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A B S T R A C T

Depth camera-based virtual rehabilitation systems are gaining attention in occupational
therapy for cerebral palsy patients. When developing such a system, domain-specific
exercise recognition is vital. To design such a gesture recognition method, some ob-
stacles need to be overcome: detection of gestures not related to the defined exercise
set and recognition of incorrect exercises performed by the patients to compensate for
their lack of ability. We propose a framework based on hidden Markov models for the
recognition of upper extremity functional exercises. We determine critical compensa-
tion mistakes together with restrictions for classifying these mistakes with the help of
occupational therapists. We first eliminate undefined gestures by evaluating two models
that produce adaptive threshold values. Then we utilize specific negative models based
on feature thresholding and train them for each exercise to detect compensation mis-
takes. We perform various tests using our method in a laboratory environment under
the supervision of occupational therapists.

c© 2020 Elsevier B. V. All rights reserved.

1. Introduction

Cerebral Palsy (CP) is a neurological disorder caused by a
non-progressive brain injury or malformation that occurs while
the child’s brain is under development. CP affects body move-
ment, muscle control, muscle coordination, muscle tone, reflex,
posture, balance and cognitive skills. In most cases, it impacts
fine motor skills, gross motor skills, and sensory skills. The ef-
fects of Cerebral Palsy are long-term, not temporary. The injury
and damage to the brain are permanent. The brain does not heal
as the way other parts of the body might. On the other hand,
associative conditions may improve over time. Rehabilitation,
which includes physical and/or occupational therapy, is among
the main intervention methods to promote, maintain and restore
the physical well-being of CP patients [1].
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There are various approaches to CP rehabilitation. Virtual
Reality (VR) based rehabilitation generally aims children both
because it is effective to perform these exercises at an early
age and because they are often put into practice as serious
games to make them more attractive and less boring for chil-
dren. The emergence of depth cameras to be used in schools
and homes made it possible to capture the movements of the
patients and promoted the use of these types of cameras in vir-
tual rehabilitation [2]. However, for CP patients, exercising
games targeting the general population proved problematic in
some aspects. First of all, these patients cannot sometimes per-
form some moves properly and complete the game. They may
also have cognitive disabilities that cause them to perform unre-
lated/undefined moves and sometimes require therapists to step
in, which causes the game engine to try and recognize these
movements that are out of context. Thus, playing/performing
regular exercising games is not practical in this case. Another
problem is the compensation mistakes made by the patients
during exercises. When the patients have insufficient muscle
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strength or muscle control, they try to complete the movement
by using some other muscles and/or joints, e.g., twisting, bend-
ing their elbows during a shoulder exercise. These incorrect
exercises are not desired by therapists.

We provide solutions for the described problems to develop
a gesture recognition system designed specifically for cerebral
palsy patients. First, it should be able to distinguish the move-
ments that are not related to the content of the application from
the defined exercises. Second, it should be able to detect and
capture the compensation mistakes that are done by the patients.
Hence, the scope of this work is to provide a gesture recogni-
tion solution to be used in virtual rehabilitation applications for
children with cerebral palsy. The contributions are as follows.

• We propose two alternative methods, called universal neg-
ative model and universal positive model, which enable the
detection of non-gesture patterns by producing an adaptive
threshold value.

• We examine the problem of detecting small mistakes made
by patients to compensate for their lack of ability, control,
and strength, and devise a new approach to enhance the
gesture recognition accuracy in such cases.

The rest of the paper is organized as follows. Section 2
presents background and related work on gesture recognition
and occupational therapy. Section 3 describes the proposed
framework. Section 4 focuses on detecting non-gesture pat-
terns. Section 5 is about detection of compensation mistakes.
Section 6 presents the experimental setup and results. Finally,
Section 7 concludes and provides possible future research di-
rections.

2. Background and Related Work

Visual recognition tasks such as object and scene recogni-
tion [3], text recognition [4], and video recognition [5] have
received significant attention in the computer vision and ma-
chine learning literature. In this section, we eloborate on the
related work on gesture recognition and occupational therapy
exercises, specifically for CP.

2.1. Gesture Recognition

Gesture recognition is concerned with capturing and iden-
tifying the motions of human body parts. Gestures may in-
clude hand, arm, head and/or body motions. The applications of
gesture recognition include medical rehabilitation (e.g., phys-
iotherapy, occupational therapy) [6, 7, 8, 9], human activity
recognition [10, 11, 12, 13], sign language recognition [14],
virtual reality, forensic identification, and lie detection [15, 16].
Support Vector Machines (SVMs) [17], Dynamic Time Warp-
ing (DTW) [18, 19, 20], Adaboost, and Hidden Markov Mod-
els (HMMs) [21] are the most common approaches for gesture
recognition applications [22, 23].

Regarding SVMs, it should be pointed out that, regular
SVMs are capable of classifying a total of two classes, causing
the researchers to use multiclass SVMs when more than two
gestures are present in the vocabulary. The approaches that use

SVMs perform gesture recognition by classifying single frame
gestures or poses, not temporal data [24]. Biswas et al. [25]
use multiclass SVMs together with Kinect where the gestures
are classified using only single frames and histograms of depth
values in that frame. A similar research [26] also makes use of
single frames when recognizing gestures by SVM.

DTW is another method that gives successful results in ges-
ture recognition. The approach of Sempena et al. [27] is one
example of DTW used with depth data for gesture recognition.
They achieve a high success rate. However, they mainly used
the method for recognizing repetitive and simple human activ-
ities like running and waving. Hu et al. [28] use the data from
the Kinect sensor for real-time human movement retrieval and
assessment. They use nonlinear time warping to retrieve video
segments similar to the query performed by the user so that the
user learns according to the selected video samples for acting
correctly.

