC Mall data set, 359, 428 and 438
segments were found in the first, second, and third principal
components, respectively. For the Centre data set, 767, 792
and 738 segments were found in the first, second, and third
principal components, respectively.

The next step was to find coherent groups of segments
that corresponded to different objects. First, all pixels in the
image were clustered using their three spectral PCA values
corresponding to the 99% variance. The k-means algorithm
was used with k empirically selected as 20 for clustering.
Then, for each segment, a histogram with 20 bins was
constructed by counting the number of pixels belonging to
each spectral cluster within that segment. Next, the PLSA
algorithm was used to learn the spectral data distributions for
the segments and the object types. The number (K) of latent
object type variables (zk) was set to 50 in the experiments.
The parameters of the distribution models were learned using
the EM algorithm.

In the final step, the KL divergence score between each
segment and each object type was computed, and the segments
were grouped as belonging to the object type where the KL
score was the smallest. Segments within each group were
further sorted according to these scores, and the most rep-
resentative segments for each object type were selected. Since
the segments were extracted from different PCA bands, some
of the segments could overlap. When the overlap between two
segments belonging to the same group was more than 30% of
the area of one of the segments, the one with a larger KL
divergence score was removed.

Figures 3 and 4 show example results for DC Mall and
Centre data sets, respectively. Due to space limitations, the
segments belonging to each of the 50 groups cannot be shown.
Instead, the sub-figures b, c and d of 3 and 4 present the seg-
ments belonging to the groups that mostly contain buildings,
roads, and vegetation, respectively. Examination of individual
groups showed that segments corresponding to objects (i.e.,



(a) False color (b) Buildings (c) Roads (d) Vegetation

Fig. 3. Examples of object detection for the DC Mall data set.

“good” segments) were mostly placed into coherent groups.
For example, man-made structures such as buildings placed in
the same group also had very similar spectral characteristics
(e.g., roofs with similar colors) and buildings in different
groups had different spectral attributes. Similarly, most of the
streets and paths (roads) were grouped correctly. However,
there were also some minor confusion caused by shadows
and small errors in the initial segmentations. We believe that
including new features, in addition to the spectral bands, in the
clustering of pixels for modeling the segments will eliminate
most of these problems.

Overall, the results show that the proposed algorithm is able
to merge the segmentation results from multiple PCA bands
by grouping the segments and performing object detection
by selecting the most representative segments corresponding
to object classes in an unsupervised mode. Future work will
include designing automatic methods for selecting the number
of object types (topics) in the PLSA algorithm. We will also
create object level ground truth for quantitative performance
evaluation.

V. CONCLUSIONS

We described an unsupervised method for automatic se-
lection of segments corresponding to meaningful structures
among a set of candidate segments from multiple hierarchical
segmentations. Segmentation was done by combining struc-
tural information extracted by morphological processing with
spectral information summarized using principal components
analysis. Segments that maximized a measure consisting of
spectral homogeneity and neighborhood connectivity were
selected as candidate structures for object detection. The
segments coming from multiple PCA bands were grouped

(a) False color (b) Buildings

(c) Roads (d) Vegetation

Fig. 4. Examples of object detection for the Centre data set.

using the probabilistic Latent Semantic Analysis algorithm
where the resulting groups of coherent segments corresponded
to different object types. We evaluated the proposed approach
on two data sets. The experiments showed that our method is
able to automatically detect and group structures belonging to
the same object classes.
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