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Abstract

Generalizability of algorithms for binary cancer vs. no cancer classification is unknown for clinically more significant multi-class
scenarios where intermediate categories have different risk factors and treatment strategies. We present a system that classifies
whole slide images (WSI) of breast biopsies into five diagnostic categories. First, a saliency detector that uses a pipeline of four
fully convolutional networks, trained with samples from records of pathologists’ screenings, performs multi-scale localization
of diagnostically relevant regions of interest in WSI. Then, a convolutional network, trained from consensus-derived reference
samples, classifies image patches as non-proliferative or proliferative changes, atypical ductal hyperplasia, ductal carcinoma in situ,
and invasive carcinoma. Finally, the saliency and classification maps are fused for pixel-wise labeling and slide-level categorization.
Experiments using 240 WSI showed that both saliency detector and classifier networks performed better than competing algorithms,
and the five-class slide-level accuracy of 55% was not statistically different from the predictions of 45 pathologists. We also present
example visualizations of the learned representations for breast cancer diagnosis.

Keywords: Digital pathology, breast histopathology, whole slide imaging, region of interest detection, saliency detection,
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1. Introduction

Breast cancer is the most widespread form of cancer among
women [1]. There can be many types of deviations from a
healthy tissue, where some are considered benign and some
are indicators for cancer. The detection and categorization of
these deviations are not always straightforward even for experi-
enced pathologists. Histopathological image analysis promises
to play an important role in helping the pathologists by indi-
cating potential disease locations and by aiding their interpreta-
tion.

There is a large body of work on the classification of
histopathological images. Most use generic color- or texture-
based features and nuclear architectural features with classifiers
such as support vector machines (SVM) or random forests (RF)
[1, 2]. The most common scenario is to use manually cropped
regions of interest (ROI) that have no ambiguity regarding their
diagnoses. Even though these approaches can provide insights
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about which features are useful for classification, it is very diffi-
cult to design and tune them with respect to the extensive struc-
tural diversity found in whole slide images (WSI) that are ob-
tained by digitization of entire glass slides [3]. In particular
for breast pathology, the variations in the tissue structure that
range from non-proliferative changes to proliferative ones such
as usual ductal hyperplasia (UDH), atypical ductal hyperplasia
(ADH), ductal carcinoma in situ (DCIS), and invasive ductal
carcinoma (IDC) provide challenges to both experienced and
novice pathologists [4]. Furthermore, subtle differences among
these categories lead to different clinical actions, and the fol-
lowing treatments with different combinations of surgery, ra-
diation, and hormonal therapy make the diagnostic errors ex-
tremely significant in terms of both financial and emotional
consequences [5, 4].

Unfortunately, the generalizability of the state-of-the-art
image features and classifiers that have been designed and eval-
uated for the more restricted, often binary, settings is currently
unknown for whole slides that contain multiple areas with dif-
ferent structural deviations that correspond to different levels of
diagnostic importance. Even though the final diagnosis is de-
cided based on the most severe one of these areas, existence
of different levels of structural anomalies in the same slide of-
ten distracts pathologists as shown in eye tracking studies [6].
Thus, automatic detection of diagnostically relevant ROIs can
decrease the pathologists’ workloads while also assuring that
no critical region is overlooked during diagnosis. Such solu-
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Figure 1: Overview of the proposed framework. Salient regions are detected
on the input WSI by feed-forward processing of FCN-1. Each connected com-
ponent that has a probability of being diagnostically relevant above a threshold
is zoomed in and passed to FCN-2. This process is repeated four times, and
the detected salient regions are processed by the classification CNN to obtain
the likelihood maps for five diagnostic classes. The detection results and the
classification results are fused to obtain the final slide-level diagnosis.

tions will also benefit computer aided diagnosis by eliminating
a significant amount of computation and lead to efficient use of
computational resources in more detailed WSI analysis.

In this paper, we study both the detection and the multi-
class classification of diagnostically relevant regions in whole
slide breast histopathology images using deep networks. Our
main contributions are threefold. First, we propose a saliency
detection framework for automatic localization of ROIs. Our
method uses four separate fully convolutional networks (FCN)
trained to imitate the actions of pathologists at different magni-
fications. Although selecting the right magnification is a com-
mon goal in the literature, we go beyond that motivation, and
use a data-driven feature learning approach that exploits the
recorded viewing behaviors of pathologists where zoom actions
are used to construct training samples. These networks progres-
sively eliminate irrelevant areas from lower to higher magnifi-
cations, and the combined result provides a saliency map for
the WSI. Second, we present another convolutional neural net-
work (CNN) for the identification of five diagnostic categories
of ductal proliferations (non-proliferative changes, proliferative
changes, ADH, DCIS, and IDC) in whole slides. We consider
saliency detection and classification of salient regions as two
separate but sequential applications where the proposed modu-
lar solutions can also be used in distinct applications. Further-
more, we fuse the outputs of ROI detection and classification
steps for slide-level diagnosis. Third, we visualize the result-
ing networks for better understanding of the learned models in
differentiating cancer categories.

An overview of the proposed approach is shown in Figure
1. The rest of the paper is organized as follows. Section 2
discusses the related work, Section 3 introduces the data set,
Section 4 describes the methodology for both ROI detection
and classification, Section 5 presents the experimental results,
and Section 6 summarizes the conclusions.

2. Related work

The related literature on WSI analysis resorted to restricted
classification settings. For example, Dundar et al. [7] used mul-
tiple instance learning for discrimination of benign cases from

actionable (ADH+DCIS) ones by using whole slides with man-
ually identified ROIs. Dong et al. [8] built a logistic regression
(LR) classifier for UDH versus DCIS classification where each
WSI was modeled with manually cut ROIs. Some approaches
to WSI analysis have focused on efficient applications of ex-
isting methods by using multi-resolution [9, 10, 11] and multi-
field-of-view [12] sliding windows. Even though exhaustive
window-based processing of WSIs is an alternative to manually
selected ROIs, tiling usually involves arbitrary splits of the im-
age and has the risk of distorting the context. Balazsi et al. [13]
tried to overcome the effect of fixed tiling by using color, tex-
ture and gradient histogram features extracted from superpixels
with RF classifiers for IDC versus normal classification. They
concluded that generic features were sufficient for detecting in-
vasive carcinoma but differentiating DCIS from IDC was still
a problem. We recently introduced a multi-instance multi-label
learning framework to study the uncertainty regarding the cor-
respondence between the pathologists’ slide-level annotations
and the candidate ROIs extracted from their viewing records
for weakly supervised learning using WSI [14].

