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Deep Feature Representations for Variable-sized
Regions of Interest in Breast Histopathology
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Abstract—Objective: Modeling variable-sized regions of interest
(ROIs) in whole slide images using deep convolutional networks is
a challenging task, as these networks typically require fixed-sized
inputs that should contain sufficient structural and contextual in-
formation for classification. We propose a deep feature extraction
framework that builds an ROI-level feature representation via
weighted aggregation of the representations of variable numbers
of fixed-sized patches sampled from nuclei-dense regions in breast
histopathology images. Methods: First, the initial patch-level
feature representations are extracted from both fully-connected
layer activations and pixel-level convolutional layer activations
of a deep network, and the weights are obtained from the
class predictions of the same network trained on patch samples.
Then, the final patch-level feature representations are computed
by concatenation of weighted instances of the extracted feature
activations. Finally, the ROI-level representation is obtained by
fusion of the patch-level representations by average pooling.
Results: Experiments using a well-characterized data set of 240
slides containing 437 ROIs marked by experienced pathologists
with variable sizes and shapes result in an accuracy score of
72.65% in classifying ROIs into four diagnostic categories that
cover the whole histologic spectrum. Conclusion: The results
show that the proposed feature representations are superior to
existing approaches and provide accuracies that are higher than
the average accuracy of another set of pathologists. Significance:
The proposed generic representation that can be extracted from
any type of deep convolutional architecture combines the patch
appearance information captured by the network activations and
the diagnostic relevance predicted by the class-specific scoring of
patches for effective modeling of variable-sized ROIs.

Index Terms—Digital pathology, breast histopathology, deep
feature representation, weakly supervised learning, region of
interest classification.
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I. INTRODUCTION

Histopathological image analysis systems aim to provide
an accurate modeling of the image content and an objective
quantification of the tissue structure. Whole slide imaging
has aided these systems via digitization of glass slides into
very high resolution images. In addition to the computational
challenges due to data sizes, the main semantic challenge is to
design an effective representation of the local image details.

For the particular case of breast histopathology, a continuum
of histologic features exists in the tissue structures where dif-
ferent types of proliferation have different clinical significance.
For example, proliferative changes are considered benign,
and do not necessitate additional procedures. However, other
diagnoses such as atypical hyperplasia and in situ carcinoma
carry different risks of progressing into malignancy and lead
to different clinical actions such as surgery, radiation, and
hormonal therapy [1], [2]. An automated diagnosis system
should involve all intermediate steps that contain both the iden-
tification of diagnostically relevant regions and the association
of each of these individual regions with a diagnostic category.

Given the high level of uncertainty regarding the correspon-
dence between the diagnostic class of the whole slide and the
diverse content in the local details in the image data [3], the
main focus of the relevant work has been to perform both
training and evaluation tasks on isolated regions of interest
(ROI)1 with no ambiguity in their diagnostic labels. Among
these works, deep learning-based approaches, in particular
convolutional neural networks (CNN), have had the greatest
success in recent years [4]. Earlier studies using deep networks
focused on the binary (benign vs. malignant) classification
problem. For example, Cruz-Roa et al. [5] use a deep network
to classify 100 × 100 pixel patches as benign or invasive for
breast histopathology. The BreaKHis data set [6] that consists
of 700×460 pixel images has also been popular for benign vs.
malignant classification. The common approach is to sample
32× 32 or 64× 64 pixel patches, classify them by using deep
networks, and obtain the image-level diagnoses by combining
patch-level outputs using methods such as averaging class
probabilities [7] or majority voting [8].

Classifying a tissue as one of multiple cancerous or precan-
cerous lesions as is required in clinical practice holds a higher
clinical significance compared to only as benign or malignant.
There exist multiple works studying multi-class classification
of breast histopathology images with CNNs. For example, the

1We define ROIs as regions that are identified to be diagnostically relevant
by human experts during their interpretation of the slides.
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BACH data set [9] that consists of fixed-sized images labeled
as normal, benign, in situ, and invasive has been used in several
competitions. Uniformly sampling patches over a regular grid,
and obtaining the image-level diagnoses via majority voting
or averaging patch-level probabilities has been the common
choice [10], [11]. Training a separate classifier on the patch-
level outputs using logistic regression [12], recurrent neural
networks [13], or multiple instance learning [14], [15], [7]
are used as alternatives to fixed fusion rules. Besides CNNs,
stacked autoencoder-based unsupervised feature representa-
tions are also used as patch models [16], [17].

In all of the works reviewed above, typically small, fixed-
sized, manually cropped images are used as the final targets
in the classification task. However, in a realistic clinical setup,
the ROIs often vary significantly in size and in content. In the
former scenario where relatively small and isolated ROIs that
belong to distinct categories are used, it can be safe to assume
that the sampled patches are all similarly relevant for the
diagnosis. However, in the latter unconstrained scenario where
the ROIs are obtained by manual delineation in free form or
by using machine learning-based ROI detectors, typically not
all patches are equally informative. Thus, modeling variable-
sized ROIs using deep networks remains an open problem. For
such ROIs, commonly used transformations such as cropping
may lead to loss of important local details, and resizing may
result in the loss of important scale information. Furthermore,
other popular approaches that involve pooling of pixels into
pre-defined grids [18] may also suffer from the aforementioned
problems in histopathology images.

An alternative is to design a representation that can capture
the variations in local details of variable-sized ROIs. For
example, Mehta et al. [19] propose the Y-Net framework that
is jointly trained for segmentation and classification where the
classification output is used with a threshold to obtain a tissue-
level discriminative segmentation mask. Then, the frequencies
of the selected tissue components are used with a multi-
layer perceptron to obtain the ROI-level diagnosis. Mercan
et al. [20] use superpixels to aggregate the pixel-level tissue
segmentation, estimate the duct locations from the epithelium
regions, and compute histograms of the tissue types within
layers of superpixels both inside and outside of these ductal
components as structure features for ROI-level classification.

