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ABSTRACT

Detection of compound structures that are comprised of dif-
ferent arrangements of simpler primitive objects has been a
challenging problem as commonly used bag-of-words mod-
els are limited in capturing spatial information. We have de-
veloped a generic method that considers the primitive objects
as random variables, builds a contextual model of their ar-
rangements using a Markov random field, and detects new in-
stances of compound structures through automatic selection
of subsets of candidate regions from a hierarchical segmenta-
tion by maximizing the likelihood of their individual appear-
ances and relative spatial arrangements. In this paper, we ex-
tend the model to handle different types of primitive objects
that come from multiple hierarchical segmentations. Results
are shown for the detection of different types of housing es-
tates in a WorldView-2 image.

Index Terms— Contextual modeling, Markov random
field, object detection, spatial relationships

1. INTRODUCTION

A challenging problem in remote sensing image information
mining is the detection of heterogeneous compound structures
such as different types of residential, industrial, and agricul-
tural areas that are comprised of spatial arrangements of sim-
ple primitive objects such as buildings and trees. A popu-
lar approach for the detection of high-level structures is to
divide images into tiles and classify these tiles according to
their features. One of such window-based approaches, called
the bag-of-words (BoW) model, has been commonly used in
recent years for modeling the tile content [1, 2, 3]. However,
the BOW representation cannot often effectively model the
spatial arrangements which can be the key to detecting many
types of compound structures. As an example for exploiting
the spatial structure, Vaduva et al. [4] modeled relative po-
sitions between objects by extracting object pair signatures
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as words that characterize the tiles. However, the tile-based
approaches assume that the whole window corresponds to a
compound structure and all of the features inside the window
contribute to the modeling of the structure. Consequently, this
may result in using many features that are irrelevant to the
compound structure of interest. An alternative to tile-based
neighborhoods is to use segmentation to identify locally adap-
tive neighborhoods. Using hierarchical segmentations [5] as
multi-scale candidates for meaningful image objects has re-
ceived significant attention as a potential solution to object
detection in remote sensing. However, local spatial arrange-
ments of the neighboring objects have not been considered in
these methods.

In [6], we described a generic method for the modeling
and detection of compound structures that are comprised of
spatial arrangements of an unknown number of primitive ob-
jects in very high spatial resolution images. The model con-
sidered the primitive objects as random variables, and built a
contextual model of their arrangements using a Markov ran-
dom field. The detection task was formulated as the selection
of subsets of candidate regions from a hierarchical segmen-
tation by maximizing the likelihood of their individual ap-
pearances and relative spatial arrangements. One limitation
of that formulation was that the structures of interest could
include only a single type of primitive, e.g., buildings in ur-
ban structures. In this paper, we extend our previous work by
incorporating additional primitive layers in the modeling and
detection process. We show that the use of multiple primi-
tive object layers consisting of multiple hierarchical segmen-
tations provides additional evidence for the detection and lo-
calization of the structures of interest, and leads to increased
recall compared to simple aggregation of the results where the
layers are used independently.

2. COMPOUND STRUCTURE MODEL

The procedure starts with a single example compound struc-
ture that contains primitive objects V = {v1, . . . , vM} that
are used to estimate a probabilistic appearance and arrange-



ment model. In particular, we assume that a compound struc-
ture V consists of R layers of primitive object maps, V =⋃
r=1,...,R V

r. Each primitive object vi is represented by an
ellipse vi = (li, si, θi) where li = (lxi , l

y
i ) ∈ [0, Xmax − 1]×

[0, Ymax − 1] represents the ellipse’s center location, si =
(shi , s

w
i ) ∈ [shmin , s

h
max ]× [swmin , s

w
max ] contains the ellipse’s

major and minor axis lengths, respectively, and θi ∈ [0, π)
is the orientation measured as the angle between the major
axis of the ellipse and the horizontal image axis. Xmax and
Ymax are the width and height of the image, respectively, and
(shmin , s

h
max ) and (swmin , s

w
max ) are the minimum and maxi-

mum major and minor axis lengths, respectively.
The modeling process considers the primitive objects (i.e.,

the ellipses’ parameters) V as random variables correspond-
ing to the vertices of a Markov random field (MRF) where po-
tentially related objects are connected using undirected edges
E =