As one of the rare studies on automatic ROI detection,
Bahlmann et al. [15] used color histograms of square patches
with linear SVMs for classification as relevant versus irrelevant.
Numerical results were given only for a small set of patches.
We developed a bag-of-words model using color and texture
features of image patches as well as superpixels with SVM and
LR classifiers trained using samples extracted from the logs of
pathologists’ image screenings for ROI detection [16, 17]. The
results of the proposed method are compared to the results of
this model in Section 5. Bejnordi et al. [18] classified superpix-
els at three scales with a large set of features and RF classifiers
for progressive elimination of irrelevant areas, and used graph-
based clustering of the resulting superpixels with a heuristic set
of rules to obtain the ROIs. However, evaluation was done on
manually annotated DCIS cases where ADH instances were ex-
cluded due to the difficulty of the problem.

Recent advances in computer vision have demonstrated that
feature learning approaches using deep networks can be more
successful than hand-crafted features. Such approaches have
found applications in histopathology as well. For example,
Cruz-Roa et al. [19] showed that a three-layer convolutional
neural network (CNN) that operated on 100×100 pixel patches
at 2.5× magnification was more successful than color, texture,
and graph-based features with an RF classifier in the detection
of IDC. Litjens et al. [20] used a deep network with 128 × 128
pixel patches at 5×magnification for the delineation of prostate
cancer. Janowczyk and Madabhushi [3] illustrated the use of
deep learning for several tasks including IDC detection using
32 × 32 pixel patches at 2.5× magnification. CNN-based cell
features were also shown to improve the accuracy of graph
hashing for histopathology image classification and retrieval in
[21]. Other popular applications where deep learning methods
achieved the top scores in competitions include mitosis detec-
tion [3] and metastatic breast cancer detection in lymph nodes
[20, 22]. The common characteristics that lead to the success of
deep learning in these applications are the suitability of finding
an appropriate magnification at which the object of interest and
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Table 1: Distribution of diagnostic classes among the 180 training and 60 test
slides.

Class Training Test
Non-proliferative changes only (NP) 8 5
Proliferative changes (P) 50 13
Atypical ductal hyperplasia (ADH) 50 16
Ductal carcinoma in situ (DCIS) 55 21
Invasive ductal carcinoma (IDC) 17 5

the relevant context can be fit within a fixed size patch and the
availability of millions of training examples. The large amount
of variation in the sizes of the structures of interest and the lack
of large amount of labeled data for the multi-class scenario that
considers both pre-invasive and invasive stages of breast can-
cer presents outstanding challenges to both traditional and deep
learning-based approaches.

Besides this work, the only other deep learning study that
considered this challenging range of histologic categories re-
flecting the actual clinical practice is [23] that proposed a novel
structural feature for breast pathology. First, a multi-resolution
network with two multi-path encoder-decoders and input-aware
encoding blocks was used for pixel-based segmentation of ROIs
into eight tissue types [24]. Then, superpixels were used as
the structural elements that aggregated the pixel labels, and the
connected components of the sections marked as epithelium,
secretion and necrosis were used to estimate the locations of
ducts. Finally, the structural feature was extracted by comput-
ing histograms of these tissue types within several layers, de-
fined 1-superpixel thick, towards both the inside and the outside
of these ductal components. The structure feature was used to
classify each ROI by using a four-class SVM (benign, ADH,
DCIS and invasive) and by using a sequence of binary SVMs
that eliminate one diagnosis at a time (invasive vs. not-invasive,
ADH and DCIS vs. benign, and DCIS vs. ADH). The results of
that method are also discussed in Section 5.

3. Data set

We used 240 digital breast histopathology images that were
collected as part of NIH-sponsored projects [25, 4, 26]. The
haematoxylin and eosin (H&E) stained slides were selected
from registries associated with the Breast Cancer Surveillance
Consortium by using a random stratified method to include the
full range of diagnostic categories from benign to cancer and
to represent a typical pathology lab setting. Each slide that
belonged to an independent case from a different patient was
scanned at 40× magnification, resulting in an average image
size of 100,000 × 64,000 pixels. The slides were divided into
training and test sets, with 180 and 60 cases, respectively, by
using stratified sampling based on age, breast density, original
diagnosis, and experts’ difficulty rating of the case so that both
sets had the same class frequency distribution with cases from
different patients. The distribution of classes is given in Ta-
ble 1. ADH and DCIS cases were intentionally oversampled to
gain statistical precision in the estimation of interpretive con-
cordance for these diagnoses [25].

Three experienced pathologists who are internationally rec-
ognized in diagnostic breast pathology evaluated every slide
both independently and in consensus meetings. The results of
these meetings were accepted as the reference diagnosis for
each slide including non-proliferative changes (including fi-
broadenoma), proliferative changes (including intraductal pa-
pilloma without atypia, usual ductal hyperplasia, columnar cell
hyperplasia, sclerosing adenosis, complex sclerosing lesion,
and flat epithelial atypia), atypical ductal hyperplasia (includ-
ing intraductal papilloma with atypia), ductal carcinoma in situ,
and invasive ductal carcinoma. Each slide in the test set also has
independent interpretations from 45 other pathologists. The dif-
ficulty of the multi-class problem studied here can be observed
from the evaluation in [4, 26] where the individual pathologists’
concordance rates compared with the reference diagnoses were
82% for the union of NP and P, 43% for ADH, 79% for DCIS,
and 93% for IDC.

The data collection also involved tracking the experienced
pathologists’ actions while they were interpreting the slides us-
ing a web-based software tool for multi-resolution browsing of
WSI data. In addition, the pathologists also marked an example
ROI as a representative for the most severe diagnosis that was
observed during their examination of each slide. Both these
consensus ROIs and the individual viewing records of the three
pathologists are used in the following sections. The diagnoses
assigned by the other 45 pathologists are also used for compari-
son. The study was approved by the institutional review boards
at Bilkent University, University of Washington, and University
of Vermont.