Some notable studies focus on hand gesture recognition us-
ing depth cameras. Yao and Fuo [29] propose a contour-based
approach using the Kinect sensor mainly for human-computer
interaction. Zhang et al. [30] utilize RGB and depth data from
the Kinect sensor for one-shot learning gesture recognition us-
ing a Bag-of-Manifold-Words approach. Wang et al. [31] pro-
pose a superpixel-based hand gesture recognition system with
the Kinect sensor that uses a superpixel earth mover’s distance
metric to measure the dissimilarity between hand gestures. Ren
et al. [32] propose a part-based hand gesture recognition sys-
tem using the Kinect sensor and a distance metric, Finger-Earth
Mover’s Distance (FEMD), to measure the dissimilarity be-
tween hand shapes.

We choose HMMs as the gesture recognition model in our
study. Before moving onto examining the method in detail,
the reasoning behind this choice needs to be explained. Com-
paring studies that use different approaches does not give ac-
curate information because of the differences in the datasets
used. Because of this, research that compares different algo-
rithms using the same set of gestures is inspected thoroughly.
There are effective HMM-based gesture recognition solutions
for Kinect time series joint data [24, 33, 34, 35]. HMMs are
also extensively studied in sign language recognition, which is
similar to exercise recognition in principle. Suarez and Mur-
phy [36] emphasize the high classification rate and prevalence
of HMM-based solutions in gesture recognition. Comparing the
HMM solutions with alternatives in sign language recognition
also pictures HMM as a successful approach.

Recurrent Neural Networks (RNN), in particular Long Short-
Term Memory Networks (LSTM), have also been recently pop-
ular in gesture recognition tasks. However, they require a large
amount of training data, which is not available for the gesture
recognition tasks and the detection of compensation mistakes
for the CP study described in this paper. HMMs have been
shown to perform better than LSTMs in settings with small
sample sizes [37].

There are various options when it comes to designing the
model for the HMM approach [38]. The most popular types
of HMMs are as follows:

• Ergodic model: A model in which it is possible to reach
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any state from any other state.

• Left-to-right model: A model in which a state can only be
reached from the preceding states. These types of models
inherently impose a temporal order and thus widely used
in speech and gesture recognition.

• Parallel left-to-right model: Similar to the Left-to-Right
model, except that it has several paths through the states.

Even though there are many pieces of research on human ac-
tivity and exercise recognition with HMM, to the best of our
knowledge, there is no research that concentrates on the recog-
nition of erroneous exercises practiced by the patients. Lu et
al. [39] propose an HMM-based method using Kinect RGB-
D camera. They extract the joint information using the depth
data provided by the camera and then generate histogram data
of joint locations (with the spherical coordinate system). They
tested their approach with their dataset and compared their per-
formance with those of other approaches using the MSR Action
Three-Dimensional (3D) dataset provided by Microsoft.

Yang et al. [33] focus on hand gesture recognition primar-
ily, and thus involves the segmentation of hand from RGB data
before HMM. They do not use depth cameras. The features
selected for recognition are hand position, velocity, size, and
shape. Another problem they have dealt with is the data align-
ing problem. It is mainly the time-variance problem and the
method they utilized is a simple aligning algorithm. It is as-
serted that with the use of various features together in recogni-
tion, they managed to increase the recognition performance.

Uddin et al. [34] propose an HMM-based approach that uses
histogram data. They use both silhouette and joint data as fea-
tures for different setups and compare them. It is pointed out
that their approach gives better results using joint-based fea-
tures. The type of their HMM is the Left-to-Right Model be-
cause of its temporal nature. The requirements in these studies
are similar to ours and their methodology provides a good base-
line approach for dealing with gesture recognition.

Granger et al. [40] compare the performances of tempo-
ral models for gesture recognition, namely Hybrid Neural
Network-Hidden Markov Models (NN-HMM) and Recurrent
Neural Networks. They conclude that Hybrid NN-HMM mod-
els produce better results than RNNs but training hybrid models
is difficult than training end-to-end neural networks.

2.2. Occupational Therapy

We focus on the recognition of occupational therapy exer-
cises. In simple terms, occupational therapy is a sub-branch
of physiotherapy, that focuses on the daily activities of the pa-
tients. Even though occupational therapy practitioners use sim-
ilar exercises for the rehabilitation of the patients, in terms of
context and the evaluation of these exercises, it has different
characteristics.

According to the practice framework of The American Oc-
cupational Therapy Association, occupational therapy aims to
enhance the daily lives of individuals and groups in homes,
schools, workplaces, and so on by utilizing the everyday life

activities in the therapy. Occupational therapists provide devel-
opment in body functions, body structures, motor skills, pro-
cessing, and social interaction skills by putting their knowledge
of the transactional relationship among the person and occupa-
tions the person is engaged and by creating an occupation-based
intervention plan with the aim of successful social participation.
Because occupational therapists aim the result of participation,
when needed, they manage and modify the environment and
objects within to increase the engagement. Habilitation, reha-
bilitation, the promotion of health and wellness for people with
needs related or unrelated to their disability are the objectives
of occupational therapy [41].

Rehabilitation exercises are one of the tools that are being
used by occupational therapy practitioners in various cases. The
target audience for occupational therapy includes all age groups
from children to seniors and many different types of disorders,
namely cerebral palsy, stroke, and Parkinson’s among many
others [42].

Taking advantage of the latest technologies is not uncommon
in occupational therapy. Especially in recent years, using virtual
therapy and/or augmented reality technologies in therapy ses-
sions gained attraction. Wentao et al. [43] use robotic therapy
practices for cerebral palsy patients. To train the virtual ther-
apist (robot), they use HMM as a pattern recognition method.
With the emergence of commercially available RGB-D cam-
eras, gesture recognition based on data obtained from RGB-D
cameras became one of the main focus areas [2].

