
ANOMALY DETECTION WITH SPARSE UNMIXING
AND GAUSSIAN MIXTURE MODELING OF HYPERSPECTRAL IMAGES
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ABSTRACT
We propose an anomaly detection method that uses Gaussian
mixture models for characterizing the scene background in
hyperspectral images. First, the full spectrum is divided into
several contiguous band groups for dimensionality reduction
as well as for exploiting the peculiarities of different parts of
the spectrum. Then, sparse spectral unmixing is performed
for identifying significant endmembers in the scene, and hi-
erarchical clustering in the abundance space is used for iden-
tifying pixel groups that contain these endmembers. Next,
these pixel groups are used for initializing individual Gaus-
sian mixture models that are estimated separately for each
spectral band group. Finally, the Gaussian mixture models
for all groups are fused for obtaining the final anomaly map
for the scene. Comparative experiments showed that the pro-
posed method performed better than two other density-based
anomaly detectors, especially for small false positive rates, on
an airborne hyperspectral data set.

Index Terms— Anomaly detection, spectral unmixing,
Gaussian mixture model, hyperspectral imaging

1. INTRODUCTION

High spectral resolution in hyperspectral images provides the
capability to discriminate the physical characteristics of dif-
ferent materials and enables their identification in remotely
sensed scenes. The scenario where the problem of interest is
the detection of small rare objects or materials that have dif-
ferent spectral characteristics compared to their surroundings
is called anomaly detection. Anomaly detection has been a
popular problem in remote sensing where the common ap-
proach is to first model the image background and then to use
a detector that quantifies the difference of a particular pixel
from this background as the confidence of an anomaly exist-
ing at that pixel. Numerous approaches for both background
characterization and detector functions have been proposed in
the literature [1]. In this paper, our focus is on the modeling
of complex scenes that contain an unknown number of back-
ground materials in an anomaly detection scenario.

The commonly used RX anomaly detector and many of
its various extensions do not necessarily perform well in com-
plex scenes due to the heterogeneity of the image background
and the limitations of the single multivariate Gaussian in mod-
eling the multiple land cover classes existing in that back-
ground. A popular alternative has been to use a Gaussian mix-
ture model (GMM) based on the assumption that the back-
ground consists of multiple classes each of which can be mod-
eled using a separate Gaussian component in the mixture [2].
However, GMM-based background modeling has two impor-
tant issues: there is often no prior information regarding the
number of components, and GMM estimation using all spec-
tral bands may suffer from the curse of dimensionality due
to increasing model complexity with increasing number of
components. The former issue can be solved by an empirical
search procedure when the number of different background
materials is unknown in an unsupervised setting. The latter is-
sue often necessitates a dimensionality reduction step, such as
principal components analysis (PCA), prior to GMM estima-
tion. However, there is no unanimously accepted procedure
regarding which principal components should be used. There
is also the potential problem that the resulting transformation
that tries to maximize the data variance may not retain im-
portant discriminative information embedded in the original
spectral bands.

In this paper, we use a GMM-based background model for
anomaly detection. First, we perform spectral partitioning to
reduce the data dimensionality while preserving the original
physical characteristics of the input data. After dividing the
data into several groups of contiguous spectral bands (Sec-
tion 2), we perform spectral unmixing to identify the num-
ber of dominant endmembers and to automatically determine
the number of components in the background model (Section
3). Lastly, we fuse the individual GMMs estimated for each
spectral band group separately to obtain the final probability
of having an anomaly at each pixel (Section 4). We present
experimental results using an airborne hyperspectral image
that contains several materials placed on a natural landscape
background for an anomaly detection scenario (Section 5).



Conclusions are given at the end (Section 6).

2. SPECTRAL PARTITIONING

As mentioned above, high spectral dimensionality limits the
applicability of flexible models for hyperspectral data anal-
ysis due to potential problems such as overfitting or conver-
gence issues in the estimation process. However, popular di-
mensionality reduction techniques such as PCA may not be
able to identify the intrinsic dimensionality of the data, and
may lose information that may be useful for the subsequent
analysis. Band selection methods provide an alternative by
selecting an appropriate subset of original bands [3]. How-
ever, identifying how many bands to select and quantifying
the appropriateness of a subset can be difficult in an unsuper-
vised setting. Thus, internal characteristics of the data such as
variance or correlation remain as a limited set of alternatives
in such scenarios.