Our whole slide analysis pipeline involves three stages
illustrated in Figure 1: 1) detection of ROIs; 2) modeling of
these ROIs using a variable number of fixed-sized patches;
3) modeling of slides using these ROIs. This model can be
considered within the weakly supervised learning paradigm
where ROI-level class labels are missing when only slide-level
diagnoses are available, and the contributions of individual
patches to an ROI are also not known. We proposed both
traditional [21] and deep learning-based [22] solutions to
the first stage. We also proposed a multi-instance multi-label
learning formulation [3] for the third stage. In this paper, we
focus on the second stage of modeling the individual ROIs
by designing an ROI-level representation via weighted aggre-
gation of patch-level representations. The proposed approach
can be applied to both manually and automatically identified
ROIs. The weights can be considered as confidence scores that

Fig. 1. Modeling of a WSI in terms of ROIs and patches.

quantify the importance and informativeness of the patches for
the ROI-level diagnosis. We have shown that such weighted
combinations of patch-level representations are quite power-
ful for simultaneous learning of attention and classification
models when only image-level labels are available during
weakly supervised learning [23]. Here, the patch-level feature
representations are obtained from both fully-connected layer
activations and pixel-level convolutional layer activations, and
the weights are obtained from the class predictions. Our main
contributions include a new patch-level representation based
on convolutional activation maps, a generic representation for
modeling variable-sized ROIs that is illustrated by using two
different deep network architectures, and extensive evaluation
using a challenging multi-class breast histopathology data
set that covers the whole histologic spectrum. We compare
this representation to alternative representations as well as
to operations such as cropping, resizing, and pooling. A
preliminary version of this work was presented in [24].

The paper is organized as follows. Section II introduces the
data set. Section III describes the deep feature representation
methodology. Section IV presents how these representations
can be used for classification. Section V provides the experi-
mental results. Finally, Section VI gives the conclusions.

II. DATA SET

We use a data set of 240 breast biopsies that was developed
as part of an NIH-sponsored project to study variability in the
interpretation of breast histopathology [1]. The haematoxylin
and eosin (H&E) stained slides that belonged to independent
cases from different patients were selected from cancer reg-
istries associated with the Breast Cancer Surveillance Consor-
tium by stratified sampling to cover the full range of diagnostic
categories from benign to cancer. The study was approved by
the institutional review boards at Bilkent University, University
of Washington, and University of Vermont.

The slides were scanned by the same iScan Coreo Au
digital slide scanner (Roche). The cases were independently
interpreted by three experienced pathologists who then met
in consensus meetings to define a single consensus diagnosis
for each case. At the end, each case was classified into one
of the following 4 classes with example diagnostic terms:
class I benign without atypia (Benign), class II atypical ductal
hyperplasia (ADH), class III ductal carcinoma in situ (DCIS),
and class IV invasive cancer (INV). The benign class includes
samples that contain non-proliferative changes, fibroadenoma,
intraductal papilloma without atypia, usual ductal hyperplasia,
columnar cell hyperplasia, sclerosing adenosis, complex scle-
rosing lesion, and flat epithelial atypia. The ADH class in-
cludes atypical ductal and lobular hyperplasia, and intraductal
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TABLE I
CLASS DISTRIBUTION OF SLIDES AND ROIS IN THE DATA SET.

Benign ADH DCIS INV Total

Slide Training set 34 35 41 10 120
Test set 22 48 38 12 120

ROI Training set 60 58 85 17 220
Test set 37 81 80 19 217

TABLE II
STATISTICS OF ROI BOUNDING BOX SIZES (NUMBER OF PIXELS AT 40×).

Benign ADH DCIS INV
Min. 1,400× 1,200 1,320× 1,120 1,041× 1,400 1,708× 2,987
Max. 41,652× 39,617 39,585× 28,975 73,612× 64,843 72,442× 55,151
Mean 10,495× 8,943 7,075× 6,206 11,063× 9,812 25,238× 22,899
Std.dev. 8,877× 7,081 5,455× 4,347 11,051× 8,266 17,514× 14,994

papilloma with atypia. The DCIS class includes both ductal
and lobular carcinoma in situ. The difficulty of this multi-
class problem can also be confirmed from the evaluations in
[1], [25] where a large set of pathologists’ concordance rates
compared with the consensus diagnoses were 82% for Benign,
43% for ADH, 79% for DCIS, and 93% for INV. The study in
[9] also reported that the benign and in situ classes were the
most difficult to classify. Our data set contains a very diverse
mix of sub-categories considered benign. It also includes the
challenging and clinically significant ADH class that was not
present in any of the work (except [3], [19], [20], [22] that
used the same data set) reviewed in Section I.

We divided the data set equally into two as training and
test sets so that the slide-level class distribution between the
two sets are kept as close as possible while each subset has
slides from different patients. The ROI-level analysis studied
in this paper uses the ROIs marked by the pathologists as
one or more representative regions in each slide to support
the corresponding diagnosis for that slide. In total, there are
437 consensus ROIs, having the same diagnostic labels as the
slide-level consensus labels. The class distribution of slides
and ROIs are shown in Table I. The ROIs have considerable
amount of variability in size as shown in Table II. Note that
all diagnostic categories exhibit this variability that further
supports the need for developing new feature representations
for multi-class modeling of variable-sized ROIs.