Chang et al. [44] propose a Kinect-based upper limb reha-
bilitation system for CP patients. Based on their experimental
work, they argue that their system managed to increase the mo-
tivation of the test subjects and provided an improvement in the
success rate of the exercises. In another publication, Chang et
al. [45] test a similar system on young adults and get similar
successful results with regards to the rehabilitation of patients.
Pedraza et al. [46] describe a Kinect-based virtual reality sys-
tem and claims to improve patient mobility, aerobic capacity,
strength, coordination, and flexibility.

3. The Proposed Framework

We describe our baseline method for gesture/exercise recog-
nition. The focus of the design will be the unique characteristics
of the problem at hand and the resulting solution is intended to
have the ability to recognize and differentiate different upper-
body exercises. Various problems regarding feature selection,
model structure, scaling problem, and continuous observation
symbols are addressed in detail and the solutions are elaborated
in-depth. It is specifically emphasized in [47] that when the
recognition problem has untraditional aspects and the devised
system does not provide tailored solutions to these, experiments
can present diminished results in terms of the recognition accu-
racy. Fig. 1 depicts the framework of the proposed solution.

Our framework first takes the frames from the depth camera
as input and processes the skeleton data provided by the Soft-
ware Development Kit (SDK) of the depth camera. When the
starting position is detected, we record the data at each frame
as the gesture data until we detect the end position. Afterward,
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we process the gesture data using the universal negative model
to see if it is a non-gesture (see Section 4.1). If the gesture is
one of the gestures defined in the exercise set, we apply a two-
stage process, involving feature thresholding (see Section 5.1)
and applying negative models (see Section 5.2), to improve the
accuracy of determining correct and incorrect gestures; i.e, de-
tect compensation mistakes. Finally, if no mistake is detected,
we classify the gesture as a correct gesture.

Fig. 1. The framework of the proposed solution.

3.1. Experimental Setup for Cerebral Palsy
CP could be classified according to the way motor skills are

affected, which is an indication of the damaged part of the brain:
spastic, dyskinetic or ataxic. Another type of classification is
dictated by the location of impairment. Quadriplegia is when
both arms and legs are affected, diplegia defines the patients
with impairment at both legs, and hemiplegia is when one arm
and one leg on the same body side is affected, as a result of
brain damage that affects one hemisphere [48, 49].

Gross Motor Function Classification System (GMFCS) [50]
and Manual Ability Classification System (MACS) [51] are two
classification standards that are used to differentiate patients ac-
cording to the severity of impairment. We focused on children
that need occupational therapy exercises to improve their ability
to complete their daily activities and be able to perform the ex-
ercises correctly. Another requirement was the ability to stand
because otherwise, the tracking accuracy of the depth camera
reduces dramatically. As a result, children that are classified in
levels 1 or 2 of GMFCS and levels 2 or 3 of MACS are targeted
during our study.

The depth camera performs well when capturing the upper
extremities. The patients often need to sit, lay down or hold
onto something when performing the lower extremity exercises,
which reduces the camera’s accuracy. Because of these reasons,
the chosen exercises for this study are upper extremity func-
tional exercises including the movement of arms, specifically

shoulder and elbow joints. These exercise groups are consid-
ered important by the occupational therapist because the better
use of upper extremities affects the daily lives of the patient
greatly. We selected five main gestures from the group of upper
extremity functional exercises: shoulder flexion (180◦), shoul-
der abduction (90◦), shoulder external rotation, elbow flexion
and extension, and combined Proprioceptive Neuromuscular
Facilitation (PNF) pattern of all other four movements.

3.2. Feature Selection
Feature selection for the recognition task is one of the most

significant steps in gesture recognition. Some studies used var-
ious sets of features within the same system and the results are
drastically different from each other [34]. The first thing to de-
termine for feature selection is the data source for our approach.
Because Kinect RGB-D camera is used as hardware, we have
two different types of data: silhouette and skeleton (joint) data.

Silhouette data is widely used in activity recognition systems.
However, compared to joint data, the use of HMM with sil-
houette data is relatively uncommon. In [52], activity data is
classified using the nearest neighbor matching. The recogni-
tion features are body shape and gait position during walking
activity. Zhang et al. [53] utilize a Bag-of-3D points approach
for recognition. This is another example of non-HMM gesture
recognition. Bobick et al. [54] propose a successful recognition
approach that uses modified silhouette data with a non-HMM
method. As stated before, the research in [34] uses silhouette
with HMM but the skeleton data shows up to 84% performance
gain. Hence, it can be concluded that the silhouette data is not
suitable for use with HMMs whereas other approaches give bet-
ter results. A further inspection makes it evident that silhouette
data are generally used for daily activity recognition instead of
gestures like rehabilitation exercises. These findings suggest
that the use of joint data is more suitable for our problem.

MS Kinect provides joint data in 3D space. Xia et al. [39] ex-
amine various approaches on gesture recognition utilizing joint
data. It is possible to utilize joint locations, joint motions and/or
joint angles as features. Campbell et al. [55] examine the ad-
vantage and disadvantages of each type of joint data. They fo-
cused on the features’ shift-invariance and rotation-invariance
properties. It is argued that when joint locations are used, the
approach becomes vulnerable to expected coordination shifts in
3D space and the rotations of the subjects. When joint angles
are used, the system becomes shift/coordinate-invariant, how-
ever, it is still affected by rotations in space. Thus, they propose
to use joint motion (i.e., derivative of location or angle) as a
shift-invariant and rotation-invariant feature set. However, one
disadvantage of using derivatives is that it depicts the same ges-
tures performed at different speeds as different gestures.

