
Feature Normalization and Likelihood-based

Similarity Measures for Image Retrieval

Selim Aksoy and Robert M. Haralick

Intelligent Systems Laboratory, Department of Electrical Engineering,

University of Washington, Seattle, WA 98195-2500, U.S.A.

E-mail:{aksoy,haralick}@isl.ee.washington.edu

Abstract

Distance measures like the Euclidean distance are used to measure similarity be-
tween images in content-based image retrieval. Such geometric measures implicitly
assign more weighting to features with large ranges than those with small ranges.
This paper discusses the effects of five feature normalization methods on retrieval
performance. We also describe two likelihood ratio-based similarity measures that
perform significantly better than the commonly used geometric approaches like the
Lp metrics.
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1 Introduction

Image database retrieval has become a very popular research area in recent
years (Rui et al. (1999)). Initial work on content-based retrieval (Flickner et al.
(1993); Pentland et al. (1994); Manjunath and Ma (1996)) focused on using
low-level features like color and texture for image representation. After each
image is associated with a feature vector, distance measures that compute
distances between these feature vectors are used to find similarities between
images with the assumption that images that are close to each other in the
feature space are also visually similar.

Feature vectors usually exist in a very high dimensional space. Due to this high
dimensionality, their parametric characterization is usually not studied, and
non-parametric approaches like the nearest neighbor rule are used for retrieval.
In geometric similarity measures like the nearest neighbor rule, no assumption
is made about the probability distribution of the features and similarity is
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based on the distances between feature vectors in the feature space. Given
this fact, Euclidean (L2) distance has been the most widely used distance
measure (Flickner et al. (1993); Pentland et al. (1994); Li and Castelli (1997);
Smith (1997)). Other popular measures have been the weighted Euclidean
distance (Belongie et al. (1998); Rui et al. (1998)), the city-block (L1) distance
(Manjunath and Ma (1996); Smith (1997)), the general Minkowsky Lp distance
(Sclaroff et al. (1997)) and the Mahalanobis distance (Pentland et al. (1994);
Smith (1997)). The L1 distance was also used under the name “histogram
intersection” (Smith (1997)). Berman and Shapiro (1997) used polynomial
combinations of predefined distance measures to create new distance measures.

This paper presents a probabilistic approach for image retrieval. We describe
two likelihood-based similarity measures that compute the likelihood of two
images being similar or dissimilar, one being the query image and the other
one being an image in the database. First, we define two classes, the relevance
class and the irrelevance class, and then the likelihood values are derived from
a Bayesian classifier. We use two different methods to estimate the conditional
probabilities used in the classifier. The first method uses a multivariate Normal
assumption and the second one uses independently fitted distributions for
each feature. The performances of these two methods are compared to the
performances of the commonly used geometric approaches in the form of the
Lp metric (e.g., city-block (L1) and Euclidean (L2) distances) in ranking the
images in the database. We also describe a classification-based criterion to
select the best performing p for the Lp metric.

Complex image database retrieval systems use features that are generated by
many different feature extraction algorithms with different kinds of sources,
and not all of these features have the same range. Popular distance measures,
for example the Euclidean distance, implicitly assign more weighting to fea-
tures with large ranges than those with small ranges. Feature normalization
is required to approximately equalize ranges of the features and make them
have approximately the same effect in the computation of similarity. In most
of the database retrieval literature, the normalization methods were usually
not mentioned or only the Normality assumption was used (Manjunath and
Ma (1996); Li and Castelli (1997); Nastar et al. (1998); Rui et al. (1998)). The
Mahalanobis distance (Duda and Hart (1973)) also involves normalization in
terms of the covariance matrix and produces results related to likelihood when
the features are Normally distributed.

This paper discusses five normalization methods; linear scaling to unit range,
linear scaling to unit variance, transformation to a Uniform[0,1] random vari-
able, rank normalization and normalization by fitting distributions. The goal
is to independently normalize each feature component to the [0,1] range. We
investigate the effectiveness of different normalization methods in combination
with different similarity measures. Experiments are done on a database of ap-
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proximately 10,000 images and the retrieval performance is evaluated using
average precision and recall computed for a manually groundtruthed data set.

The rest of the paper is organized as follows. First, the features that we use
in this study are summarized in Section 2. Then, the feature normalization
methods are described in Section 3. Similarity measures for image retrieval
are described in Section 4. Experiments and results are discussed in Section 5.
Finally, conclusions are given in Section 6.

2 Feature Extraction

Textural features that were described in detail by Aksoy and Haralick (1998,
2000b) are used for image representation in this paper. The first set of fea-
tures are the line-angle-ratio statistics that use a texture histogram computed
from the spatial relationships between lines as well as the properties of their
surroundings. Spatial relationships are represented by the angles between in-
tersecting line pairs and properties of the surroundings are represented by
the ratios of the mean gray levels inside and outside the regions spanned by
those angles. The second set of features are the variances of gray level spatial
dependencies that use second-order (co-occurrence) statistics of gray levels of
pixels in particular spatial relationships. Line-angle-ratio statistics result in
a 20-dimensional feature vector and co-occurrence variances result in an 8-
dimensional feature vector after the feature selection experiments in (Aksoy
and Haralick (2000b)).

