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ABSTRACT

In this paper, our aim is to discover compound structures
comprised of regions obtained from hierarchical segmenta-
tions of multiple spectral bands. A region adjacency graph
is constructed by representing regions as vertices and con-
necting these vertices that are spatially close by edges. Then,
dissimilarities between neighboring vertices are computed us-
ing statistical and structural features, and are assigned as edge
weights. Finally, the compound structures are detected by ex-
tracting the connected components of the graph whose edges
with relatively large weights are removed. Experiments using
WorldView-2 images show that grouping of these vertices
according to different criteria can extract high-level com-
pound structures that cannot be obtained using traditional
techniques.

Index Terms— Object detection, hierarchical segmenta-
tion, graph-based representation, alignment detection, hierar-
chical clustering

1. INTRODUCTION

Object recognition has been an important problem in remote
sensing image analysis. Many popular algorithms in the com-
puter vision literature assume a moderate number of homo-
geneous objects in images. However, this assumption does
not hold for high-resolution remote sensing images that con-
tain a large number of intrinsically heterogeneous structures.
We call these structures compound structures. Examples of
compound structures include different types of residential ar-
eas, commercial areas, industrial areas, and agricultural ar-
eas that are comprised of different spatial arrangements of
various primitive objects such as buildings, roads, and trees
(see Figure 1 for an illustration). In this paper, we describe
our work on the modeling and unsupervised detection of such
compound structures.

Hierarchical segmentation has emerged as a promising ap-
proach for the detection of compound structures. Further-
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Fig. 1. Compound structures in three 500 × 500 pixel multi-
spectral WorldView-2 images of Ankara, Turkey.

more, given a hierarchical segmentation, meaningful and in-
teresting objects can be extracted [1]. A common method for
constructing the hierarchy is splitting and/or merging based
on spectral homogeneity. However, compound structures that
consist of multiple parts with different spectral characteristics
often do not appear in such hierarchies. As an alternative,
Gaetano et al. [2] performed hierarchical texture segmenta-
tion assuming that frequent neighboring regions are strongly
related. In order to find the strongly related regions, they
clustered the image regions to compute the frequencies of
quantized region pairs. However, these frequencies may be
very sensitive to the number of clusters which is determined
heuristically. Similarly, Zamalieva et al. [3] found the sig-
nificant relations between neighboring regions as the modes
of a probability distribution estimated using the continuous
features of region co-occurrences. The resulting modes were
used to construct the edges of a graph where a graph mining
algorithm was used to find subgraphs that may correspond
to compound structures. However, these frequency-based al-
gorithms are not usually sufficient for modeling the complex
characteristics of compound structures. In [4], we described a
procedure for the detection of compound structures that com-
bined statistical characteristics of primitive objects modeled
using spectral, shape, and position information with structural
characteristics encoded using spatial alignments of neighbor-
ing object groups.

In this paper, we detect compound objects whose primi-
tive objects are found in a set of hierarchical segmentations.



(a) Closing

(b) Opening

Fig. 2. Morphological profile using structuring element sizes
3, 6, 9, 12.

First, we obtain multiple hierarchical segmentations by ap-
plying morphological opening and closing operations to in-
dividual spectral bands using structuring elements with in-
creasing sizes (Section 2). These operations produce a set
of regions forming a hierarchy for each band. Then, grouping
of these regions according to different criteria produces dif-
ferent compound structures (Section 3). The proposed algo-
rithms are illustrated in proof-of-concept experiments using a
WorldView-2 image of Ankara, Turkey (Section 4).

2. HIERARCHICAL REGION EXTRACTION

The hierarchical segmentation algorithm uses morphological
operations to exploit structural information in each spectral
band. First, morphological opening and closing by recon-
struction operations are applied to individual spectral bands
using structuring elements (SE) in increasing sizes to gener-
ate morphological profiles. For each opening and closing pro-
file, through increasing SE sizes, each morphological opera-
tion reveals connected components that are contained within
each other in a hierarchical manner (see Figure 2 for an il-
lustration). These connected components form a hierarchy of
regions for each band.