Coordinate shifts are important in our problem because the
position of the subject relative to the camera is not always the
same. The body scales of patients are different. This makes
it appropriate to choose a shift-invariant feature set. However,
rotation-invariance is not needed in this case because the sub-
ject directly faces the camera or stands perpendicular to it de-
pending on the gesture during training and recognition phases.
Because of these reasons, using joint angles has no disadvan-
tages with regards to shift and rotational variance in our case
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and it provides the Viterbi algorithm with time-warping behav-
ior [55].

Another requirement for a joint angle feature is that it is im-
portant for the evaluation of occupational therapy exercises be-
cause the correctness of each gesture is generally decided by the
joint angles [42]. As a result, we chose different joint angles or
their 2D projections for each different gesture in our dataset.
For each gesture, the requirements and standards for the ges-
ture are taken into account and the joints that should be tracked
for the gesture to be classified accordingly are determined by
the occupational therapy researchers.

We choose a common set of features for all upper extremity
gestures based on the expertise of an occupational therapist and
the success of the depth camera on determining various joint
angles. However, it is necessary to determine or limit the num-
ber of features (i.e., joint angles). To determine the number of
features, a series of tests are conducted. In this stage, gestures
that are not defined in our exercise set or incorrect exercises are
not taken into consideration. We conduct the tests as multi-class
classification problems where we try to distinguish each of the
five exercises from each other. Three different subjects perform
each exercise a total of 20 times.

According to the results in Fig. 2, among all joint angles, us-
ing four to six features gives F1 scores above 0.91, with four
features reaching the highest accuracy of a 0.96 F1 score. By
using this range as a guideline for the number of features (i.e.,
joint angles), and by using the recommendations of the occupa-
tional therapists regarding potential compensation mistakes, we
finalize the sets of features for each exercise as follows.

Fig. 2. The graph depicting the F1 score for different feature counts.

• Shoulder flexion: the shoulder angle on the xz-plane, the
shoulder angle on the yz-plane, the elbow angle on the xz-
plane, the elbow angle on the yz-plane, and the body angle
on yz-plane (cf. Fig. 3).

• Shoulder abduction: the shoulder angle on the xy-plane,
the shoulder angle on the xz-plane, the elbow angle on the
xy-plane, the elbow angle on the xz-plane, the head an-
gle on the xy-plane, and the body angle on the xy-plane
(cf. Fig. 4).

• External rotation: the shoulder angle on the xy-plane, the
shoulder angle on the xz-plane, the elbow angle on the xy-
plane, the elbow angle on the xz-plane (cf. Fig. 5).

Fig. 3. Shoulder flexion: starting position (1), the arm is raised 180◦ from
the front while keeping the elbow angle as 180◦ (2), and the end position(3).

Fig. 4. Shoulder abduction: starting position (1), the arm is raised 90◦ from
the side while keeping the elbow angle as 180◦ (2), and the end position (3).

Fig. 5. External rotation: starting position (1), the arm is raised from the
side while keeping the elbow and shoulder angles as 90◦ (2), the arm is
rotated using only the shoulder joint (3), the arm is rotated back (4), and
end position (5).

Fig. 6. Elbow flexion and extension: starting position (1), the arm is raised
to the side while keeping the elbow straight and the shoulder angle as 90◦
(2), the elbow is flexed to 60◦ (3), the elbow is extended back (4), and the
end position (5).

Fig. 7. Combined PNF pattern: starting position (1), the arm is raised di-
agonally while keeping the diagonal movement line straight (2), and back
to the end position (3).

• Elbow flexion-extension: the shoulder angle on the xy-
plane, the shoulder angle on the xz-plane, the elbow angle
on the xy-plane, the elbow angle on the xz-plane, the head
angle on the xy-plane, and the body angle on the xy-plane
(cf. Fig. 6).

• Combined PNF pattern: the shoulder angle on the xy-



6 Mehmet Faruk Ongun et al. / Journal of Visual Communication and Image Representation (2020)

plane, the shoulder angle on the xz-plane, the elbow angle
on the xy-plane, the elbow angle on the xz-plane, the head
angle on the xy-plane, and the body angle on the yz-plane
(cf. Fig. 7).

3.3. Dataset

We propose an exercise recognition system that specifically
targets the requirements of occupational therapists. In our
setup, when a cerebral palsy patient is required to perform a
specific exercise, the system should be able to

• eliminate unrelated gestures performed by the subject dur-
ing the exercise session and do not count them as correct
or incorrect, and

• recognize the compensation mistakes of that specific ges-
ture and count them as incorrect exercises.

The goal is not to distinguish exercises from each other, but
to distinguish the compensation mistakes for the specified exer-
cise. Hence, each time the patients are directed to perform one
predetermined exercise and during the session all the gestures
performed are either: non-gestures (gestures that are defined in
our exercise set but not the predetermined exercise are also clas-
sified as non-gestures), the correct version of the predetermined
exercise, or incorrect version of the predetermined exercise.

The training and test data were collected from six patients.
The exercises include Shoulder Flexion, Shoulder Abduction,
External Rotation, Elbow Flexion and Extension, and combined
PNF pattern. The numbers of correct and incorrect gestures per-
formed for each exercise by each patient in the training set are
30 and 150, respectively. Thus, the total number of correct and
incorrect gestures for each exercise is 180 and 900, respectively.
The number of incorrect exercises is much higher because there
are five different compensation mistakes defined for each exer-
cise. The total number of nongestures in the training set is 1120,
which is the number of motions captured during a data collec-
tion session with five other subjects. The number of correct and
incorrect gestures performed for each exercise by each patient
in the test set are both 5, resulting in a total of 30 correct and
30 incorrect gestures for each exercise. The number of nonges-
tures for each patient in the test set is 10, resulting in a total of
60 nongestures. The correctness of each gesture is determined
by the supervising occupational therapists.