4. Methodology

4.1. ROI detection

In this section, first, we describe how the training data were
constructed from the tracking records of pathologists for build-
ing fully convolutional networks (FCN) for detection of ROIs
in arbitrarily sized images. Then, we present the pipeline of
four FCNs that process large images at different magnifications
where areas evaluated as non-salient are incrementally elimi-
nated from lower to higher resolutions. This step uses FCNs
because they can take arbitrary sized inputs and can gener-
ate similar sized predictions that are suitable for detection and
segmentation problems [27]. FCNs provide efficiency during
both learning via end-to-end backpropagation and prediction
via dense feedforward computation that is more advantageous
over sliding window-based processing that involves redundant
computation because of overlapping regions.

4.1.1. Data set preparation
The online software designed for the pathologists’ interpre-

tation of WSI supported pyramid structures with the original
40× magnification as well as layers successively subsampled
by a factor of 2 up to 0.625×. The software also provided in-
termediate resolutions by on-the-fly subsampling from the clos-
est higher magnification. The tracking procedure recorded the
coordinates of the windows corresponding to the parts of the
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Figure 2: Training sample generation from the viewport log of a pathologist.
The x-axis shows the log entry index and the y-axis shows the zoom level.
The blue dot represents an example destination window (l j=54). The horizontal
lines indicate the search range of zoom levels for a possible source window as
defined in (3). The red dots are eliminated according to this rule. The yellow
dots violate (2). The green dots satisfy all three conditions, and the earliest one
(li=47), marked with a blue ring, is selected as the source window.

Figure 3: Training sample generation from the viewport logs (cont.). Grouped
viewports are shown with the same color where the filled dots are the source
windows and the dots with rings represent the destination windows. A data
sample is illustrated for the red group where the source window (li=47) defines
the input image data within the WSI, and the union of destination windows
(l j=54,...,67) are used to construct the saliency label mask. The four ranges of
zoom levels that are considered for training four different FCNs are also shown:
FCN-1 with zoom(li) = 1 (red), FCN-2 with 2 ≤ zoom(li) ≤ 3 (green), FCN-3
with 4 ≤ zoom(li) ≤ 6 (yellow), and FCN-4 with 7 ≤ zoom(li) ≤ 40 (blue).

WSI visible on the screen and mouse events at a frequency of
four entries per second. Each of these log entries is named
a viewport, and the sequence of viewports from a particular
pathologist’s interpretation of a particular slide is denoted as
lt, t = 1, 2, . . . ,T in the analysis below.

Motivated by the visual search patterns of the pathologists
[28], we designed a selection process that evaluated the possi-
bility of pairs of windows, (l j, li), as being related during the
pathologist’s visual screening. In this process, the following
rules were defined to assess whether a visited window (named
the destination, l j) was considered as salient by the pathologist
at one of the earlier windows (named the source, li):

i < j, (1)
zoom(li) < zoom(lk), ∀k ∈ {i + 1, . . . , j}, (2)

zoom(l j)/3 ≤ zoom(li) ≤ zoom(l j)/1.5. (3)

The first rule stated that the source window li must be visited
before the destination l j. The second rule ensured that the des-
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Figure 4: Illustration of the FCN architecture for ROI detection. The number
and size of the filters at each layer are given. All convolutional layers are fol-
lowed by ReLU nonlinearity. We also show the corresponding image size at
each layer for an input of m × n pixels. Note the deconvolutional layer at the
end.

tination window was viewed at a higher magnification than the
source window, and there was no zoom out action going to a
lower magnification than the zoom level of the source window
between the two windows. The third rule required that the zoom
level of the source window was in a particular range so that
there was sufficient context around the destination in which it
was considered salient (e.g., when the zoom level of the desti-
nation l j was 30, the zoom level of the source must be in the
range [10, 20]). Each viewport in our data set was evaluated as
a potential destination, and if one or more sources that satisfied
(1)–(3) were found, the earliest one was used to form the view-
port pair. An example is given in Figure 2. After evaluating all
actions, the pairs that contained common source windows were
grouped together, and each group was used to create one data
sample where the input was the raw image corresponding to
the common source window (li) and the label was a same sized
pixel-level binary mask where the union of destination windows
(l js) in the group were marked as positive (salient). An example
is given in Figure 3.

Training samples were collected from the viewing records
of the three experienced pathologists for the 180 training im-
ages. The resulting samples were split into four sets according
to the zoom levels of the source windows. These sets, shown
in Figure 3, formed the training data for four separate deep net-
works where each focused on specific contextual cues in a par-
ticular range of magnifications. The four training sets consisted
of a total of 64,144 images with an average size of 535×416 pix-
els. The total number of pixels labeled as negative was around
five times as many as those that were labeled as positive.

4.1.2. Network architecture for detection
Our network architecture and the related learning parame-

ters were influenced from the deep network presented in [29]
because of its success in the ImageNet challenge and simple
strategies. Nevertheless, we ensured that the sizes of the re-
ceptive fields of the convolutional layers were compatible with
the fundamental characteristics of the biopsies such as ductal
structures.

Our fully convolutional network architecture is shown in
Figure 4. The inputs were arbitrary sized RGB images that were
collected as in the previous section. Input images were prepro-
cessed by subtracting the overall mean of RGB values of train-
ing images from each pixel. The image was then passed through
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three similar convolutional layers, as in [29], where filters had
a very small width and height (3 × 3) followed by a ReLU non-
linearity unit. Convolutional stride and spatial padding was set
to 1 pixel such that the spatial resolution was preserved. ReLU
was followed by the max pooling operation with a 3 × 3 pixel
window and a stride of 3 after the first layer, and a 2×2 window
and a stride of 2 after the remaining layers. These three con-
volutional layers were followed by another convolutional layer
with a 4 × 4 window size and a convolutional stride of 4. This
layer included a ReLU nonlinearity but no max pooling oper-
ation. After that, there was one fully connected layer (which
was, in fact, a 1 × 1 convolutional layer in FCN) followed by
a dropout operation with a rate of 0.5. The network continued
with a deconvolutional layer with an upsample rate of 16 times
and cropping of 32 pixels from all sides. Number of filters in all
layers were 32, 32, 64, 128, 2, respectively. The final layer was
connected to the ‘multinomial logistic loss’ (softmax log loss)
objective function layer while training, but after training, we re-
moved that layer and added a ‘softmax’ layer to estimate class
(relevant versus irrelevant) probabilities. The hyper-parameters
of the network architecture were tuned on one-fifth of the train-
ing set as validation data. Given an input image with a size of
m × n pixels, the resulting map of size m/3 × n/3 that was rel-
ative to the input was an advantage of the fully convolutional
design that improved the precision of detection and localization
of salient regions.