An important observation is that different structures are
extracted more clearly in different spectral bands. For exam-
ple, buildings with red roofs are detected more accurately in
the hue band of the HSV color space but industrial buildings
are detected more accurately in the red band of the particular
example image shown in Figure 3.

3. COMPOUND OBJECT DETECTION

The input to the detection algorithm is a set of hierarchical
segmentations corresponding to different spectral bands. The
goal is to find region groups that correspond to compound
structures. In each segmentation scale, we construct a re-

(a) Hue band closing scale 3 (b) Red band opening scale 5

Fig. 3. Example segmentation results for different spectral
bands of the second image in Figure 1. The left and right
images show the regions extracted in the hue and red bands
where the red-roof and the industrial buildings are detected
more clearly, respectively.

(a) Hue band closing scale 3 (b) Neighborhood graph

Fig. 4. Examples of graph construction. The vertices that
are considered as neighbors based on proximity analysis are
connected with red edges in (b).

gion adjacency graph (RAG) where the individual primitive
objects correspond to the vertices. We assume that neigh-
boring regions can be related, and connect every neighbor-
ing vertex pair with an edge. The neighborhood information
is obtained by proximity analysis where a threshold on the
distance between the centroids of each object pair is used to
determine the neighbors. Figure 4 shows an example graph
where the regions in the third scale of the closing profile are
used as vertices of interest and edges are drawn using a dis-
tance threshold of 30 pixels.

We assign edge weights in the RAG according to statisti-
cal and structural dissimilarities between vertices in the same
scale of a segmentation hierarchy. Once edge weights are
assigned between vertices, we obtain an attributed relational
graph (ARG) of the scene. Finally, meaningful compound
object candidates can be detected by grouping the vertices of
ARG using graph cuts. The sections below describe how the
edge weights are computed for different types of structures of
interest.



3.1. Statistical dissimilarity

The statistical features for vertices represent the properties of
individual objects. In particular, we propose to model each
region using a Gaussian distribution in feature and spatial do-
mains. Given an image with d spectral bands, spectral infor-
mation of each region v is represented using the mean values
of the pixels within the region for each spectral band, i.e.,
µspec

v = {µspec
vj : j = 1, . . . , d}, and the covariance matrix

of the spectral features of the pixels within the region, i.e.,
Σspec

v . Similarly, the shape of each region v is represented
using the covariance matrix of the spatial locations (coordi-
nates) of the pixels within the region, i.e., Σshape

v . Then, the
spectral and shape dissimilarities between two vertices (and
their corresponding distributions) v1 and v2 can be measured
using the Kullback-Leibler (KL) divergence as
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respectively, where |Σ| denotes the determinant of the matrix
Σ and Tr represents trace. A larger KL value corresponds to
a higher dissimilarity between two regions.

Heterogeneous structures that are brighter/darker than
their surroundings (e.g., industrial buildings) may not be
accurately represented with a Gaussian distribution. These
structures usually correspond to regions that appear in upper
scales of the hierarchy. Therefore, each such region is mod-
eled using the statistical summary of its pixel content. In the
experiments, these summaries are obtained by quantizing the
feature values of the pixels that appear in the first scale of
the hierarchy using the k-means algorithm, and by represent-
ing the distribution of these quantized values in a histogram
[1]. Then, the dissimilarity between two region histograms is
measured using the L1 distance. Different histogram distance
measures can also be used.

