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ABSTRACT

The challenging task of training object detectors for fine-
grained classification faces additional difficulties when there
are registration errors between the image data and the ground
truth. We propose a weakly supervised learning methodology
for the classification of 40 types of trees by using fixed-sized
multispectral images with a class label but with no exact
knowledge of the object location. Our approach consists of
an end-to-end trainable convolutional neural network with
separate branches for learning class-specific and location-
specific scoring of image regions. Comparative experiments
show that the proposed method simultaneously learns to de-
tect and classify the objects of interest with high accuracy.

Index Terms— Weakly supervised learning, object
recognition, multispectral image analysis

1. INTRODUCTION

Increasing spatial resolution and richer spectral information
have led to new challenges regarding the increasing detail in
the appearance of objects in remotely sensed images. Fine-
grained object recognition is one of such challenges, which
differs from traditional object recognition and classification
problems with respect to the low between-class variance
among a large number of closely related categories.

In addition to the fine-grained nature of the objects of in-
terest, the sizes of the objects can also introduce new chal-
lenges. For example, registration errors can cause an offset
between the pixels in the data source and the ground truth lo-
cations. Furthermore, precise pixel-level labeling can often
be difficult to obtain, especially when resolution is too low
for annotating objects directly on the imagery. Thus, a shift
of a few pixels can introduce a significant uncertainty to the
data set, if the objects of interest themselves, such as trees,
cover an area of a few pixels.
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The problem that we consider is fine-grained classifica-
tion of fixed-sized images cropped from multispectral (MS)
scenes into one of 40 types of trees. Although the trees in
our data set have different sizes, most trees can fit inside a re-
gion of 4 x 4 pixels at 2m spatial resolution. However, larger
images need to be cropped to account for the aforementioned
ground truth uncertainties. Such settings cause a sample to
have a single image-level label without information about the
exact location of the object instance inside the image.

This problem can be studied from a weakly supervised
learning (WSL) perspective. In the WSL setting, every sam-
ple image has a label which indicates that there is a certain
object somewhere within the image, but does not provide any
location information. Similar WSL problems have been stud-
ied in the remote sensing literature. For example, Han et al.
[1] presented a binary object detection method where posi-
tive instances for the object of interest were sampled based
on saliency scores while trying to keep inter-class separabil-
ity and intra-class compactness high. New positive training
samples were selected using a classifier trained on the current
training set, and a new classifier was trained on the updated
training set in an iterative fashion. Zhang et al. [2] followed
a similar iterative instance mining procedure by updating the
negative instance set and the classifier in each iteration.

These WSL approaches differ from ours in the sense that
they use iterative instance mining to improve the classifier
which is then used to detect objects in a sliding window
fashion. Our method, instead, focuses on directly training a
model that detects and classifies the object of interest given
the whole input image, by using end-to-end learning from
weakly labeled training instances. Sumbul ef al. [3] pre-
sented an alternative approach in the same problem setting by
using an attention mechanism that learns a weighted combi-
nation of features extracted from fixed-sized regions obtained
at each possible position in the image for classification.

Our contribution in this paper is the development of a
weakly supervised deep detection network (WSDDN) model
[4] for fine-grained object recognition with registration uncer-
tainty between the MS images and the ground truth data. We



show that the proposed model achieves higher classification
accuracy while being able to localize the objects of interest in
test images. In the following, Section 2 summarizes the data
set, Section 3 describes the methodology, Section 4 presents
the experiments, and Section 5 provides the conclusions.

2. DATA SET

The data set consists of 8-band MS WorldView-2 imagery at
2m spatial resolution [3]. There are 48,063 images contain-
ing street trees of 40 different types, where each image is cen-
tered at a coordinate provided in the point GIS data [5]. Even
though most trees fit within a 4 x 4 pixel window, we choose
to use a neighborhood of 12 x 12 pixels around each ground
truth location to account for the registration errors.

3. METHODOLOGY

In this section, we first outline the problem and our weakly
supervised learning (WSL) approach. Then, we explain the
way we realize this WSL approach as an end-to-end trainable
convolutional neural network.

Problem definition. The goal is to learn an image classi-
fication model over a set of training images containing ob-
jects with unknown positions: each training image x is anno-
tated with some class label y,; denoting one of the C' object
classes, and, the image is presumed to contain an instance of
the corresponding class but the exact position of the object
instance within the image is unknown. Using these training
images, we aim to learn an accurate classification function
f(x) that maps a given image x to one of the C' classes.