The patients who performed the exercises are chosen so that
they can perform the exercises without direct physical assis-
tance. In this way, Kinect provides stable data and abrupt move-
ment changes like stopping, accelerating or decelerating during
the exercise are prevented. When recording a gesture, we fix
the number of frames by adjusting the sampling rate. In other
words, we use the same number of frames for each gesture re-
gardless of the duration of the gesture. We reduced the sampling
rate to the lowest degree that the accuracy is not disturbed. This
process positively affects the computational performance of the
recognition algorithm.

3.4. Hidden Markov Model Structure

HMMs have different types and the structure of each type
dictates the recognition property of the model devised. Our
choice of model type is a Left-to-Right model. It is already
stated that the inherent temporal structure of the Left-to-Right
model makes it useful for recognition problems that have tem-
poral data like gesture and speech recognition.

The choice of model type is not sufficient to define our model
structure. Another point that needs addressing is the number of
states. One should consider the properties of the recognition
problem concerned and determine the state count accordingly.
However, one issue to pay attention to is that when the training
data size is constant, increasing the state count result in declined
performance [56]. Hence, one needs to find the minimum count
of states to represent the gesture. Although the states in HMM
are not a direct representation of frames or time intervals of the
gesture, they tend to produce observation symbols showing sim-
ilar feature properties. When we analyze our gesture set, each
gesture starts with a “resting pose” [55], then the related upper-
limb reaches a starting point and reaches the final pose before
taking the same route back to resting pose. This process implies
four stages of gesture (excluding resting poses at the beginning
and end): rest-to-start, start-to-final, final-to-start, and start-to-
rest. Thus, we designed our model with four states between one
start and one end states, a total of six states. The difference be-
tween start and end states is that they have no self-transitions
(see Fig. 8).

Fig. 8. The proposed HMM structure.

As it is seen from Fig. 8, each state can “skip” the state
that supersedes it. These transitions are added to account for
possible missing parts/frames of the gesture. The research
shows that HMM can learn to skip several states at once, result-
ing in gestures with 4-5-6 state modeled using a 6-state struc-
ture [55]. The initial state transition probabilities are uniformly
distributed. Another parameter in the design of the HMM is
how the observations are modeled. We use a Gaussian autore-
gressive model to characterize the joint angles as continuous
observations [56].

4. Detection of Non-gesture Patterns

HMM generates the recognition result by comparing the like-
lihoods of all trained models and selecting the one with the
highest value. This approach works in contexts that all the in-
put data is known to be within the predetermined set of gestures.
However, when it is possible to have inputs that are not related
to any gesture trained, like studies in [57], [54] and [58], HMM
does not function as intended. Even though the input is not
in any way related to the dataset, HMM picks the model with
the highest probability and naturally, this phenomenon causes
problems.
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The problem we are dealing with also has a similar context.
Despite our predetermined dataset with both correct and incor-
rect gesture performances, it is always expected from a subject
to perform an entirely unrelated gesture. Subject walking in/out
of Kinect’s field of view, resting between exercises, therapists
interventions are examples of such situations. Thus, we need to
propose solutions to overcome this limitation of a conventional
classification model.

Specifying a constant threshold value does not work because
the likelihoods of the models fluctuate altogether depending on
the input properties, the length of the observation sequence be-
ing one of them [54, 35]. Therefore, a mechanism should be
devised that would produce an adaptive threshold value. This
objective could be achieved by other models that generate a
threshold value based on the input gesture. The ideal thresh-
old value for a correct gesture would be less than that of the
corresponding model and would be greater than that of all other
models when a non-gesture is given as input. We have two solu-
tions that could provide us with adaptive threshold values that
are close to the ideal: universal negative model and universal
positive model. We also compared the performance of our two
methods with the performance of the threshold model proposed
by Lee and Kim [59].

4.1. Universal Negative Model

The universal negative model is the concept of having a
trained weak hidden Markov model that encapsulates all ges-
tures that are not included in our dataset. Hereby, it is expected
that when the observation sequence is a non-gesture, the model
with the maximum likelihood would be the universal negative
model. It can also be considered as another model compet-
ing with our gesture models with the distinction of representing
multiple gestures.

During the training session, we directed a total of five sub-
jects to perform various random gestures in front of Kinect for
eight hours. The gestures included possible gestures that can
be performed in the subjects’ daily lives and possible recogni-
tion scenarios. The length, speed and number of joints used
in gestures were not restricted during the training session. The
only restriction was that none of the gestures should be similar
to the ones we have in our dataset. A total of 1120 nongesture
motions were recorded for the training of the universal negative
model. Only one model is used for all of the correct gestures in
our dataset.

The model designed for the universal negative model can be
seen in Fig. 9. We used a parallel left-to-right model [56]. It
is essentially a left-to-right model that obeys all state transi-
tion probabilities of linear left-to-right models. Its difference is
that it is a cross-coupled connection of two parallel left-to-right
models. We decided to use such a model because the gestures in
the training set do not have well-defined properties, so it was not
possible to generate a linear left-to-right model that fits the gen-
eral properties. More importantly; because we used many dif-
ferent gestures for the training of this model, even though none
of them was part of our original exercise set, the model was
generating high likelihoods even for defined gestures. Thus, we
needed a more fitting model and the parallel left-to-right struc-

ture we implemented with more hidden states delivered the de-
sired results. The intuition behind the choice of a parallel model
is to be able to model the movements of the left and right arms
separately.

Fig. 9. The structure of the universal negative model.

4.2. Universal Positive Model
Each universal positive model is a model for the superset of

all gestures for each exercise in the dataset. When the input
belongs to the set of correct or faulty gestures for a specific
exercise, this model is expected to generate a likelihood value
that is less than that of the corresponding model for that exer-
cise. For this approach to work successfully, the model should
be loosely fitted. In this way, the model is more likely to fit bet-
ter to the non-gesture than the models for the correct or faulty
gestures when the given input is a non-gesture. However, if it
behaves exactly like an average model, this approach can gener-
ate values that are always less than the likelihood produced for
some of the gestures (correct or faulty) in our dataset. Because
the universal positive model uses gesture examples for training,
we used the same type of HMM structure that we used for our
defined gestures (see Fig. 8).