3.2. Structural dissimilarity

The structural features represent the spatial layout of each re-
gion with respect to its neighbors, and are extracted using
the relationships among the neighboring regions. An impor-
tant structural information is the amount of alignment among
the regions. In [4], we proposed a method for the detec-
tion of aligned object groups using a depth-first search on the
graph that is constructed as described above. At the end of
the search procedure, the set of structural features computed
for each object group corresponding to each alignment group

Fig. 5. Example results for alignment detection. The detected
groups are marked by their convex hulls.

consists of the orientation of the line fitted to the centroids
of the individual objects in that group, θi, and the mean of
the distances computed between the closest object pairs in
the group, µi, where i = 1, . . . ,m and m is the number of
detected aligned object groups. Both structural features are
normalized to the unit range by using the respective minimum
and maximum values. Finally, each vertex in the graph is as-
signed a list of aligned object groups that it belongs to as its
structural features. Figure 5 shows example results for align-
ment detection.

The dissimilarity between two alignment groups is com-
puted as the sum of squared differences between the corre-
sponding features of these groups. The dissimilarity for two
objects is computed as the minimum of the distances between
all pairs of alignment groups where one group in a pair is
associated with one of the objects and the other group is asso-
ciated with the other object. The structural dissimilarity will
be small if two objects belong to alignment groups whose ori-
entations and object spacing are similar. If at least one of the
objects is not found to belong to any alignment group, the
dissimilarity of that object to any other object is set to ∞.

3.3. Grouping

To cluster the regions into groups based on statistical and
structural dissimilarities, we remove some edges of the RAG
by thresholding the edge weights to obtain a similarity graph.
Connected components of the similarity graph correspond to
compound objects. These connected components can also
be obtained by hierarchical clustering using the single link-
age criterion. In single linkage-based clustering, two ver-
tices v and v′ are in the same cluster if there exists a chain
v, v1, v2, . . . , vk, v′ such that v is similar to v1, v1 is similar
to v2, and so on, for the whole chain. Thus, the clustering cor-
responds to the connected components of the similarity graph.

4. EXPERIMENTS

We performed experiments on the WorldView-2 images of
Ankara shown in Figure 1 to illustrate the grouping frame-
work proposed in this paper. Experiments were done using
the regions that were extracted by applying morphological



Fig. 6. Groups formed by clustering the graphs according to
spectral features.

Fig. 7. Groups formed by clustering the graphs according to
both spectral and shape features.

opening and closing by reconstruction operations to different
spectral bands.

The first set of experiments consists of grouping regions
obtained from the third scale of the closing profile of the hue
band. The grouping results using only spectral features with
(1) are shown in Figure 6. This clustering resulted in rel-
atively large groups that contain neighboring vertices with
similar color content. Figure 7 shows groups that are ob-
tained by using both spectral and shape features by adding
(1) and (2). We can observe that, by adding shape features,
groups that contain vertices with similar color content but dif-
ferent shapes can be separated into more meaningful smaller
groups. Moreover, the groups that exploit additional struc-
tural properties (e.g., alignments) are more meaningful as a
whole compared to using only statistical properties of indi-
vidual vertices. For example, Figure 8 shows the grouping
results using structural features. The results show successful
extraction of groups with three or more buildings that are part
of similar linearly aligned groups. The groups that do not sat-
isfy this strict definition of alignment remain separated. The
last set of experiments aims to group intrinsically heteroge-
neous regions obtained from the fifth and seventh scales of the
opening profile of the yellow band in Figure 9. These regions
are comprised of pixels with different properties, and single
Gaussians are usually not sufficient to represent their charac-
teristics. The results show that complex industrial buildings
are successfully grouped using the L1 distance between their
histogram features.

5. CONCLUSIONS

In this paper, we described a method that aims to group re-
gions that appear in different hierarchical segmentations ob-

Fig. 8. Groups formed by clustering the graphs according to
structural features.

Fig. 9. Groups formed by clustering the graphs according to
histogram features.

tained from multiple spectral bands for the detection of com-
pound structures. Our method models statistical character-
istics of regions by assuming Gaussian spectral and shape
distributions, and structural characteristics are encoded using
spatial alignments. We evaluated the proposed approach qual-
itatively on three images. The experiments showed that the
proposed method is able to group regions belonging to differ-
ent compound structures. As a result, such compound struc-
tures can be used in new semantic classification, annotation,
indexing, and retrieval applications.
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