⋃
r1,r2=1,...,RE

r1r2 where Er1r2 denotes the edges be-
tween the vertices at layers r1 and r2 (Figure 1). Note that,
when r1 = r2, Er1r2 represents the edges between the ver-
tices at the same layer. Let Pi denote the set of pixels in-
side the ellipse vi. For each connected primitive object pair
(vi, vj) ∈ E, we compute the following four features:

• distance between the closest pixels, φ1ij = minpi∈Pi,pj∈Pj

d(pi, pj),

• relative orientation, φ2ij = min{|θi−θj |, 180−|θi−θj |},
• angle between the line joining the centroids of the two

objects and the major axis of a reference object, φ3ij =
min{|αij − θi|, 180 − |αij − θi|} where αij is the angle
of the line segment connecting the centroids of vi and vj ,

• distance between the closest antipodal pixels that lie on the
major axes, φ4ij = minpi∈Pa

i ,pj∈Pa
j
d(pi, pj) where P ai

denotes the two antipodal pixels on the major axis of vi.

In addition to the pairwise features, we also compute the fol-
lowing two individual features for each primitive object vi:

• area, φ5i = π(shi /2)(swi /2),

• eccentricity, φ6i =
√

1− (swi /s
h
i )2.

Then, given the set of primitives V and the corresponding
features, a one-dimensional marginal histogramHr1r2

k (Er1r2)
is constructed for each feature φk, k = 1, . . . , 4, computed
over all edges for each pair of layers r1 and r2. Also, a
one-dimensional marginal histogram Hr

k(V r) is constructed
for each feature φk, k = 5, 6, computed over all vertices at
each layer V r. The concatenation H(V ) of all marginal his-
tograms Hr1r2

k (Er1r2), k = 1, . . . 4, r1, r2 = 1, . . . , R, and
Hr
k(V r), k = 5, 6, r = 1, . . . , R, is used as a non-parametric

approximation to the distribution of the feature values of the
primitive objects in the compound structure. The process is
governed by the Gibbs distribution, and takes the form

p(V |β) =
1

Zv
exp

{
βTH(V )

}
(1)
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Fig. 1. Neighborhood graph. (a) RGB image. (b) Primitive
objects from three different layers: buildings (red), vegeta-
tion (green), pool (blue). (c) Graph vertices (blue ellipses)
and the edges that connect the primitives in the same layer
(red edges for buildings and green edges for vegetation) and
between different layers (yellow edges).

where β is the parameter vector controlling each histogram
bin, and Zv is the partition function. The parameters of the
proposed MRF model are learned via Gibbs sampling. This
corresponds to randomly translating, scaling, or rotating an
ellipse at each sampling iteration. Please see [6] for details of
the learning algorithm when a single layer is used.

3. DETECTION PROCEDURE

The detection problem is posed as the selection of multiple
subgroups of candidate regions V = {v1, . . . , vM} coming
from multiple hierarchical segmentations where each selected
group of regions constitutes an instance of the example com-
pound structure in the large image. The first step in the de-
tection procedure involves the identification of primitive re-
gions for each layer V r by using a hierarchical segmenta-
tion algorithm. The union of these regions from all levels
at all layers are treated as candidate primitives, forming the
set V =

⋃
r=1,...,R V

r. Then, the input hierarchical forest
structure is extended by connecting neighboring candidate re-
gions at all levels and all layers with edges E. For each layer,
we use Voronoi tessellations of boundary pixels of regions at
each level to identify the edges (vi, vj) ∈ E at that level. Fur-
thermore, a between-level edge (v′i, v

′
j) ∈ E is also formed if

v′j is at a higher level compared to v′i and if any descendant
of v′j that is at the same level as v′i is a Voronoi neighbor of
v′i. For each pair of layers V r1 and V r2 , vertices vr1i and vr2j
are connected with a between-layer edge (vr1i , v

r2
j ) ∈ E if

the distance between the closest pixels of these objects is less
than a proximity threshold. Figure 2 illustrates a hierarchy.
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Fig. 2. Hierarchical region extraction. The candidate regions
(V ) at three levels of the same layer are shown in gray. (a)
The edges that represent parent-child relationship are shown
in red. (b) The between-level edges are shown in blue. For
clarity, we do not show the edges between two levels that are
not consecutive even though there are edges between all levels
(taken from [6]). The extension in this paper involves several
of such hierarchies where vertices are connected with edges
between spatially close regions.