4.3. Threshold Model
The threshold model proposed by Lee and Kim [59] is an-

other HMM-based technique for the detection of non-gestures
(see Fig. 10). Its purpose is similar to that of the universal
positive model. It is a weak model for all trained gestures in
the dataset. The difference of the threshold model with our
universal models is that it is not a trained model, but rather a
“generated” model. We used the same training samples for ges-
tures in the dataset at once to train a universal positive model.
However, Lee and Kim used part of the training data to train
their threshold model. They first trained their gesture models
separately and then combined the hidden states of each ges-
ture model, with their self-transition and observation-transition
probabilities fixed, in the threshold model. To provide complete
transitivity, it is designed as an ergodic model. It would be dis-
advantageous to use an ergodic model because it does not have
the temporality that the left-to-right models have. This disad-
vantage is critical because it is what makes this approach works
on theory. Because the threshold model will have all the states
of the corresponding model, it will also be able to match the
positive input gesture. However, the specifically-trained model
will have a better fit because it represents the temporal rela-
tions between the states better whereas the threshold model is
ergodic.
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Fig. 10. The structure of the threshold model, based on [59].

One potential weakness of the threshold model is that natu-
rally it has a large number of states and this causes significant
performance loss in terms of processing speed. To overcome
this weakness, they reduced the number of states based on rel-
ative entropy, which has been used as a measure of the dis-
tance between two probability distributions [59, 60]. Because
we do not need to differentiate gestures from each other and we
aim to capture the mistakes in each gesture, we do not have a
large number of models in each run. Hence, we did not need to
carry out such a reduction in the implementation of the thresh-
old model.

We expect that the threshold model having the same states as
the exercise model will generate a reasonable likelihood when
the input is a gesture. For the threshold model to detect a
nongesture, it must generate a likelihood greater than those of
the specific gesture models. This is achieved in the original
model by using the combination of a large number of states.
However, the threshold model that we use includes only a small
number of states obtained from the models of the five exercises
and may not be as effective. Hence, the likelihood it generates
for a nongesture may be less than that of a particular exercise
model and it will be unable to classify nongestures correctly.

4.4. Comparison

In Table 1, we observe that the universal negative and thresh-
old models have similar performances overall; the universal
negative model having a higher F1 score in some exercises
while the threshold model having higher scores in others. The
precision and recall values are also similar, so it can be con-
cluded that these methods perform similarly when generating
an adaptive threshold value. However, it should be noted that
the performance of the universal negative model depends on the
training set.

The universal positive model performs poorly compared to
the other two approaches. While the precision score of the uni-
versal positive model is lower than those of the universal neg-
ative and threshold models, the real difference is in the recall
scores. One can observe that the number of false-negatives is
much higher in the universal positive model for each gesture,
hence, it leads to a significantly low recall value. This could
be explained by the universal positive model having a temporal
structure like the actual gesture models. One thing that makes
the threshold model advantageous is its ergodic structure, which

Table 1. The comparison of the universal negative, the universal positive,
and the threshold models.

Model TP FN TN FP Precision Recall F1 Score

Sh
ou

ld
er

fle
xi

on

Univ. neg. 51 9 58 2 0.9623 0.8500 0.9027

Univ. pos. 41 19 52 8 0.8367 0.6833 0.7523

Threshold 53 7 56 4 0.9298 0.8833 0.9060

Sh
ou

ld
er

ab
du

ct
io

n Univ. neg. 54 6 56 4 0.9310 0.9000 0.9153

Univ. pos. 45 15 55 5 0.9000 0.7500 0.8182

Threshold 53 7 58 2 0.9636 0.8833 0.9217

E
xt

er
na

l
ro

ta
tio

n

Univ. neg. 59 1 60 0 1.0000 0.9833 0.9916

Univ. pos. 39 21 49 11 0.7800 0.6500 0.7091

Threshold 53 7 57 3 0.9464 0.8833 0.9138

E
lb

ow
fle

xi
on

an
d

ex
te

ns
io

n Univ. neg. 60 0 60 0 1.0000 1.0000 1.0000

Univ. pos. 47 13 54 6 0.8868 0.7833 0.8319

Threshold 56 4 56 4 0.9333 0.9333 0.9333

C
om

bi
ne

d
PN

F
pa

tte
rn Univ. neg. 49 11 52 8 0.8596 0.8167 0.8376

Univ. pos. 43 17 51 9 0.8269 0.7167 0.7679

Threshold 55 5 52 8 0.8730 0.9167 0.8943

C
um

ul
at

iv
e Univ. neg. 273 27 286 14 0.9512 0.9100 0.9302

Univ. pos. 215 85 261 39 0.8465 0.7167 0.7762

Threshold 270 30 279 21 0.9278 0.9000 0.9137

makes the gesture models have high likelihoods for correct ges-
tures. As the universal positive model has a temporal structure
(left-to-right model), it sometimes generates higher probabili-
ties for defined gestures than the corresponding gesture models,
and as a result, produces false negatives.

5. Detection of Compensation Mistakes

Unlike most approaches that focus on gesture recognition,
our purpose is not to differentiate multiple gestures from each
other, but rather differentiate between correct and incorrect ver-
sions of each specific gesture. Thus, we have several types of
“incorrect” gestures for each gesture, which are versions of the
same gesture performed in an undesired way. These mistakes
are determined and added to our dataset according to the guid-
ance of the therapists. Hence, this study aims to differentiate
each gesture from their “incorrect” versions.