III. DEEP FEATURE REPRESENTATION

We introduce a deep feature extraction method for variable-
sized ROIs, while preserving patch-level local information
and their relative contribution for ROI-level diagnosis. First, a
CNN is trained on the patches sampled from the ROIs. Then, a
patch-level feature representation is obtained by concatenation
of weighted instances of feature activations computed for the
patch by the network. The weights are also obtained from
the network as the class probabilities for the corresponding
patch. Finally, the ROI-level representation is obtained via
aggregation of the patch-level representations by average pool-
ing. This generic representation that can be extracted from
any type of deep convolutional architecture aims to combine
the patch appearance information modeled by the network
activations and the diagnostic relevance modeled by the class-

(a) (b) (c) (d)

(e)

Fig. 2. Patch selection for an example ROI. (a) RGB image. (b) Haematoxylin
estimate. (c) Nuclei mask. (d) Selected RGB patches. (e) Example patches.

specific scoring of the patches. The details of each step of this
representation are described below.

A. Patch-level Deep Network Training

State-of-the-art deep convolutional architectures that aim to
produce image-level class probability scores face a challenge
for ROIs with significantly different shapes and sizes. Our
proposed solution is to model each ROI as a combination of
variable number of potentially salient fixed-sized patches.

1) Identification of Patches from ROI: The first step in-
volves identification of informative and diverse set of patches
to represent the structural and contextual information in the
ROI. According to pathologists, appearance of the cell nuclei
and their spatial distribution within the ducts are important
indicators for the diagnosis [17]. Eye tracking studies also
show high correlation between the regions viewed by the
pathologists and the computer vision-based saliency detector
outputs that highly overlap with epithelium-rich regions [26].
In this paper, informativeness is achieved by sampling the
patches from nuclei-dense areas in the ROI, and diversity is
attained by enforcing a constraint that two patches should not
overlap by more than a margin. We show in Section V-C that
this is empirically an effective choice as well.

An efficient way of locating nuclei-dense regions as po-
tential locations for ductal structures is to use the haema-
toxylin channel estimated from the RGB image. We use
the built-in stain vectors in the ImageJ implementation
(https://imagej.net/Colour Deconvolution) of the color decon-
volution algorithm in [27]. After obtaining the haematoxylin
value at each pixel, we compute a non-parametric Parzen
density estimate [28], and apply a threshold to this estimate to
eliminate the regions with little to no nuclei. The remaining
regions are used to sample the center pixels of patches on
a uniform grid to enforce a limit on the patch overlap.
The image magnification used is determined in coordination
with the patch size required by the network architecture as
described in Section V-A. The patches should not be too
large to risk simultaneous inclusion of details from irrelevant
proliferations and too small to contain insufficient context. The
patch selection process is illustrated in Figure 2.

2) CNN Training on Patches: Due to the limited availability
of labeled histopathology images, we opt to fine-tune a pre-
trained network. Our first choice for the base CNN architecture
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Convolution + Batch Norm + ReLU
Max Pooling
Linear + ReLU
Softmax

224x224x64

112x112x128

56x56x256
28x28x512 14x14x512

7x7x512 1x1x4096 1x1x4︸ ︷︷ ︸
penultimate layer

Fig. 3. VGG16 network used for patch-level feature representation. This
particular network has 13 convolutional and three fully-connected layers
where the last layer outputs predictions for each of the K = 4 classes
through a softmax activation function. The convolutional layers are denoted as
conv{11,12,21,22,31,32,33,41,42,43,51,52,53} and the fully-connected layers
are denoted as fc{1,2,3}. The penultimate layer activations correspond to fc2.

is the ImageNet pre-trained VGG16 network [29] due to its
relatively large depth and representational capabilities as well
as our good experience with an adaptation of this network
on the same breast pathology data set [22]. We also use the
ResNet-50 network [30] to illustrate the generic applicability
of the proposed methodology. The RGB patches sampled in
the previous step are used with the same labels as those of the
corresponding ROIs to fine-tune both networks. There was no
performance improvement when we tried to train all network
parameters from scratch due to the limited amount of data
available for training. The experiments in this paper use these
two specific networks but, as noted earlier, the proposed deep
feature representation can be extracted by using any type of
deep convolutional architecture.

B. Patch-level Deep Feature Representation

Given a deep network that is trained as in Section III-A2,
we use two different methods to extract the initial patch-level
feature representations denoted as φ̂ in the rest of the paper.

1) Penultimate Layer Features: The first method for ob-
taining φ̂ is to directly use the output of the penultimate layer
in the patch-level deep network. As the most commonly used
approach of employing deep networks for feature extraction,
the penultimate layer activations, illustrated for the VGG16
network in Figure 3, provide an overview of the patch content
summarized by the fully-connected operations.

2) Hypercolumn Features: The second method exploits
pixel-level convolutional activations for feature extraction. The
activations in the earlier layers provide low-level information
such as color, texture, and shape, while the activations in later
layers encode contextual information about the input image
[31]. The hypercolumn feature representation of a pixel com-
bines these low-level and high-level features and is obtained
by concatenating all activations at that pixel location through
the layers in the network when pixel-level representations are
needed for tasks such as semantic segmentation [32].

Our aim is to extract a patch-level representation from the
pixel-level hypercolumn features. A naive concatenation of all
pixels’ features will produce a huge vector, e.g., with size
over two hundred million for a mildly deep network such
as VGG16, and will be prone to overfitting. We designed a

... ...

A1,...,Cl Â1,...,Cl

Al
agg

vec(Al
agg)

Fig. 4. Hypercolumn representation from pixel-level convolutional activations
at a particular layer. Given the activation maps for all channels (A1,...,Cl )
of the layer, the procedure selects the pixels with the maximum activation in
each channel (Â1,...,Cl ), combines these activations in an aggregate activation
map by keeping only the selected pixels while suppressing the others (Al

agg ),
and vectorizes the resulting map as the final representation (vec(Al

agg )).

procedure that involves statistical operations on a selected set
of layers of the convolutional network to obtain the feature
representation for an input patch. Figure 4 illustrates these
steps for an example layer. The details are provided below.