For simplicity, we assume that each image is N x N pix-
els, and, each object instance corresponds to a smaller W x W
image region. While objects naturally vary in size, such fixed-
sized regions can provide an effective representation for the
instances of compact objects in most cases, as long as the re-
gion size roughly corresponds to the typical object size. In our
experiments, the size of encapsulating but unaligned images
is N = 12 (Section 2), and the region size W is a hyper-
parameter to be tuned, as it poses a trade-off between granu-
larity versus correctness of localization, and also, inclusion of
context versus elimination of background clutter.

Framework. The core challenge in WSL is to develop a
model that can (implicitly or explicitly) localize the true sub-
images both at train time and test time so that the image repre-
sentation can be obtained from the actual object content rather
than the background clutter. To tackle this problem, we de-
velop a WSL approach inspired from the Weakly Supervised
Deep Detection Networks (WSDDN) [4].

In the original WSDDN approach, an external algorithm
is used to extract a set of candidate regions at each image,
and, the classification score for an input image is formulated
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Fig. 1. Our weakly supervised fine-grained classification
model. The layers ¢conv1 5 ¢com}2» ¢conv3 use ZCTO-Padding
to preserve spatial dimensions. No padding is used in ¢con.; -

in terms of the estimated region classification (o cjqss) and re-
gion detection scores (0 4.t). WSDDN builds upon the idea
that a region should positively contribute to the image-wide
score of a class only if the region is assigned to that class,
and, the region is (one of) the top-scoring regions among other
ones in terms of the corresponding detection scores. Follow-
ing this idea, the final image-wide class scores are obtained
by summing over the final per-region scores, formulated as
the product of 0,455 and o ges.

We build our model on the WSDDN approach with two
important differences: (i) we utilize a different deep network
architecture tailored for WSL on multispectral remote sensing
imagery; (ii) we side-step the external candidate region ex-
traction algorithm, and, efficiently implement dense-sliding
window candidate region extraction mechanism in terms of
a convolutional layer. As a result, we do not need a region-
level feature pooling mechanism either, and, are able to sim-
ply train the deep network in an end-to-end manner. The de-
tails of our WSL model are provided in the following part.

Our multispectral WSL network. Our proposed network
consists of the following parts: (i) convolutional feature ex-
traction, (ii) candidate region extraction, (iii) region scoring,
and (iv) region-based image scoring. The feature extraction
part is adapted from [3] and consists of three convolutional
layers, ¢convis> @conve, and Geonyg. Each layer utilizes input



zero-padding, convolves with 64 filters of spatial size 3 x 3,
and yields a 64 x N x N feature tensor.

The resulting feature tensor is then fed into the ¢conuy
layer, which convolves with 128 filters of spatial size W x W,
with no zero-padding. This layer effectively implements the
combined candidate region generation and representation ex-
traction steps of WSDDN in an efficient manner. More specif-
ically, this layer corresponds to cropping candidate regions
of size W x W in a sliding window fashion, and, extracting
a 128-dimensional feature vector from each one by a linear
transform. In total, it provides (N — W + 1)? windows.

The output of the candidate region extraction step is fed
into two separate branches for region classification and region
detection. We efficiently implement both branches by two
parallel convolutional layers with C kernels of spatial size
1 x 1. Therefore, each layer corresponds to applying a C-
class linear classifier to the candidate regions.

In the region classification branch, the resulting classifi-
cation scores are transformed by a softmax over the classes:

c eXp{[chaSS]g,j}
[Uclass]id = C (1)
> =1 exp{ [chassmj}
where [chass]i j is class-c classification score of the region at
position (i, 7). Similarly, in the detection branch, the resulting
scores are transformed by a softmax over the regions:
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where [24e:]f ; is class-c detection score of the region at (4, 5).
The region classification and detection branches can be
interpreted as soft-assigning regions to classes and soft-
selecting the top-scoring regions within each class, respec-
tively. The final region-based image scores are obtained by
summing over the element-wise products of the per-region
classification and detection scores:
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This can be interpreted as focusing on top-scoring regions
of each class, where the regions are also consistently soft-
assigned to the same class.

The resulting C' scores are finally passed through softmax
to obtain image-level class probability scores. The loss for a
single image is defined as the cross-entropy loss between the
obtained probabilities and the ground truth class label.

We note that the ReLU function is applied to the outputs
of the first four convolutional layers. The overall multispec-
tral WSL network architecture is summarized in Figure 1.

4. EXPERIMENTS

In this section, we present the experimental setup, the details
of the baselines used for comparison, and our results.