4.1.3. Pipeline
We designed a pipeline that gradually eliminated diagnos-

tically irrelevant regions efficiently in four successive stages
where the ultimate output was a saliency map of the input im-
age. A given image was processed by four networks that had the
same architecture but were trained to handle images at different
magnifications as shown in Figure 1. Let Φ represent the input
image at 40× magnification along with the constructed multi-
resolution pyramid. For ROI detection, we used the 0.625×,
1.25×, 2.5×, and 5× magnifications, denoted as Φ1, Φ2, Φ3,
and Φ4, respectively, corresponding to the zoom level ranges
shown in Figure 3.

The analysis started with the smallest magnification, Φ1, be-
ing fed to the first network FCN1 to produce the saliency map
Θ1. Then, the regions with probability of being diagnostically
relevant above a particular threshold were fed to the second
network. The same procedure was repeated for the remaining
stages. The final saliency map Θ was computed as the weighted
geometric mean [30] of the thresholded outputs of four net-
works, Θ1, Θ2, Θ3, and Θ4, as

Θ =

4∏
k=1

Θ
wk/

∑4
r=1 wr

k (4)

where wk = ( 1
2 )4−k. The weighting scheme assigned larger

weights to higher magnifications as their inputs included more
details. The output maps were computed in such a way that the
pixels below the threshold were set to the minimum value of the

pixels above the threshold as

Θk(x, y) =

FCNk
(
Φk(x, y)

)
if (x, y) ∈ Ωk,

min
(x′,y′)∈Ωk

FCNk
(
Φk(x′, y′)

)
otherwise (5)

where Ω1 was the set of all pixels in the input image (Ω1 =

{(x, y) ∈ Φ}), and Ωk = {(x, y) ∈ |Θk−1|τ} for k > 1 were the
sets of pixels above the corresponding thresholds. |Θk |τ denotes
thresholding Θk adaptively such that the lowest τ percentage
of the values of Θk were removed from the set of pixels to
be processed in the subsequent stages. This ensured that the
saliency information obtained by earlier FCNs were not lost
while preserving the order of pixel values (i.e., the pixels below
the threshold could not have higher values than those above it
in the geometric mean). Tuning the parameter τ is discussed in
Section 5. Note that, all Θk maps were scaled to the same reso-
lution, and the geometric mean in (4) was computed pixel-wise.

4.2. ROI classification

In this section, we describe the methodology for both patch-
level and slide-level classification of WSIs into five diagnostic
categories (NP, P, ADH, DCIS, IDC) using a convolutional neu-
ral network (CNN).

4.2.1. Data set preparation
A single WSI often contains multiple areas with different

levels of diagnostic importance, and a small area can lead to the
pathologist’s finalization of the diagnosis. Our data set con-
tained an example ROI that was marked for each WSI as a
representative for the most severe diagnosis that was observed
during the three experienced pathologists’ consensus meetings.
We used these consensus ROIs as the training examples for
our deep network for classification, and sampled 100 × 100
pixel patches with 50 pixel strides to form the training data.
The 10× magnification was used so that the patches had suffi-
cient context. This combination of patch size and magnifica-
tion also allowed us to fit a reasonable number of patches in
the available GPU memory. The neighboring patches had 50%
overlap to achieve translation invariance. The resulting train-
ing set consisted of 1,272,455 patches belonging to five cate-
gories. Note that, even though the number of samples seems to
be large, many of these patches may contain irrelevant content
such as empty areas, necrosis, etc., because the consensus ROIs
were marked roughly using rectangular boundaries as shown
in Figure 10. We plan to integrate tissue segmentation as a pre-
processing stage to perform contextual sampling from epithelial
and stromal regions in future work.

4.2.2. Network architecture for classification
Five-class classification was a more challenging task than

binary saliency detection; thus, a deeper network and more
training data were required. The training set of patches con-
tained approximately ten times as many pixels as the training
set used for detection. Furthermore, the design of the network
was updated with more layers, filters, and neurons as shown in
Figure 5.
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Figure 5: Illustration of the CNN architecture for ROI classification. The num-
ber and size of the filters at each layer are given. All convolutional layers are
followed by ReLU nonlinearity.

The resulting network accepted 100 × 100 × 3 fixed sized
inputs. Input images were normalized by subtracting the over-
all mean of the three channels. The network consisted of six
convolutional layers with 3 × 3 filters, followed by three fully
convolutional layers and a final softmax layer. Except the last
layer, all layers were followed by a ReLU nonlinearity. The
convolutional layers contained 64, 64, 64, 128, 128, 256 filters
in respective order, and the first, second, fourth, and sixth layers
were followed by a 2 × 2 max pooling operation with a stride
of 2. The fully connected layers contained 512, 512, 5 neurons,
and are followed by a dropout operation with 0.5 probability.
The hyper-parameters of the network architecture were tuned
on one-fifth of the training set as validation data.

Our focus was the development of the complete framework,
starting from the step that extracts training data from the raw
viewing logs of the pathologists to the steps that include the de-
tection of diagnostically relevant ROIs and the ROI-level and
slide-level classification of whole slide images. Thus, the net-
work architectures used in this paper were adapted from the
network in [29], which has been accepted to be one of the state-
of-the-art baselines in many domains. The overall effectiveness
can be improved by replacing the networks in Figure 1 with
other suitable architectures from the literature in the future.