The input for each patch is a set of L layers selected from
the deep network. Each layer l ∈ {1, . . . , L} consists of a set
of channels that correspond to the convolutional activations
Al

c, c = 1, . . . , Cl, where Cl is the number of channels in layer
l and Al

c is the matrix that stores the responses of all pixels to
the c’th kernel in that layer. For example, for the layer denoted
as conv33 in Figure 3, the number of channels Cl is 256, and
Al

c is a matrix of size 56×56. We select the last layers of the
last three groups of convolutional layers for both networks.
These layers exhibit increasing representational capacity after
a sequence of consecutive convolution operations within each
group right before the feature map size is decreased with a
pooling operation for the next group. For the VGG16 network,
the selected layers are conv{33,43,53}. For the ResNet-50
network, we use the last layers of the conv{3 x, 4 x, 5 x}
blocks as described in the experimental setup in Section V-A.

Given the channels Al
c, c = 1, . . . , Cl in a selected layer l,

we first identify the maximum activation in each convolutional
channel and turn off the remaining activations as

Âl
c =

A
l
c(x
∗, y∗) if (x∗, y∗) = argmax

(x,y)

Al
c,

0 otherwise,
(1)

where (x, y) is the pixel location. The resulting matrix Âl
c con-

tains a single non-zero pixel that corresponds to the maximum
in (1). Then, we combine the top activations by summing over
the convolutional channels to obtain an aggregate activation
map of the associated layer as

Al
agg =

Cl∑
c=1

Âl
c. (2)

The resulting map, with the same size as the matrices Al
c

and Âl
c, preserves the most prominent responses that contain

information from different local structures activated by various
convolutional kernels in that particular layer. Finally, the
resulting maps Al

agg , l = 1, . . . , L for all layers are vectorized
and concatenated as

φ̂ =
[
vec(A1

agg)
T , vec(A2

agg)
T , . . . , vec(AL

agg)
T
]T

(3)
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where vec(·) denotes the vectorization operation of a given
matrix, and φ̂ is the pixel-level convolutional hypercolumn
feature representation of the input patch.

C. ROI-level Deep Feature Representation

Our previous research showed that weighted pooling of
patches within larger images works well for weakly supervised
learning when there is both localization and labeling uncer-
tainty [23]. The ROI-level feature representation proposed here
also uses weighted aggregation of patch-level feature vectors.
Both the feature vectors and the weights are extracted from
the patch-level deep network described earlier.

The input is an ROI R that is modeled as a set of M patches
{r1, r2, . . . , rM}. We assume that each patch is initially
mapped to a d-dimensional feature vector as in Section III-B
where φ̂(rm) ∈ Rd denotes the vector for patch rm. One of the
most widely used representations that are based on aggregation
of local features is the bag-of-words (BoW) model [33], where
the local instances are quantized into discrete words in a
codebook, and average pooling of these words is performed
by counting their occurrences into a normalized histogram. In
this model, the final representation for a patch becomes a one-
hot vector that encodes the codeword assignment for the deep
feature representation, φ̂, for that patch. The ROI-level feature
representation that aggregates all patch encodings is obtained
by average pooling that results in a vector whose length is
equal to the size of the codebook used.

Another popular approach that can be viewed as a gener-
alization of the BoW model is the Fisher vector framework
[34]. By using a Gaussian mixture model that estimates the
distribution of the local descriptors, the Fisher vector encoding
captures the first and second order differences between the
individual descriptors and the mixture components. In this
framework, the final representation for a patch is obtained
as the concatenation of the gradients computed with respect
to the mixture model parameters, and the ROI-level feature
representation is also obtained via average pooling that results
in a vector whose length is twice the length, d, of the initial
patch-level deep feature representation, φ̂, times the number
of mixture components.

Our proposed representation is based on soft assignments
where the patches are associated with the diagnostic classes
of interest by using probability estimates that correspond to
the confidences in these assignments. Given the K class
probabilities {s1m, s2m, . . . , sKm} estimated for the patch rm by
the softmax layer of the deep network with

∑K
k=1 s

k
m = 1, a

new representation for the patch is obtained by concatenating
the weighted instances of the original deep feature φ̂(rm) as

φ(rm) =
[
s1mφ̂(rm)T , s2mφ̂(rm)T , . . . sKmφ̂(rm)T

]T
, (4)

resulting in a patch-level feature representation with length
Kd. Here, weighting is influenced by our past work [23] and
concatenation can be related to the Fisher vector framework

Deep Feature Vector

Confidence 
Scores

X

X

X

X

C

X

Benign Score
ADH Score
DCIS Score
INV Score

C Concatenation

Element-wise Multiplication

s1

s2

s3

s4

φ̂

φ

Fig. 5. Final patch-level deep feature representation computed from the
aggregation of initial deep feature vectors with class-specific network output.

R = {r1, r2, . . . , rM}

Benign Score
ADH Score
DCIS Score
INV ScoreDeep Network

Feature
Extractor

Confidence Scores


s11φ̂(r1)

T s21φ̂(r1)
T . . . sK1 φ̂(r1)

T

s12φ̂(r2)
T s22φ̂(r2)

T . . . sK2 φ̂(r2)
T

s13φ̂(r3)
T s23φ̂(r3)

T . . . sK3 φ̂(r3)
T

...
...

...
...

s1M φ̂(rM )T s2M φ̂(rM )T . . . sKM φ̂(rM )T



φ(R) =

[
1
M

M∑
m=1

s1mφ̂(rm)T 1
M

M∑
m=1

s2mφ̂(rm)T . . . 1
M

M∑
m=1

sKmφ̂(rm)T
]T

Fig. 6. ROI-level deep feature representation computed by pooling the final
patch-level deep feature representations.

[34]. Then, the final ROI-level feature representation is ob-
tained by average pooling as

φ(R) =

[
1

M

M∑
m=1

s1mφ̂(rm)T , . . . ,
1

M

M∑
m=1

sKmφ̂(rm)T

]T
.