Given a graph G = (V,E) that represents the candidate
regions and their neighbor relationships in image I , the prob-
lem can be formulated as the selection of a subset V ∗ among
all regions V as

V ∗ = arg max
V ′⊆V

p(V ′|I) = arg max
V ′⊆V

p(I|V ′)p(V ′) (2)

where p(I|V ′) is the observed spectral data likelihood for the
compound structure in the image, and p(V ′) acts as the spatial
prior according to the learned appearance and arrangement
model. We use a simple spectral appearance model where the
spectral content of each primitive region in a particular layer
r is assumed to be independent and identically distributed ac-
cording to a Gaussian with mean µr and covariance Σr, so
that p(I|V ′) =

∏
r=1,...,R

∏
vi∈V ′r p(yi|µr,Σr) where yi is

the average spectral vector for the pixels inside the i’th region
vi. The spatial appearance probability p(V ′) is computed as
in (1) using ellipses that have the same second moments as
the regions in V ′.

We formulate the selection problem in (2) using a con-
ditional random field (CRF). Let X = {x1, . . . , xM} where
xi ∈ {0, 1}, i = 1, . . . ,M , be the set of indicator variables
associated with the vertices V of G so that xi = 1 implies re-
gion vi being selected. Our CRF formulation defines a poste-
rior distribution for hidden random variables X given regions
V and their observed spectral features Y = {y1, . . . , yM} in
a factorized form as

p(X|I, V ) ∝ p(I|X,V )p(X,V )

=
1

Zx

∏
vi∈V

exp
{(
ψci + ψsi

)
xi

} ∏
(vi,vj)∈E

exp
{
ψaijxixj

}
(3)

where the vertex bias terms ψc and ψs representing color

and shape, respectively, and edge weights ψa representing ar-
rangement are defined as

ψci =
−1

2
(yi − µr)TΣ−1r (yi − µr), ∀vi ∈ V r, (4)

ψsi =

6∑
k=5

βr
k,hr

k

(
φk
i

), ∀vi ∈ V r, (5)

ψaij =

4∑
k=1

βr1r2
k,h

r1r2
k

(
φk
ij

), ∀(vr1i , vr2j ) ∈ E, (6)

for r, r1, r2 = 1, . . . , R. The feature φk is computed by using
the parameters of the ellipse that has the second moments as
the input region, hrk is the index of the histogram bin to which
a given feature value belongs in Hr

k , and βrk,j denotes the j’th
component of the parameter vector βrk controlling Hr

k . hr1r2k

and βr1r2k,j are defined similarly. Then, selecting V ∗ in (2) is
equivalent to estimating the joint MAP labels given by

X∗ = arg max
X

p(X|I, V ). (7)

Exact inference of the CRF formulation is intractable in
general graphs but an approximate solution can be obtained
by a Markov chain Monte Carlo sampler. In this paper, we
adapt the Swendsen-Wang sampling algorithm that samples
the labels of many variables at once. Please see [6] for details
of the sampling algorithm when a single layer is used.

4. EXPERIMENTS

We evaluated the proposed approach using a WorldView-2
image of Kusadasi, Turkey. Figures 3 and 4 show two sce-
narios involving different types of housing estates. The results
showed that the earlier version of our algorithm that used only
the building layer could not detect several housing estates due
to large variations in the spectral appearances of the primi-
tives, but the additional layers such as water and grass gave
further evidence for modeling and detecting the compound
structures of interest.
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Fig. 3. Example results for detecting housing estates with pools in a 500×500 pixel scene. (a) RGB image. (b) Primitives in the
building layer. (c) Primitives in the water layer. (d) Marginal probabilities of the selected regions when only the building layer
was used. (e) Masked detections in the RGB image. (f) Marginal probabilities of the selected regions when both the building
and the water layers were used. (g) Masked detections in the RGB image.
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Fig. 4. Example results for detecting housing estates with grass areas in a 500×500 pixel scene. (a) RGB image. (b,c) Primitives
in the first and second levels of the building layer, respectively. (d) Primitives in the grass layer. Marginal probabilities of the
selected regions when (e) only the first level of the building layer, (f) only the second level of the building layer, (g) only the
grass layer, (h) both layers were used. (i) Masked detections in the RGB image.
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