4.2.3. Post-processing for slide-level classification
The network provided class probabilities for fixed sized in-

put patches. In order to obtain probability maps for the whole
slides, we needed to either classify patches extracted by sliding
windows or fully convolutionalize the network. We chose to
implement the latter as it enabled more efficient WSI classifica-
tion that, in fact, implicitly implemented sliding windows with
a step size of 16. Therefore, each pixel in the probability maps
corresponded to a 16 × 16 pixel patch in the input space.

The probability maps produced by the above strategy were
further downsampled by a factor of seven by bilinear interpola-
tion in order to smooth out the estimates and remove the noise
caused by small isolated details. The downsampled maps were
then used to determine the final classification such that every
pixel voted for the class that had the greatest probability for
that pixel. Finally, the class with the majority of the votes was
selected as the final diagnosis for the corresponding WSI.

An alternative approach is to learn a slide-level decision fu-
sion model. This has been motivated in the literature [31] for
cases in which individual patches may not be discriminative and
their predictions can be biased, whereas the learned fusion may
model their joint appearance and correct the bias of patch-level

decisions. We implemented the method in [31] where a class
histogram was generated by summing up all of the class proba-
bilities assigned to all pixels by the patch-level classifier, and a
multi-class SVM was trained by using these histograms to pro-
duce slide-level predictions.

5. Experiments

In this section, we present the experiments for the detec-
tion and classification tasks as well as the visualization of the
trained networks. The training samples for both tasks were fur-
ther divided into 80% training and 20% validation sets for esti-
mating the hyper-parameters and to avoid overfitting. The im-
plementations were derived from the MatConvNet library [32]
with a number of significant modifications, and ran on a system
with an NVIDIA GeForce GTX-970 GPU, Intel Xeon ES-2630
2.60GHz CPU, and 64 GB RAM.

5.1. ROI detection
We trained the four FCNs for 50 epochs using the training

set. For each FCN, the stochastic gradient descent algorithm
was run to optimize a total of 168,290 network parameters on
mini batches of 25 images with 0.0001 learning rate, 0.0005
weight decay, and 0.9 momentum. These hyper-parameters
were empirically set on a subset of the validation data.

5.1.1. Reference data
Detection of diagnostically relevant ROIs in WSI has not

been a well-studied task in the literature, and there is no pub-
licly available data set that is suitable for the evaluation of this
task. Therefore, we used the viewport tracking data to generate
the annotations for evaluation.

This procedure followed the same approach described in
[16, 17]. Saliency of the viewports were evaluated by using
the following set of rules:
• The pathologist zoomed into a region from the previ-

ous window and zoomed out right after. This event was
named a zoom peak, and was a local maximum in the
zoom level.

• The pathologist slowly slid the viewports while maintain-
ing the same zoom level. This event was named a slow
panning, and was represented by the union of the consec-
utive group of viewports with small displacement.

• The pathologist viewed the same region for more than 2
seconds. This event was named a fixation.

More details can be found in [16, 17]. These rules were ap-
plied to all viewport logs from the three experienced patholo-
gists, and the union of all windows that satisfied at least one
of these rules was computed to create a binary saliency mask
for each WSI in the test set. Morphological operations were
also used to remove the outer white regions that corresponded
to the slide background outside the tissue section because the
rectangular viewports often contained such regions. Examples
for the saliency masks are shown in Figure 7. The training and
validation labels described in Section 4.1.1 and the test labels
described in this section all came from different cases belonging
to different patients.
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Figure 6: ROC curves for the proposed saliency detection pipeline with differ-
ent τ values (a) and comparisons with the method of Mercan et al. in [17] and
the U-Net architecture in [33] (b).

5.1.2. Evaluation criteria
The output of the detection pipeline for each test WSI

contains pixel-wise probability estimates in the range [0, 1].
These estimates were compared to the reference binary saliency
mask for computing pixel-based receiver operating characteris-
tic (ROC) curves by averaging all results from the 60 test cases.

The resulting performance was compared with two alterna-
tive approaches. The first one was the classification framework
proposed in [17]. The approach in [17] can be considered as
a state-of-the-art method that used a bag-of-words model with
color and texture features of image patches where a logistic
regression classifier trained on the binary saliency masks ex-
tracted from the viewport logs of the training slides was used to
produce the detection scores.

The second comparison used the U-Net architecture pro-
posed for biomedical image segmentation [33]. The U-Net
network consists of 23 convolutional layers where a contract-
ing path is followed by an expansive path. The contracting
path uses the typical architecture of a convolutional network,
whereas each step in the expansive path performs convolutions
on the concatenation of the upsampled version of the previous
step in the expansive path and the corresponding feature map
from the contracting path. The same training data in four dif-
ferent sets of magnifications were used to train four separate
networks that were combined with the same weighting scheme
proposed in Section 4.1.3.

5.1.3. Results and discussion
Figure 6(a) shows the ROC curves for different τ values

that were used to eliminate a certain percentage of the pixels
for further processing in subsequent stages in the pipeline. The
true positive rate (TPR) was considered to represent the effec-
tiveness of the method in identifying all diagnostically relevant
ROIs, and the false positive rate (FPR) was considered a suit-
able metric to evaluate the efficiency of the method to reduce the
area to be processed in the following steps as the salient regions
usually occupied a relatively small part of a WSI. According to
Figure 6(a), while monotonic improvements on both effective-
ness and efficiency were observed until τ = 0.4, further increase
in τ corresponded to a decrease in accuracy. Therefore, there is
an application dependent trade-off as higher τ values continue

Figure 7: Example saliency detection results for three WSIs. From top to
bottom: RGB WSI, the reference saliency mask, output of the proposed ap-
proach for τ = 0.4, output of [17]. The image sizes, from left to right, are
77,440× 68,608, 128,576× 65,936, and 132,256× 55,984, pixels, respectively,
at 40× magnification.

to yield more efficiency.
Comparative results are presented in Figure 6(b). The pro-

posed method attained the best area under the curve (AUC)
value for τ = 0.4 as 0.9153, whereas [17] obtained 0.9124 and
the network in [33] obtained 0.9043. We also saw that when
FPR = 0.2, TPR of [17] and [33] were 0.8552 and 0.8902,
respectively, while our method achieved 0.8947. Similarly, in
the high TPR region above 0.8, our method obtained smaller
FPR values compared to [17] and [33]. Only after a TPR of
0.98, [17] achieved higher TPR at the same FPR. Overall, our
method achieved better effectiveness than both [17] and [33],
even though [17] used the same set of rules listed in Section
5.1.1 for generating both training and test data whereas our
method used a different training set. Furthermore, our method
was significantly more efficient than both [17] (with a factor of
74 times for τ = 0.4) and [33] (with a factor of 24 times at
the same threshold setting) by operating on lower resolutions
and processing only a small portion of the images at utmost 5×
magnification in the proposed pipeline, whereas [17] processed
entire slides using sliding windows at full 40× magnification
and [33] used a much larger network architecture.