Experimental setup. We conduct our experiments on two
versions of the data set: the original set with 40 classes and
the subset with 18 classes as in [5]. We split 60% of our data
sets as the training sets, 20% as the validation sets, and 20% as
the test sets. We train our models on the training sets using the
Adam optimizer with learning rate 10~3. We use batch nor-
malization and dropout regularization after all convolutional
layers before the classification and detection branches. Drop
probability is chosen as 0.25 for ¢ convi, @conve, and dconvg,
and 0.5 for ¢convy. fo-regularization with weight 1075 is
used for all parameters. Mini-batch size is chosen as 100.
All of these hyper-parameters are same as in [3].

Due to significant imbalance in the data set, we oversam-
ple the minority classes in the training sets, so that each class
has an equal number of instances. For unbiased evaluation in
an imbalanced setting, we use normalized accuracy (i.e., the
average of per-class accuracies) as the evaluation metric.

We initialize ¢convis Peonve, and Geonvs from the basic
CNN model pretrained with 12 x 12 inputs as explained be-
low. We use early-stopping to terminate the training process.
If normalized validation accuracy does not increase for over
200 epochs, we decrease the learning rate by a factor of 10,
and continue training from the checkpoint with the highest
validation accuracy. We stop the training if no increase is ob-
served for another 200 epochs, and use the model with the
highest normalized validation accuracy for testing.

Baselines. We compare our results with four other methods.
The first method classifies 4 x 4 pixel regions centered at the
point GIS data with a network of three convolutional and two
fully-connected layers [3]. This corresponds to the ideal set-
ting when there is no registration error between the image data
and the point GIS reference. The network architecture con-
sists of the same @ conv1, Pconve, Peonwvg layers described in
Section 3, followed by two fully-connected layers that output
a C'-dimensional vector of class scores. The second and third
methods use the same architecture as the first one with input
regions of size 7 x 7 and 12 x 12 pixels centered at the same
locations, respectively. These three methods are referred as
basic CNN models in Table 1.

The fourth baseline is called recurrent attention model,
which learns to attend discriminative regions in input images
for fine-grained object classification [6]. The model works in
a multi-scale fashion, where each scale attends a more local-
ized region inside the attended region of the previous scale.
A module named attention proposal network learns where to
attend, and a classification network learns to classify the at-
tended region with a score higher than the classification score
of the previous scale. To achieve this, an inter-scale ranking
loss is defined between the consecutive scales, and is used
for training the attention proposal network. Additionally, an
intra-scale classification loss is used to train the classification
networks. For comparison, we use the classification results
of the second scale network of a two-scale recurrent attention
model that is based on the code provided as part of [6].
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Fig. 2. Impact of region size (W) on normalized test accuracy.

Table 1. Normalized test accuracy (%) of different methods.

18 classes 40 classes
Basic CNN model (4 x 4) [3] 39.0 25.1
Basic CNN model (7 x 7) [3] 44.6 30.6
Basic CNN model (12 x 12) [3] 47.7 34.6
Recurrent attention model [6] 51.6 36.6
Proposed framework (7 x 7) 60.6 42.5

Results. We experimented with different region sizes W &€
{2,...,10} to assess the impact of the region size on the per-
formance of the model. The highest scores are obtained when
7 x 7 regions are used both in 18-class and 40-class settings
as seen in Figure 2. Therefore, the rest of the results in this
section are presented using the model trained with W = 7.

As seen in Table 1, the basic CNN performs better when
trained using the whole 12 x 12 images. This confirms the
need for using larger neighborhoods when there is uncertainty
regarding the locations of the objects, but with an increas-
ing risk of introducing additional background clutter. On the
other hand, the proposed method performs better than all oth-
ers for both data sets by using a WSL model that incorporates
a class-specific and location-specific scoring scheme.

Qualitative evaluation of the localization capability of our
approach is done by visualizing the highest scoring regions
on test images as in Figure 3. The region scores are obtained
from the per-region classification and detection scores in (3)
by selecting the scores that correspond to the predicted class.
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Fig. 3. Example test images from the 40-class data set with
the highest scoring regions marked in white. The first two
rows are correctly classified samples. The ones in the third
row are misclassified although the highest scoring regions
correspond to trees. The fourth row contains misclassified
examples with erroneous detection outputs.

5. CONCLUSIONS

We studied the problem of fine-grained recognition of small
objects, where registration errors between the image source
and the ground truth introduce a significant uncertainty in the
training data. We showed that it is possible to overcome this
uncertainty by approaching the problem from a weakly su-
pervised learning perspective by using a deep network that
simultaneously learns to detect and classify the objects of in-
terest with a higher performance than several baselines.
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