In this paper, we used an empirical division of the spectral
bands into several contiguous groups. In particular, the exper-
iments in Section 5 used 12 band groups with equal number
of bands. The number of groups was determined based on
the resulting dimensionality of each group so that the subse-
quent estimation steps can be performed without any singu-
larity problems. We are planning to evaluate different band
selection methods in future work.

3. SPECTRAL UNMIXING

After the band groups are identified, the next problem is to
estimate a background GMM for each group. The main prob-
lem at this step is to identify the number of components in
the mixture and to find a proper initialization of the estima-
tion procedure so that an effective background model can be
obtained. We use spectral unmixing to identify the number of
dominant endmembers in the scene so that it can be related
to the number of background components and can be used as
input to the estimation procedure.

Linear unmixing is the most widely used method for iden-
tifying endmembers in the data. In the linear model

y = Ax+ n, (1)

y ∈ RL is the observation vector for a pixel, x ∈ RM is
the fractional abundance vector at that pixel for the spectral
library A ∈ RL×M , and n ∈ RL is the error where L is the
number of spectral bands and M is the number of signatures
in the library. Sparse unmixing has recently been proposed for
solving the linear spectral unmixing problem in (1) while not
requiring any prior knowledge of the number of endmembers
[4]. The unmixing problem can be formulated as an l1-norm
regularized least squares regression problem subject to an ad-
ditional non-negativity constraint as

min
x

1

2
‖Ax− y‖22 + λ‖x‖1 subject to x ≥ 0 (2)

where λ is the regularization parameter. This formulation en-
forces sparsity in the solution vector x, and implicitly tries to
identify the most dominant endmembers in the given obser-
vation vector y. We also expect that sparse unmixing within
each spectral band group will provide a better exploitation of
the spectral characterization of the data within that group as
opposed to unmixing in the full range of spectral bands due
to potential mismatches between the signatures in the spec-
tral library and the spectral signatures in the scene because
of the differences in the conditions under which the data are
acquired.

For a given spectral band group and a spectral library, (2)
is solved for each pixel, and the resulting abundance vectors
are recorded. As mentioned above, the purpose of spectral
unmixing in this work is to identify the dominant components
which are then used for modeling the background. However,
the components that appear in a hyperspectral image are not
necessarily pure due to the spatial resolution of the imagery
and the size of physical materials in the scene. Thus, the so-
called background components may consist of pixel groups
that contain either pure pixels or pixels appearing to be a mix-
ture of different endmembers. In such a scenario, applying a
predetermined threshold to the fractional abundances to ob-
tain the number of dominant background components proves
to be insufficient, because it will only return those endmem-
bers with a certain level of purity and higher, but not the end-
members that appear together at sub-pixel level. Thus, the de-
sired components should be acquired by exploiting the corre-
lation of endmembers at sub-pixel level throughout the scene.

In this paper, we use hierarchical clustering in the frac-
tional abundance space to identify groups of pixels based on
their spectral content. The previous unmixing step is expected
to identify only the dominant signatures in the scene so that
the clustering step can operate in an intrinsically lower di-
mensional space. We use the average linkage agglomerative
hierarchical clustering algorithm with the Euclidean distance
as the dissimilarity measure for abundance vectors. The aver-
age linkage criterion is used because we want all pixels that
are selected as belonging to the same cluster to have similar
abundance values. The number of clusters is automatically
determined from the dendrogram resulting from the cluster-
ing [5].

4. GAUSSIAN MIXTURE BACKGROUND MODEL

The next step consists of the estimation of a GMM back-
ground model for each spectral band group. The pixel clus-
ters identified for each spectral band group in the previous
step are used to automatically initialize the Expectation-
Maximization-based GMM estimation procedure for that
group. The number of Gaussian components is obtained from
the number of clusters, and the initial mean vector and the
covariance matrix for each component are computed from the
pixels within the corresponding cluster.