The fully convolutional network architecture used in this
paper efficiently learned to make dense predictions for per-pixel
tasks as the output was aggregated from local computations.
Explicit connections from early activations to later layers as in
the U-Net architecture have the potential of capturing more de-
tailed location information in the final predictions. However,
the resulting networks often need a trade-off for increased com-
plexity in larger scale problems, such as WSI classification in
this paper, via subsampling to keep the filters small and the
computational requirements reasonable [27].

Figures 7, 8, and 9 present example detection results. Both
the full WSI output and the zoomed results showed that the pro-
posed method produced detailed and more precise localization
of the relevant regions whereas [17] produced more blurry re-
sults because of the windowing effects.
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Figure 8: Details of the individual stages in the saliency detection pipeline for
the images shown in Figure 7. From top to bottom: outputs of the four FCNs,
Θ1, Θ2, Θ3, Θ4, respectively, for τ = 0.

Figure 9: Zoomed examples from Figure 7. From top to bottom: RGB image,
the reference saliency mask, output of the proposed approach for τ = 0.4, out-
put of [17]. The roughness of the saliency masks used for training and testing
can be seen. The proposed method provides more detailed pixel-wise predic-
tions.

5.2. ROI classification

The CNN used for classification was trained for 50 epochs
to optimize a total of 5,576,581 network parameters on mini
batches of 256 patches with 0.01 learning rate, 0.0005 weight
decay, and 0.9 momentum. These hyper-parameters were em-
pirically set on a subset of the validation data. In order to eval-
uate the effectiveness of the trained network, we performed ex-
periments for two tasks: classification of 100×100 pixel patches
and classification of individual WSIs.

5.2.1. Reference data
The consensus labels assigned by the three experienced

pathologists were used as the slide-level reference data. We also
used the individual diagnoses provided by the 45 other pathol-
ogists on the 60 test cases for comparison. These diagnoses
were originally collected for evaluation of the differences be-
tween glass slides and digital slides. Therefore, 23 pathologists

Table 2: Confusion matrix for patch-level classification.
Predicted TPR &

NP P ADH DCIS IDC Recall

True

NP 2,477 945 725 2,027 4,227 0.2382
P 503 7,246 3,364 7,823 3,275 0.3262

ADH 4,092 9,249 5,727 10,572 4,511 0.1677
DCIS 5,003 23,074 7,068 47,412 9,550 0.5147

IDC 661 9,145 509 21,491 18,978 0.3737
FPR 0.0515 0.2263 0.0665 0.3566 0.1357

Precision 0.1945 0.1459 0.3293 0.5308 0.4681

labeled the same cases by looking at the glass slides, and 22
evaluated the digital slides in WSI format.

For the patch classification task, 209,654 patches with
100 × 100 pixels were sampled from the consensus ROIs of
the test cases. Each patch was labeled with the consensus la-
bel of the corresponding WSI. However, since the consensus
ROIs were roughly drawn as rectangular shapes, some of these
patches may contain irrelevant content as in the case of training
data generation. The training and validation data described in
Section 4.2.1 and the test data described in this section all came
from different cases belonging to different patients.

5.2.2. Results and discussion
Patch classification. The accuracy of the CNN for classifica-
tion of the test patches into five categories was 39.04%. The
resulting confusion matrix is shown in Table 2. The errors
seemed mostly as underestimations of diagnostic classes as the
lower triangle of the confusion matrix added up to 63.21% of
the wrong classifications. However, visual inspection of the
patches showed that some of them were actually not errors be-
cause the whole consensus ROIs were labeled with the same di-
agnosis without a precise delineation of the ductal regions, and
not all patches sampled from these ROIs contained the same
level of structural cues that represented the given label. For ex-
ample, a patch that was sampled from an ROI labeled as ADH
could easily contain usual hyperplasia or even stromal regions.
Compared to the binary classification tasks of invasive cancer,
mitosis, metastasis, etc., detection that have been widely stud-
ied in the literature, the labeling of ductal proliferations and hy-
perplastic changes was a more difficult problem with a higher
uncertainty. The fusion of ROI detection and patch classifica-
tion will recover some of these errors in the next section.

WSI classification. The classification of a WSI by using the
fully convolutionalized CNN produced probability maps con-
taining the five-class likelihoods as well as a label map indicat-
ing the winning class for each pixel. The class with the highest
overall frequency in the whole image (i.e., the majority voting
approach described in Section 4.2.3) can be used as the slide-
level diagnosis. For robustness to the uncertainty in the output
of the patch-based classifier due to the roughness of the consen-
sus ROIs and the corresponding training samples, we also used
the saliency map for each WSI, and applied an adaptive thresh-
old so that only the top 15% of the salient pixels remained,
where the final slide-level class prediction was obtained for the
WSI by using majority voting only among the class labels of the
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(a) Original image (b) Classification (c) Saliency map (d) Fusion

(e) P(NP) (f) P(P) (g) P(ADH) (h) P(DCIS) (i) P(IDC)

Figure 10: Example classification result for a WSI with a consensus label
of ADH. (a) Original image (65,936 × 128,576 pixels) with consensus ROIs
marked with black lines. (b) Patch-level classification for five classes: NP
(white), P (yellow), ADH (green), DCIS (blue), IDC (red). (c) Saliency de-
tection (brighter values indicate higher probability). (d) Pixels (in (b)) whose
labels were used in the majority voting for slide-level diagnosis after threshold-
ing the saliency map. (e-i) Pixel-wise likelihood maps for five classes. This
sample was correctly classified as ADH using the majority voting of the labels
shown as overlay in (d). (Best viewed in color with zoom.)

pixels that achieved the highest (top 15%) probability of being
salient. The threshold percentage was selected by using the val-
idation data. Figure 10 shows an example classification. More
examples can be found in [34].