Because of the nature of this problem, traditional gesture
recognition approaches may not perform well. This prob-
lem has some peculiarities and the traditional approaches per-
form relatively poor in similar scenarios [47]. A more tailored
method needs to be engineered to achieve improved accuracy in
differentiating these correct and incorrect gestures. To this end,
we propose a two-stage method, which include feature thresh-
olding and negative models.
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5.1. Feature Thresholding
The feature set for each gesture is determined with the help

of extensive testing under the supervision of occupational thera-
pists. The features that would define the gesture in the best way
possible and provide the best differentiation are chosen. How-
ever, the goal is to differentiate each gesture from its incorrect
versions, not from other gestures. As a result, another issue we
focus on when determining the features is the characteristics of
these incorrect gestures.

For each gesture, the most common and most undesired mis-
takes were categorized by the occupational therapists and the
joint angles that best define these mistakes were identified. In
this way, the joint angles and the critical values that should or
should not be exceeded by the patient are determined for every
incorrect gesture version.

The number of features that we use is restricted to be between
four and six. The four features (two shoulder angles and two
elbow angles) are often necessary and sufficient to define each
gesture. Nevertheless, when the type of compensation moves
and the resulting incorrect gestures are examined, extra features
need to be added.

Because CP patients often suffer from muscle stiffness, they
try to compensate for this stiffness by activating (flexing and
extending) other muscles in their bodies. Focusing on upper
extremity exercises, the compensation tendencies and common
mistakes are defined by the therapists as a result of perform-
ing each exercise with CP patients. When performing upper
extremity exercises, three main compensation techniques come
up: bending the body forward or backward, bending the neck to
activate the upper shoulder muscles, and bending the elbow for
shoulder exercises. Hence, additional to the elbow and shoulder
angles, the body and head angles are also added to the feature
set of each exercise so that we can catch the incorrect gestures.

There are two types of restrictions that define a gesture as an
incorrect one apart from being classified as a non-gesture:

• Type 1: Moving a joint that should stay fixed more than
a specified value. For instance, when performing the
shoulder flexion exercise; the elbow angle on the xz-plane
should stay between 15◦ and -15◦ and the shoulder angle
on the xz-plane between 75◦ and 105◦. These two move-
ments, i.e., moving the shoulder forward or bending the
elbow, take the tension from the shoulder muscles that
should complete the exercise and make the exercise in-
effective. Similar restrictions also exist for the body and
head angles on different exercises.

• Type 2: Not reaching or exceeding a target angle. For the
shoulder flexion exercise, the shoulder angle on the yz-
plane should reach a value between 75◦ and 105◦ at its
peak point, stay there for a while and then decrease. The
real target value is 90◦ where the 15◦ tolerance value is de-
termined considering the inaccuracy of the depth camera.

5.2. Negative Models
Negative models are new models that represent incorrect ges-

tures. They are conceptually similar to the Universal Negative
Model, but the training sets for these models include specific

gestures. These models are trained using determined compen-
sation mistakes as the training set and using the same features
like the correct gesture model. We experiment with two types
of negative models: fault-specific negative model and gesture-
specific negative model.

5.2.1. Fault-specific Negative Model
The fault-specific gesture model is the basic application of

the negative model concept. In this approach, a separate model
is trained for each different compensation mistake. The down-
side of this is that the computational cost is increased as the
number of types of mistakes increases.

We compared the fault-specific negative model to the base-
line solution that does not use any specific negative model other
than the universal negative model. The only possible scenario
for a baseline solution to classify a compensation mistake is by
classifying it as a non-gesture. Hence, the sum of false nega-
tives and true negatives for each gesture equals to non-gesture
count.

The results presented in Table 2 show the superiority of the
fault-specific negative model in terms of accuracy. Since the
baseline solution, which is similar to gesture recognition so-
lutions that are used in generic exercise recognition problems,
is not designed specifically to solve the problem of small mis-
takes, such a difference in accuracy is expected. One can see
that the baseline solution performs better in terms of recall
value. This is because the baseline solution classifies most of
the incorrect gestures as correct gestures and false positives are
not taken into account when calculating recall. However, the
objective of the fault specific approach is to reduce false posi-
tives, and in that case, the precision value is very important for
comparison.

5.2.2. Gesture-specific Negative Model
The gesture-specific negative model encapsulates all types

of mistakes related to one exercise in a single model for each
different exercise. The reason we applied this approach is to
increase the processing speed. Even though we did not have a
large number of mistakes to observe a significant performance
gain in our tests, such a solution could be needed for different
exercises or patient types.

The gesture-specific negative model is compared to the base-
line solution in the same way as the fault-specific negative
model (see Table 2). The results show us that the gesture-
specific negative model performs better than the baseline so-
lution in terms of precision and F1 Score. The baseline solution
has a better recall value overall, but as discussed in previous
sections, the recall value is not critical in this case.

5.2.3. Comparison
When we compare the results of these two approaches, we

see that the fault-specific negative model generates better results
than the gesture-specific negative model. This is because the
fault-specific negative model learns a separate model for each
specific type of mistake for each gesture. However, the gesture-
specific model has different gestures in its training set, hence,
it is not as successful as the fault-specific model for learning



10 Mehmet Faruk Ongun et al. / Journal of Visual Communication and Image Representation (2020)

Table 2. The comparison of the gesture-specific negative model, the fault-
specific negative model, and the baseline solution.