The final anomaly index at each pixel is obtained by fus-
ing the resulting GMMs from individual spectral band groups.
After negating the conditional background probabilities and
normalizing them to the [0, 1] range, fusion is performed by
the “max” rule that means that a pixel that is identified as an
anomaly with a high-probability by at least one of the spectral
band groups is considered an anomaly after fusion.

5. EXPERIMENTS

5.1. Data set

The proposed methodology is evaluated using an airborne hy-
perspectral image. An anomaly detection scenario was pre-
pared by placing different materials such as fabrics, carpets,
wooden sheets, floor tiles, etc., on a natural landscape back-
ground in Turkey. The scene also has two cars that can be
considered as anomalies. The image that was acquired with
a visible and near infrared camera from an altitude of 500 m
contains 1500× 885 pixels and 182 bands covering the spec-
tral range from 399 nm to 978 nm with a spatial resolution of
16 cm. Data collection and atmospheric correction were per-
formed by HAVELSAN, Inc. The ground truth was prepared
by manual delineation of 19 objects in the scene. The sizes of
the objects vary between 4 and 900 pixels where 14 of them
are smaller than 180 pixels. The spectral library used in the
experiments contains signatures acquired with a spectrometer
in the same scene as well as in other scenes under different
atmospheric conditions. The RGB image and the correspond-
ing ground truth mask are shown in Figures 1(a) and 1(b),
respectively.

5.2. Results

In the experiments, we used 12 spectral band groups where 10
of them had 15 bands and the remaining 2 had 16 bands. The
groups corresponded to different parts of the visible and near
infrared spectrum. The regularization parameter for spec-
tral unmixing was empirically set as 0.1. We used the RX
anomaly detector that is built by using the full spectrum and
another detector named RX-GMM that replaces the Gaus-
sian in the RX framework by a GMM that is built by using
8 Gaussian components estimated using 10 PCA components
that retain 98% of the variance in the full data as compet-
ing methods. These methods are compared to the proposed
anomaly detector named Unmix-GMM in Figure 1. We also
used the opening by reconstruction operator with a disk struc-
turing element with a radius of 2 pixels for post-processing
the anomaly map by eliminating isolated false positives for
each method. The ROC curves were obtained by varying the
detection threshold. The overall area-under-the-curve (AUC)
measures were obtained as 0.8228, 0.9472, 0.9746 for the
RX, RX-GMM, and Unmix-GMM detectors, respectively, af-
ter post-processing. Most of the false alarms were individual

trees, large stones, and parts of the road in the scene. The re-
sults showed that the proposed method performed better than
the other two, especially for small false positive rates after
post-processing.

6. CONCLUSIONS

We described a method for anomaly detection that combined
spectral unmixing and Gaussian mixture models. First, the
full spectrum was divided into contiguous groups of spec-
tral bands for dimensionality reduction. Then, sparse spec-
tral unmixing was performed for identifying significant end-
members in the scene, and hierarchical clustering in the abun-
dance space was used for identifying pixel groups that con-
tained these endmembers. Next, these pixel groups were used
for initializing Gaussian mixture models that were estimated
separately for each spectral band group. Finally, the Gaus-
sian mixture models for all groups were fused for obtaining
the anomaly map for the scene. Comparative experiments
showed that the proposed method performed better than two
other density-based anomaly detectors on an airborne hyper-
spectral data set.
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Fig. 1. Anomaly detection results. (a) RGB image. (b) Binary mask of 19 small objects. (c) Log-probability anomaly map for
the RX detector before post-processing. (d) Log-probability anomaly map for the RX-GMM detector before post-processing.
(e) Anomaly map for the proposed Unmix-GMM detector before post-processing. (f) Log-probability anomaly map for the RX
detector after post-processing. (g) Log-probability anomaly map for the RX-GMM detector after post-processing. (h) Anomaly
map for the proposed Unmix-GMM detector after post-processing. (i) ROC curve for the results before post-processing. (j)
ROC curve for the results after post-processing.