(5)
In the representation in (4), the feature vector φ̂ that is com-
puted from the deep network activations contributes differently
for each class in φ according to the class probabilities that act
like relevance scores that quantify the significance of that patch
for the ROI-level diagnosis. This weighted aggregation illus-
trated in Figures 5 and 6 results in the class probabilities and
the feature activations supporting each other in the learning of
class-specific feature vectors.

IV. CLASSIFICATION

The deep feature representations for the ROIs in the training
set are used to train a multi-layer perceptron (MLP) to
perform multi-class classification on unseen ROIs in the test
set whose feature representations are also extracted with the
same procedure. We use the consensus ROIs that were man-
ually identified by the experienced pathologists as described
in Section II. Alternative approaches that involve classifiers
explicitly trained for ROI detection can also be used when no
such ROIs are available [21], [22].

V. EXPERIMENTS

A. Experimental Setup

The deep feature extraction process proposed in this paper
is not specific to any network and can be applied to any
convolutional architecture. The experiments described here are
realized by using the VGG16 and ResNet-50 networks. The
patches were sampled as 224×224 pixel windows, particularly
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due to the input requirement of the VGG16 network. We used
10× magnification, which was empirically decided based on
the experiments presented in Section V-C.

During patch-level training described in Section III-A, we
applied random rotation, random horizontal/vertical flipping,
and random perturbations on the hue channel in the HSV
domain as part of the data augmentation routine. We also
oversampled Benign and INV patches to reduce the imbalance
resulting from intentional oversampling of the ADH and DCIS
cases in the data set to study the preinvasive lesions in more
detail [1]. We fine-tuned the networks on the same augmented
training set using cross-entropy loss. We used batches of
32 patches, and employed Adam optimizer with a learning
rate set to 10−4. During patch-level feature extraction in
Section III-B, the penultimate layer activations for the VGG16
network are taken from the layer labeled as fc2, resulting in
initial feature vectors of length d = 4,096. The hypercolumn
features are computed from the convolutional activations in
the layers labeled as conv{33,43,53}, resulting in initial feature
vectors of length d = 4,116 (after vectorization of 56 × 56,
28 × 28, and 14 × 14 pixel maps as shown in Figures 3 and
4). For the ResNet-50 network, the penultimate layer feature
representation has length d = 2,048, and the hypercolumn
feature vector is obtained from the convolutional activations in
the last layers of the conv3 x, conv4 x, and conv5 x blocks,
resulting in initial feature vectors of length d = 1,029 (after
vectorization of 28 × 28, 14 × 14, and 7 × 7 pixel maps).
The final ROI-level features in Section III-C are obtained
by average pooling of weighted concatenations of patch-level
features, resulting in vectors of length Kd where K = 4.
We also evaluated equal representation of all three layers in
the hypercolumn vector by upsampling the smaller layers via
bilinear interpolation. However, the accuracy decreased by
25% due to the increased dimensionality of the representation.

We use the same training data for all stages of both the
proposed methodology and the baseline methods described in
Section V-B. For hyperparameter optimization and quantitative
evaluation, we further split the test data shown in Table I into
two subsets. These subsets correspond to two groups of 60
slides each, that belong to different patients and are randomly
selected according to the same class frequency distribution
by using stratified sampling. We interchangeably use these
two sets, corresponding to 116 and 101 ROIs, respectively,
as validation and test data, and report the average accuracy
on the test subsets for all experiments in Section V-C. We
use normalized accuracy as the performance metric where the
per-class accuracy rates are averaged to avoid biases towards
classes with larger number of examples.

B. Baselines

The ROI-level feature representations, named Penultimate-
Weighted and Hypercolumn-Weighted for the approaches de-
scribed in Sections III-B1 and III-B2, respectively, are used
with a 4-class MLP classifier trained according to the setup
in Section V-A. We also evaluated the performances of the
following commonly used feature aggregation methods.

• Penultimate-Baseline: The initial patch-level feature vec-
tors from the penultimate layer are combined by average
pooling (without weighting) for ROI-level features.

• Hypercolumn-Baseline: Similarly, the initial hypercol-
umn features are combined by average pooling.

• Majority-Voting: We use the patch-level class probabil-
ities to assign each patch to the most likely class, and
apply majority voting to obtain the label of the ROI.

• Learned-Fusion [15]: The patch-level class probabilities
from the final softmax layer of the network are summed
up to create class frequency histograms as ROI features.

• Bag-of-Words: We use the initial patch-level feature vec-
tors to compute a codebook for the bag-of-words model.
The codebook sizes are selected as 16, 32, and 64 based
on our earlier experience on the same data set [21].

• Fisher-Vector: We compute the Fisher vector encoding
for the initial patch-level vectors using Gaussian mixtures
with 16, 32, and 64 components. We apply principal
components analysis to improve the accuracy and reduce
the memory footprint of the representation [35].

• Y-Net [19]: This approach extends the U-Net [36] model
for joint training for segmentation and classification using
a multi-task loss with 8-class tissue segmentation masks
and ROI-level labels. The network produces a tissue-
level discriminative segmentation mask after applying a
threshold to the local patch probabilities. Histograms of
patch class assignments are used as ROI features.

All of these ROI-level feature representations are used with
a final MLP classifier for predicting the ROI-level diagnoses
(except Majority-Voting that directly outputs the class label).

We also implemented the commonly used operations of
cropping, resizing, and pooling. First, we identified the largest
square image size that could be fit into the GPU memory for
a batch size of 10 as 1120× 1120 pixels. Then, for each ROI,
we cropped the largest square region that could fit into that
ROI’s mask and resized it to 1120×1120 pixels. We used the
resulting regions to fine-tune a ResNet-50 network for ROI-
level prediction. This procedure is denoted as Crop/resize in
the results. We also evaluated replacing the average pooling
layer with spatial pyramid pooling [18] using three scales.

Finally, we present the average accuracy from the indepen-
dent interpretations of all slides by 45 other pathologists that
practice breast pathology in their daily routines [1], [19].