Model TP FN TN FP Precision Recall F1 Score

Sh
ou

ld
er

fle
xi

on

Baseline 24 6 9 21 0.5333 0.8000 0.6400

Gesture-specific 22 8 19 11 0.6667 0.7333 0.6984

Fault-specific 23 7 22 8 0.7419 0.7667 0.7541

Sh
ou

ld
er

ab
du

ct
io

n Baseline 25 5 4 26 0.4902 0.8333 0.6173

Gesture-spec. 23 7 18 12 0.6571 0.7667 0.7077

Fault-specific 25 5 21 9 0.7353 0.8333 0.7813

E
xt

er
na

l
ro

ta
tio

n

Baseline 29 1 4 26 0.5273 0.9667 0.6824

Gesture-specific 25 5 20 10 0.7143 0.8333 0.7692

Fault-specific 27 3 26 4 0.8710 0.9000 0.8852

E
lb

ow
fle

xi
on

an
d

ex
te

ns
io

n Baseline 26 4 2 28 0.4815 0.8667 0.6190

Gesture-specific 21 9 19 11 0.6563 0.7000 0.6774

Fault-specific 25 5 24 6 0.8065 0.8333 0.8197

C
om

bi
ne

d
PN

F
pa

tte
rn Baseline 27 3 10 20 0.5745 0.9000 0.7013

Gesture-spec. 22 8 23 7 0.7586 0.7333 0.7458

Fault-specific 24 6 22 8 0.7500 0.8000 0.7742

C
um

ul
at

iv
e Baseline 131 19 29 121 0.5198 0.8733 0.6517

Gesture-specific 113 37 99 51 0.6890 0.7533 0.7197

Fault-specific 124 26 115 35 0.7799 0.8267 0.8026

the individual mistakes for each gesture. The rationale for the
usage of the gesture-specific approach was to reduce the com-
putational burden. While only one extra model is calculated for
the gesture-specific model, the fault-specific model requires as
many models as the number of defined mistakes.

6. Evaluation and Results

We proposed gesture recognition methods to provide a better
solution to the CP gesture recognition problem. In Sections 4
and 5, we compared our proposed solutions to state-of-the-art
approaches as baseline solutions. In this section, we provide the
overall results of our proposed solution and present the results
of our solution for occupational therapy exercises.

We describe the method we used when conducting the tests
as follows. During our study, constant testing with occupational
therapists and CP patients took place. Our target users were
hemiplegic CP patients that are classified in levels 1 or 2 of
GMFCS and levels 2 or 3 of MACS standards. Six children
with CP between the ages of 7 and 12 were chosen for perform-
ing the exercises. A total of six detailed testing sessions were
completed in 24 weeks. Each session lasted 45-60 minutes. The
results presented in Sections 4 and 5 belong to the last session.
Previous sessions are performed for different reasons: restrict-
ing the number of features, selecting features, defining compen-
sation mistakes, tracking the children’s progress, and so on.

By collecting the data for all six sessions, we can observe
the patients’ performance and evaluate the overall benefits of
our solution. Nevertheless, it should be noted that the results
obtained here do not prove that the improvements to their per-
formance are solely the result of using our solution. During this
phase, these children were continuing their conventional reha-
bilitation programs and were having exercise sections in related
facilities. Restricting their rehabilitation program to our solu-
tion is not possible and creating control groups having similar
levels of complications is demanding medically and requires
special permissions.

We use the success rate to evaluate children’s progress. It
is simply the ratio of correctly performed exercises to all ges-
tures performed by the children. A parallel study conducted
by occupational therapists used a different method to measure
the progress of children. Dynamic Occupational Therapy Cog-
nitive Assessment for Children (DOTCA-Ch) is used to assess
the children. All data were collected strictly anonymously by an
experienced therapist who was blind to the treatment protocol.
DOTCA-Ch also evaluates the child’s cognitive state.

The pre-intervention scores of DOTCA-Ch were 3.81 ± 2.26
in orientation, 5.27 ± 2.09 in motor control and 15.72 ± 8.51 in
visuomotor construction. After the last session was completed,
the orientation score was improved to 5.09 ± 2.15, the motor
control was at 6.09 ± 1.77 and the visuomotor construction was
18.54 ± 7.77. These measures show a significant statistical dif-
ference in performance. It should be noted that cognitive abili-
ties are also taken into account.

Fig. 11 shows the improvement in children’s success rates
when performing the determined five exercises. The presented
data are the cumulative result of all children. A gradual increase
is observed for all five exercises.

7. Conclusions and Future Work

We propose a new approach that makes it possible to use ges-
ture recognition for occupational therapy exercises with chil-
dren with cerebral palsy. To differentiate gestures that are not
defined exercises, which is an important problem in our case
considering the cognitive impairments of the children, we pro-
pose an alternative method called the universal negative model
and universal positive model. The purpose of these methods
is to generate an adaptive threshold model. We were able to
get results comparable to a successful method in the literature.
We also propose various solutions for capturing the exercise
mistakes done by the patients to compensate for their lack of
muscle control and muscle strength. These incorrect exercises
generally resemble the original exercise and thus classified as
a correct exercise by traditional gesture recognition algorithms.
With the help of our new approach, it is possible to get reason-
able results compared to the conventional approach.

Because this is not a problem dealt with by previous stud-
ies, it is not possible to make a direct comparison. Other ap-
proaches focus on other aspects of gesture recognition whereas
we focus on capturing compensation mistakes. However, the
effects of our approach on children’s motor control and orien-
tation progress are examined and a significant improvement is
observed.
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(a) (b)

(c) (d)

(e)

Fig. 11. The success rate graph for (a) shoulder flexion, (b) shoulder ab-
duction, (c) external rotation, (d) elbow flexion and extension, and (e) com-
bined PNF pattern.

A very basic method to separate the time frames of each ges-
ture from one another is implemented. We used the starting and
ending poses of each gesture for this purpose. As future work,
a sliding-window based method could be used. Recent devel-
opments in deep learning methods (e.g., [61],[62]) could also
be utilized. Adapting the solutions we proposed to deep neural
network approaches could be a good research direction in the
future.
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