We also used the learned decision fusion model by train-
ing two separate multi-class SVM classifiers by using the class
histograms of the pixels (i.e., the learned fusion approach de-
scribed in Section 4.2.3) without and with selection by the
saliency detection pipeline. The same thresholding protocol
was used during selection.

Quantitative evaluation was performed by comparing the
final slide-level predictions with the consensus labels and the
predictions of the 45 pathologists. We also trained multi-class
SVM and RF classifiers with state-of-the-art hand-crafted fea-
tures including 192-bin Lab histograms (64 bins per channel),
128-bin local binary pattern (LBP) histograms (64 bins for each
of the H and E channels estimated via color deconvolution), and
50 nuclear architectural features (as in [12]) with different fea-
ture combinations. Both the SVM and the RF classifiers are
popular non-deep learning methods for histopathological image
classification, and were used as representative baselines in our
experiments. The features were computed within 3,600× 3,600
pixel windows at the highest 40× magnification where the win-
dow size was decided based on the observations in [17]. Sliding
windows that were inside the consensus ROIs of the training
set were used to build the SVM with a linear kernel and the RF

Table 3: Confusion matrix for slide-level classification.
Predicted TPR &

NP P ADH DCIS IDC Recall

True

NP 0 2 0 1 2 0
P 0 9 2 2 0 0.6923

ADH 0 4 4 8 0 0.2500
DCIS 0 2 0 17 2 0.8095

IDC 0 0 0 2 3 0.6000
FPR 0.0000 0.1702 0.0455 0.3333 0.0727

Precision – 0.5294 0.6667 0.5667 0.4286
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Figure 11: Class-specific precision versus recall for the proposed method
(square), the SVM baseline (diamond), the RF baseline (circle), and the 45
pathologists (dot). Colors represent: NP (gray), P (yellow), ADH (green),
DCIS (blue), IDC (red). The variability in the pathologists’ predictions, with
a very wide range of concordance rates compared with the reference diagnoses
particularly for the P, ADH, and DCIS categories, is consistent with the med-
ical literature where inter-rater agreement has always been a known challenge
[4, 26].

classifier where the cost parameter for the SVM and the number
of trees and tree depths for the RF were obtained by using cross-
validation. The resulting classifiers were then used to label the
sliding windows of the test WSIs, and the resulting likelihood
maps were combined with the same saliency detection outputs
as in our method to obtain the slide-level predictions.

Table 3 shows the confusion matrix for our method. Figure
11 shows the class-specific precision and recall values for our
method, the best performing baselines when all features were
combined (370 features), and the 45 pathologists’ predictions.
Table 4 summarizes all results.

Table 4: Classification accuracies for the pathologists, the proposed deep
learning-based method, and the state-of-the-art hand-crafted feature represen-
tations and classifiers.

Accuracy (%)
Average and standard deviation of 45 pathologists 65.44 ± 7.07
Proposed method with majority voting without saliency 23.33
Proposed method with majority voting with saliency 55.00
Proposed method with learned fusion without saliency 38.33
Proposed method with learned fusion with saliency 55.00
Lab+LBP+Arch. features with SVM without saliency 28.33
Lab+LBP+Arch. features with SVM with saliency 45.00
Lab+LBP+Arch. features with RF without saliency 31.67
Lab+LBP+Arch. features with RF with saliency 38.33
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We observed that the learned fusion approach improved the
results against majority voting (from 23.33% to 38.33%) when
the saliency map was not used. However, considering only the
set of pixels with the highest probability of being salient in the
slide-level prediction resulted in the same accuracy (55%) when
both the majority voting and the learned fusion approaches were
used. The 55% classification accuracy achieved by the pro-
posed framework was also 10% higher than the best performing
hand-crafted feature and classifier combination as seen in Table
4. This shows that our saliency detection pipeline was very
selective and discriminative where majority voting among the
most salient pixels was sufficient for the slide-level diagnosis,
with the additional benefit of incrementally eliminating most of
the image regions in lower magnifications and processing only
small portions of the images in higher magnifications. In par-
ticular, the average running times for a single whole slide test
image (with an average size of 94,525 × 64,330 pixels) could
be summarized as follows: saliency detection at 0.625×, 1.25×,
2.5×, and 5× magnifications took 0.50, 1.21, 2.90, and 6.97
seconds, respectively, for a total of 11.58 seconds for the whole
pipeline when the threshold for eliminating diagnostically ir-
relevant regions was set to τ = 0.4, and classification of the
patches that contained the top 15% of the salient pixels took
55.09 seconds using our Matlab-based implementation on a sin-
gle core of the CPU.

The overall slide-level classification accuracy of 55% was
also comparable to the performances of the 45 pathologists
that practice breast pathology in their daily routines. As seen
from Figure 11, there were very mixed performances from the
pathologists for the P, ADH, and DCIS classes. In the clini-
cal setting, the pathologists usually agree in their diagnoses for
the NP and IDC cases because these are at two extremes of the
continuum of histologic features. Given the smaller amount of
data used to train the networks, our performance for the NP and
IDC classes were lower than the typical pathologist’s perfor-
mance. As there is little clinical difference in how the patients
with non-proliferative (NP) and proliferative (P) benign biop-
sies are managed, we plan to merge the NP and P cases as a sin-
gle class named benign without atypia in future work. However,
when the other more difficult intermediate diagnostic categories
with different clinical significance as risk factors for future can-
cer and with different subsequent surveillance and preventive
treatment options were concerned, the proposed method per-
formed better, in terms of recall, than 30 pathologists for P, 5
pathologists for ADH, and 39 pathologists for DCIS. In terms
of precision, our method was better than 17 pathologists for P,
34 pathologists for ADH, and 2 pathologists for DCIS.