C. Results

The first step was the selection of image magnification. We
evaluated the proposed representations with patches sampled
from 2.5×, 5×, 10×, and 20× magnifications. The results for
ResNet-50 are presented in Table III. We determined that 10×
magnification provides a good tradeoff for capturing sufficient
local context without including irrelevant details.

The next step was the evaluation of the patch sampling
strategy for training the networks used as the patch-level
feature extractors. All patches sampled from the same ROI
are assigned the label of that ROI. This is considered weak
supervision because the relevance of each individual patch to
the ROI is not truly known. The accuracies of the VGG16 and
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TABLE III
IMPACT OF MAGNIFICATION ON ROI-LEVEL CLASSIFICATION (%).

Method 2.5× 5× 10× 20×
Penultimate-Baseline 55.50 59.74 59.79 44.57
Hypercolumn-Baseline 40.04 49.85 47.17 41.98
Penultimate-Weighted 60.71 67.63 67.13 64.27
Hypercolumn-Weighted 65.72 68.69 71.92 62.81

TABLE IV
COMPARISON OF ROI-LEVEL CLASSIFICATION PERFORMANCE (%).

Method VGG16 ResNet-50
Majority-Voting 67.02 69.03
Learned-Fusion [15] 66.45 67.77
BoW-16 56.00 60.40
BoW-32 66.49 57.90
BoW-64 62.53 64.53
Fisher-16 65.03 62.34
Fisher-32 65.52 60.97
Fisher-64 57.75 66.75
Crop/resize – 58.48
Pyramid-Pooling – 61.93
Penultimate-Baseline 63.10 59.79
Hypercolumn-Baseline 63.86 47.17
Penultimate-Weighted 69.89 67.13
Hypercolumn-Weighted 72.65 71.92
Y-Net [19] 68.20
Pathologists [19] 70.00

ResNet-50 networks trained using the patches sampled with
the proposed strategy were 51.22% and 51.11%, respectively.
These accuracies could not be improved further with additional
data augmentation and hyperparameter optimization because
of the uncertainty in the patch-level weak labels used for both
training and evaluation. We also investigated uniform sampling
of patches over a grid on the foreground tissue sections
within the ROIs after eliminating the slide background via
thresholding of luminosity [9]. The resulting accuracy for the
VGG16-based patch classifier was 43.51%. This result shows
the effectiveness of sampling of informative patches from the
nuclei-dense regions for modeling ductal proliferations.

The final step was the evaluation of the ROI-level classifi-
cation methods whose performances are summarized in Table
IV. The proposed representations, Penultimate-Weighted and
Hypercolumn-Weighted, achieved the best performances for
both deep networks, with the latter obtaining the top spot while
also being above the pathologists’ average performance. When
we consider the performances of the baseline representations,
Penultimate-Baseline and Hypercolumn-Baseline, we observe
that the hypercolumn representation benefits more from the
proposed weighted aggregation that learns class-specific fea-
tures. This result is consistent with the observation in [31] that
the further the target classification task (i.e., cancer diagnosis)
moves from the original source task of the pre-trained network
(i.e., ImageNet), more effective the earlier layers become. The
reason could be due to the penultimate layer and the final soft-
max layer being located close to each other in the network so
that their combination results in limited improvement because
they encode similar information. Thus, if one has to choose
a single layer from the network for feature extraction, the
penultimate layer, as commonly used in the literature, is a good
choice that provides an effective and compact summary of the
image content. On the other hand, the hypercolumn features

TABLE V
CONFUSION MATRICES FOR ROI-LEVEL CLASSIFICATION.

(a) Penultimate-Weighted
Predicted

Benign ADH DCIS INV

Ref.

Benign 25 8 4 0
ADH 13 50 17 1
DCIS 2 3 69 6
INV 0 0 7 12

(b) Hypercolumn-Weighted
Predicted

Benign ADH DCIS INV

Ref.

Benign 29 5 2 1
ADH 18 44 15 4
DCIS 3 3 62 12
INV 0 0 4 15

TABLE VI
CLASS-SPECIFIC STATISTICS ON THE PERFORMANCE OF ROI-LEVEL

CLASSIFICATION. THE NUMBER OF TRUE POSITIVES (TP), FALSE
POSITIVES (FP), FALSE NEGATIVES (FN), AND TRUE NEGATIVES (TN)

ARE GIVEN. PRECISION, RECALL (ALSO KNOWN AS TRUE POSITIVE RATE
AND SENSITIVITY), FALSE POSITIVE RATE (FPR), SPECIFICITY (ALSO

KNOWN AS TRUE NEGATIVE RATE), AND F-MEASURE ARE ALSO SHOWN.

(a) Penultimate-Weighted

Class TP FP FN TN Precision Recall/ FPR Specificity F-measureSensitivity
Benign 25 15 12 165 0.6250 0.6757 0.0833 0.9167 0.6494
ADH 50 11 31 125 0.8197 0.6173 0.0809 0.9191 0.7042
DCIS 69 28 11 109 0.7113 0.8625 0.2044 0.7956 0.7797
INV 12 7 7 191 0.6316 0.6316 0.0354 0.9646 0.6316

(b) Hypercolumn-Weighted

Class TP FP FN TN Precision Recall/ FPR Specificity F-measureSensitivity
Benign 29 21 8 159 0.5800 0.7838 0.1167 0.8833 0.6667
ADH 44 8 37 128 0.8462 0.5432 0.0588 0.9412 0.6617
DCIS 62 21 18 116 0.7470 0.7750 0.1533 0.8467 0.7607
INV 15 17 4 181 0.4688 0.7895 0.0859 0.9141 0.5882

are obtained from the convolutional units that encode different
local characteristics of the input data at different scales,
and get a more dramatic boost in performance when fused
with the complementary information encoded by the softmax
layer. When we consider the remaining baseline methods, we
observe that there is no consistent pattern with respect to
the commonly used bag-of-words and Fisher vector encoding
methods and their parameters (codebook size and number of
mixture components, respectively) even after hyperparameter
tuning using the validation data. We also observe that simpler
aggregation methods, Majority-Voting and Learned-Fusion,
behave better than these feature encodings. Another important
observation is that all representation-based baselines perform
as good as and often better than the transformation-based
baselines of cropping, resizing, and pooling.

For more detailed evaluation, confusion matrices and class-
specific performances of the proposed representations obtained
by using the VGG16 network are given in Tables V and
VI, respectively. The numbers in the confusion matrices are
accumulated from the two test subsets. The classifier that used
the Penultimate-Weighted representation predicted DCIS and
ADH better than Benign and INV. For example, the highest
recall was achieved for DCIS, where only 11 out of 80 ROIs
were misclassified. The highest precision was obtained for
ADH, where only 11 of the 61 ROIs predicted as ADH were
false positives. The precision for DCIS was relatively lower
than that for ADH where the classifier had the tendency to
choose DCIS more frequently than any other class. The major-
ity of the Benign ROIs that were misclassified were incorrectly
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labeled as ADH. ROIs with a consensus diagnosis as INV
were correctly classified in 12 cases compared to 7 cases that
were wrongly predicted as DCIS, which makes sense given
that a large number of cases with INV as the consensus label
also had DCIS in their pathology reports. The classifier that
used the Hypercolumn-Weighted representation was able to
classify more cases of INV and Benign correctly. We observed
that inclusion of pixel-level information in the patch-level
representation extracted by the hypercolumn features led to
an improvement where the classifier learned the characteristics
of Benign and INV better, with a small cost of misclassifying
more ADH cases as Benign.

Overall, the classifiers trained using the proposed feature
representations outperformed the other approaches in compar-
ison. The challenges regarding the categorization of the prein-
vasive lesions such as ADH and DCIS are mostly consistent
with the difficulties faced by the pathologists in comparative
studies [1], [25]. However, the automated methods’ accuracies
for Benign and INV classes were lower than the typical
pathologist’s performance where human observers usually
agree in their diagnoses for the cases that are at the extremes
of the histologic spectrum. Many recent work in the literature
also report higher accuracies for the Benign versus INV
classification, but with a major difference in their experimental
setup in which samples from atypia classes are not used [9].
Given the original motivation for the preparation of the data
set by oversampling the ADH and DCIS cases to study the
preinvasive lesions in more detail [1], and in spite of our
efforts to decrease the class imbalance by oversampling during
the fine-tuning of the patch-level network, the diversity of the
extracted patches varied greatly from one class to another due
to limited number of ROIs from the minority classes INV and
Benign, and resulted in relatively poor performance for these
classes. A possible solution in future work is to use classifiers
specifically trained for identifying extreme categories such as
INV [5] in a hierarchical classification framework [20].

Qualitative results on the local predictions by the fine-tuned
VGG16 network are presented in Figure 7. Both the predicted
labels of the patches and the class-specific scores are shown
for example ROIs. The CNN predictions for the ROI in the
first row mostly involved DCIS as almost all patches within the
ROI showed the strongest response to that class. The methods
involving the proposed feature representations, Penultimate-
Weighted and Hypercolumn-Weighted, and the methods we
used for comparison, Majority-Voting and Learned-Fusion,
were able to correctly classify the ROI as DCIS. Similarly,
the patch-level predictions mostly matched the ROI-level con-
sensus diagnoses in the second and third rows. Consequently,
the proposed and compared methods all correctly assigned
those ROIs to the consensus diagnoses ADH and Benign,
respectively. However, when the patch-level predictions of the
CNN did not fully represent the consensus diagnosis of the
ROI, the comparison methods performed poorly. For exam-
ple, among all methods, only the proposed representations
Penultimate-Weighted and Hypercolumn-Weighted were able
to classify the ROI in the fourth row as ADH, whereas only
the Hypercolumn-Weighted representation could correctly pre-
dict the class label of the fifth ROI as DCIS. Slide-level
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Fig. 7. Patch-level outputs by the VGG16 network used for feature extraction.
(a) Consensus diagnoses and RGB images for example ROIs with boundaries
shown in black. (b) Classes predicted for patches as benign (green), ADH
(yellow), DCIS (purple), INV (gray). Scores for individual classes (brighter
values indicate higher probability): (c) Benign, (d) ADH, (e) DCIS, (f) INV.
These scores are used in (4) as weights for the proposed feature representation.

visualizations are provided in Figure 8. Thresholding on the
haematoxylin estimates and connected components analysis
were used to obtain ROI proposals on the input slides. Patches
were sampled from each region to construct the Hypercolumn-
Weighted representation of that region. The ROI-level classi-
fier was used to make predictions for the individual regions.
These predictions matched the diagnoses of the consensus
ROIs in these slides. Both the quantitative and the qualitative
results showed that CNN predictions for individual fixed-
sized patches may not be representative enough to perform
ROI-level classifications, but the proposed approaches that
used weighted aggregations of patch-level image features and
score predictions within variable-sized ROIs were able to
successfully identify the correct diagnoses.

VI. CONCLUSIONS

Convolutional networks typically operate on fixed-sized
inputs and make class predictions on unseen images with
the same size. However, ROIs in whole slide images can be
drastically different from each other in size, shape, and struc-
ture, and it is not straightforward to analyze these ROIs using
convolutional networks. We presented an effective generic
framework to obtain feature representations for variable-sized
ROIs. The proposed method operated on the automatically
extracted potentially informative and diverse ROI patches.
The local structural information within the patches as well as
the class probability distributions of the patches as obtained
from the predictions of the deep convolutional network were
preserved in the feature representation of the ROI.