We also applied McNemar’s test [35] to compare the pro-
posed method with the pathologists. Given the predictions of
our method and the individual pathologists’ for all 60 test cases,
45 tests were carried out at 5% significance level, and in 32 of
these tests the null hypothesis could not be rejected, i.e., their
performances were not statistically significantly different than
ours. Furthermore, we performed a z-test also at 5% signifi-
cance level, and again we could not reject the null hypothesis,
i.e., our scores belonged to the same normal distribution esti-
mated from the performances of the 45 pathologists.

The overall results indicated that the fusion of saliency de-
tection for localization of diagnostically relevant regions and
the classification of these regions into five diagnostic classes
using deep networks provided a promising solution. The al-
ternative approach of [23] that was tested on the same data
set in four-class classification (after merging non-proliferative
and proliferative changes as a single category named benign)
achieved an accuracy of 56% when the structure feature com-
puted using histograms of eight tissue types within layers of
superpixels both inside and around ductal objects was used.
Though not directly comparable with our five-class slide-level
performance as that accuracy was computed only within the
consensus ROIs of the test slides, it provided additional confir-
mation of the difficulty of the multi-class classification problem
involving the full range of histologic categories. Another im-
portant finding of that work was that, the structure feature that
explicitly incorporated the highly specialized domain knowl-
edge into the classification model was particularly powerful in
discriminating ADH cases from DCIS that have not been stud-
ied in the published literature. Given the years of training and
experience that the pathologists use to diagnose the biopsies,
and the importance of objective and repeatable measures for
interpreting the tissue samples under the multi-class classifica-
tion scenario where different classes carry significantly different
clinical consequences, our comparable results on this challeng-
ing data set showed the promise of deep learning where future
work with larger and more precisely labeled data sets and addi-
tional computational resources will eventually be practical in a
clinical setting.

5.3. Visualization
CNNs are often criticized as black box models. Recent

work on the visualization of the inner details of CNNs can
also be useful in understanding the representations learned from
pathology data. We used the occlusion [36] and deconvolu-
tion [37] methods, with implementations from the FeatureVis
library [38], to visualize the CNN learned for multi-class clas-
sification.

The occlusion method added small-sized random occlud-
ers at different locations in a patch and compared the resulting
activation after each occlusion with the original one. Figure 12
shows the visualization results as maps of the importance of dif-
ferent details in example images that affected the classification
of particular classes positively or negatively. For example, the
first three rows show examples of ductal regions with few layers
of epithelial cells around lumens. The fifth and sixth rows show
examples of atypical proliferations. The seventh and eighth
rows show examples of ducts filled with epithelial cells. The
tenth and eleventh rows show examples of intertwined groups
of cells with no apparent ductal structure. The ninth and twelfth
rows contain examples that were listed as misclassifications that
might actually be correct decisions but were counted as errors
because of the imprecise delineation of the consensus ROIs and
the difficulty of sampling from these large rectangular windows.
Finally, the fourth row shows a clear example of the need of the
saliency detection step because the almost empty patch con-
fused the CNN and led to activations for multiple classes as
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Figure 12: Visualization of the learned representations using the occlusion
method. Each row represents a separate example patch. From left to right:
100 × 100 pixel input patch, importance of local details overlaid on the input
image for individual diagnostic classes NP, P, ADH, DCIS, and IDC. Warmer
colors indicate higher impact of that region (either positively or negatively) for
the classification of that class. Reference diagnoses are marked by green boxes.
The predictions of our method are shown by red bars whose heights indicate
the likelihood. (Best viewed in color with zoom.)

similar regions were included in the sample sets for all classes.
Note that, it was ignored in the final fused decision because
the fully convolutional multi-scale saliency detection pipeline
eliminated such areas.

The deconvolution method built reconstructions by project-
ing the activations back to the input space so that parts of the in-
put image that most strongly activated particular neurons were
found. Figure 13 illustrates the top-9 responsive patches for
example neurons from different layers and the visualization of
the contributions of their pixels. The examples showed how the
lower layers captured the fundamental features such as edges
and blobs, and the higher layers developed more abstract fea-
tures based on patterns representing particular arrangements of
nuclei and other ductal structures. Future work includes more
detailed evaluation of these visualizations in a clinical perspec-
tive together with the pathologists.

(a) 2. CONV layer

(b) 3. CONV layer

(c) 4. CONV layer

(d) 6. CONV layer

(e) 1. FC layer

(f) 2. FC layer

(g) Softmax layer

Figure 13: Visualization of the network layers by using the deconvolution
method. For each convolutional (CONV) and fully connected (FC) layer, the
top-9 activations (as 3 × 3 groups) for four example neurons (left) and their
corresponding original input patches (right) are shown. The last softmax layer
consists of five neurons corresponding to five classes; from left to right and top
to bottom: NP, P, ADH, DCIS, IDC. (Best viewed in color with zoom.)

6. Conclusions

We presented a deep learning-based computer aided diagno-
sis system for breast histopathology. The proposed framework
covered the whole workflow from an input whole slide image
to its categorization into five diagnostic classes. The first step
was saliency detection by using a pipeline of four sequential
fully convolutional networks for multi-scale processing of the
whole slide at different magnifications for localization of diag-
nostically relevant ROIs. Both the learning and the inference
procedures imitated the way pathologists analyze the biopsies
by using the pathologists’ recorded actions while they were in-
terpreting the slides. The second step was a patch-based multi-
class convolutional network for diagnosis that was learned by
using representative ROIs resulting from the consensus meet-
ings of three experienced pathologists. The final step was the
fusion of the saliency detector and the fully-convolutionalized
classifier network for pixel-wise labeling of the whole slide, and
a majority voting process to obtain the final slide-level diagno-
sis. The deep networks used for detection and classification per-
formed better than competing methods that used hand-crafted
features and statistical classifiers. The classification network
also obtained comparable results with respect to the diagnoses
provided by 45 other pathologists on the same data set. We also
presented example visualizations of the learned representations
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for better understanding of the features that were determined to
be discriminative for breast cancer diagnosis. Given the nov-
elty of the five-class classification problem that is important for
clinical applicability of computer aided diagnosis, the proposed
solutions and the presented results by using a challenging whole
slide image data set show the potential of deep learning for
whole slide breast histopathology where future work with larger
data sets with more detailed training labels have the promise to
result in systems that are useful to pathologists in clinical appli-
cations.
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