We investigated two methods to extract deep feature vectors
for a patch. The first approach involved patch-level penultimate
layer activations of the network, and the second one used pixel-
level features obtained from the convolutional hypercolumn
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Fig. 8. ROI-level outputs for example slides. (a) Consensus diagnoses and
RGB images. (b) Regions used as ROI proposals. (c) Classes predicted for
these regions as benign (green), ADH (yellow), DCIS (purple), INV (gray).
(d) Consensus ROIs and their diagnoses with the same color coding.

activations. In both approaches, the initial feature vector of the
patch was weighted separately by each class probability score
from the same network, and concatenation of the weighted
vectors formed the final feature representation of the patch.
Then, the feature representation of an ROI was obtained by
the aggregation of the feature representations of its patches by
average pooling. We demonstrated the representational power
of the proposed approaches, illustrated using two separate
deep network architectures, as they outperformed competing
methods in extensive quantitative experiments for ROI-level
breast histopathology image classification. Developing an end-
to-end framework involving deep architectures for both feature
extraction and classification will be studied in future work.
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[10] T. Araújo et al., “Classification of breast cancer histology images using
convolutional neural networks,” PloS ONE, vol. 12, no. 6, p. e0177544,
2017.

[11] K. Roy et al., “Patch-based system for classification of breast histol-
ogy images using deep learning,” Computerized Medical Imaging and
Graphics, vol. 71, pp. 90–103, 2019.

[12] Y. S. Vang, Z. Chen, and X. Xie, “Deep learning framework for
multi-class breast cancer histology image classification,” in International
Conference Image Analysis and Recognition, 2018, pp. 914–922.

[13] R. Yan et al., “A hybrid convolutional and recurrent deep neural
network for breast cancer pathological image classification,” in IEEE
International Conference on Bioinformatics and Biomedicine, 2018, pp.
957–962.

[14] M. Kandemir and F. A. Hamprecht, “Computer-aided diagnosis from
weak supervision: A benchmarking study,” Computerized Medical Imag-
ing and Graphics, vol. 42, pp. 44–50, 2015.

[15] L. Hou et al., “Patch-based convolutional neural network for whole slide
tissue image classification,” in CVPR, 2016, pp. 2424–2433.

[16] J. Xu et al., “Stacked sparse autoencoder (SSAE) for nuclei detection on
breast cancer histopathology images,” IEEE Trans. Med. Imag., vol. 35,
no. 1, pp. 119–130, 2016.

[17] Y. Zheng et al., “Feature extraction from histopathological images
based on nucleus-guided convolutional neural network for breast lesion
classification,” Pattern Recognition, vol. 71, pp. 14–25, 2017.

[18] K. He et al., “Spatial pyramid pooling in deep convolutional networks
for visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,
no. 9, pp. 1904–1916, September 2015.

[19] S. Mehta et al., “Y-Net: Joint segmentation and classification for
diagnosis of breast biopsy images,” in MICCAI, 2018.

[20] E. Mercan et al., “Assessment of machine learning of breast pathology
structures for automated differentiation of breast cancer and high-risk
proliferative lesions,” JAMA Network Open, vol. 2, no. 8, pp. 1–11,
August 2019.

[21] ——, “Localization of diagnostically relevant regions of interest in
whole slide images: A comparative study,” Journal of Digital Imaging,
vol. 29, no. 4, pp. 496–506, August 2016.

[22] B. Gecer et al., “Detection and classification of cancer in whole
slide breast histopathology images using deep convolutional networks,”
Pattern Recognition, vol. 84, no. 12, pp. 345–356, December 2018.

[23] G. Sumbul, R. G. Cinbis, and S. Aksoy, “Multisource region attention
network for fine-grained object recognition in remote sensing imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4929–4937, July
2019.

[24] C. Mercan et al., “From patch-level to ROI-level deep feature representa-
tions for breast histopathology classification,” in SPIE Medical Imaging
Symposium, San Diego, California, February 17–21 2019.

[25] J. G. Elmore et al., “A randomized study comparing digital imaging
to traditional glass slide microscopy for breast biopsy and cancer
diagnosis,” Journal of Pathology Informatics, vol. 8, no. 1, pp. 1–12,
2017.

[26] T. T. Brunye et al., “Eye movements as an index of pathologist visual
expertise: A pilot study,” PLoS ONE, vol. 9, no. 8, 2014.

[27] A. Ruifrok and D. Johnston, “Quantification of histochemical staining
by color deconvolution,” Analytical and Quantitative Cytology and
Histology, vol. 23, no. 4, pp. 291–299, 2001.

[28] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John
Wiley & Sons, Inc., 2000.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[30] K. He et al., “Deep residual learning for image recognition,” in CVPR,
2016, pp. 770–778.

[31] H. Azizpour et al., “From generic to specific deep representations for
visual recognition,” in CVPR Workshops, 2015, pp. 36–45.

[32] B. Hariharan et al., “Hypercolumns for object segmentation and fine-
grained localization,” in CVPR, 2015, pp. 447–456.

[33] L. Liu et al., “From BoW to CNN: Two decades of texture representation
for texture classification,” International Journal of Computer Vision, vol.
127, pp. 74–109, 2019.

[34] J. Sanchez et al., “Image classification with the Fisher vector: Theory
and practice,” International Journal of Computer Vision, vol. 105, pp.
222–245, 2013.

[35] K. Chatfield et al., “The devil is in the details: An evaluation of recent
feature encoding methods,” in British Machine Vision Conference, 2011,
pp. 1–12.

[36] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI, 2015, pp. 234–241.


	Introduction
	Data Set
	Deep Feature Representation
	Patch-level Deep Network Training
	Identification of Patches from ROI
	CNN Training on Patches

	Patch-level Deep Feature Representation
	Penultimate Layer Features
	Hypercolumn Features

	ROI-level Deep Feature Representation

	Classification
	Experiments
	Experimental Setup
	Baselines
	Results

	Conclusions
	References