3 Feature Normalization

The following sections describe five normalization procedures. The goal is to
independently normalize each feature component to the [0,1] range. A normal-
ization method is preferred over the others according to the empirical retrieval
results that will be presented in Section 5.

3.1 Linear scaling to unit range

Given a lower bound l and an upper bound u for a feature component x,

x̃ =
x − l

u − l
(1)

results in x̃ being in the [0,1] range.
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3.2 Linear scaling to unit variance

Another normalization procedure is to transform the feature component x to
a random variable with zero mean and unit variance as

x̃ =
x − µ

σ
(2)

where µ and σ are the sample mean and the sample standard deviation of
that feature respectively (Jain and Dubes (1988)).

If we assume that each feature is Normally distributed, the probability of x̃
being in the [-1,1] range is 68%. An additional shift and rescaling as

x̃ =
x−µ
3σ

+ 1

2
(3)

guarantees 99% of x̃ to be in the [0,1] range. We can then truncate the out-
of-range components to either 0 or 1.

3.3 Transformation to a Uniform[0,1] random variable

Given a random variable x with cumulative distribution function Fx(x), the
random variable x̃ resulting from the transformation x̃ = Fx(x) will be uni-
formly distributed in the [0,1] range (Papoulis (1991)).

3.4 Rank normalization

Given the sample for a feature component for all images as x1, . . . , xn, first
we find the order statistics x(1), . . . , x(n) and then replace each image’s feature
value by its corresponding normalized rank, as

x̃i =
rank

x1,...,xn
(xi) − 1

n − 1
(4)

where xi is the feature value for the i’th image. This procedure uniformly maps
all feature values to the [0,1] range. When there are more than one image with
the same feature value, for example after quantization, they are assigned the
average rank for that value.

4



3.5 Normalization after fitting distributions

The transformations in Section 3.2 assume that a feature has a Normal(µ, σ2)
distribution. The sample values can be used to find better estimates for the
feature distributions. Then, these estimates can be used to find normalization
methods based particularly on these distributions.

The following sections describe how to fit Normal, Lognormal, Exponential
and Gamma densities to a random sample. We also give the difference distri-
butions because the image similarity measures use feature differences. After
estimating the parameters of a distribution, the cut-off value that includes 99%
of the feature values is found and the sample values are scaled and truncated
so that each feature component have the same range.

Since the original feature values are positive, we use only the positive sec-
tion of the Normal density after fitting. Lognormal, Exponential and Gamma
densities are defined for random variables with only positive values. Other dis-
tributions that are commonly encountered in the statistics literature are the
Uniform, χ2 and Weibull (which are special cases of Gamma), Beta (which is
defined only for [0,1]) and Cauchy (whose moments do not exist). Although
these distributions can also be used by first estimating their parameters and
then finding the cut-off values, we will show that the distributions used in
this paper can quite generally model features from different feature extraction
algorithms.

To measure how well a fitted distribution resembles the sample data (goodness-
of-fit), we use the Kolmogorov-Smirnov test statistic (Bury (1975); Press et al.
(1990)) which is defined as the maximum value of the absolute difference be-
tween the cumulative distribution function estimated from the sample and the
one calculated from the fitted distribution. After estimating the parameters
for different distributions, we compute the Kolmogorov-Smirnov statistic for
each distribution and choose the one with the smallest value as the best fit to
our sample.

3.5.1 Fitting a Normal(µ, σ2) density

Let x1, . . . , xn ∈ R be a random sample from a population with density
1√
2πσ

e−(x−µ)2/2σ2
, −∞ < x < ∞, −∞ < µ < ∞, σ > 0. The likelihood

function for the parameters µ and σ2 is

L(µ, σ2|x1, . . . , xn) =
1

(2πσ2)n/2
e−
∑n

i=1
(xi−µ)2/2σ2

. (5)
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After taking its logarithm and equating the partial derivatives to zero, the
maximum likelihood estimators (MLE) of µ and σ2 can be derived as

µ̂ =
1

n

n
∑

i=1

xi and σ̂2 =
1

n

n
∑

i=1

(xi − µ̂)2. (6)

The cut-off value δx that includes 99% of the feature values can be found as

P (x ≤ δx) = P

(

x − µ̂

σ̂
≤

δx − µ̂

σ̂

)

= 0.99

=⇒ δx = µ̂ + 2.4σ̂.

(7)

Let x and y be two iid. random variables with a Normal(µ, σ2) distribution.
Using moment generating functions, we can easily show that their difference
z = x − y has a Normal(0, 2σ2) distribution.

3.5.2 Fitting a Lognormal(µ, σ2) density

Let x1, . . . , xn ∈ R be a random sample from a population with density
1√
2πσ

e−(log x−µ)2/2σ2

x
, x ≥ 0, −∞ < µ < ∞, σ > 0. The likelihood function

for the parameters µ and σ2 is

L(µ, σ2|x1, . . . , xn) =
1

(2πσ2)n/2

e−
∑n

i=1
(log xi−µ)2/2σ2

∏n
i=1 xi

. (8)

The MLEs of µ and σ2 can be derived as

µ̂ =
1

n

n
∑

i=1

log xi and σ̂2 =
1

n

n
∑

i=1

(log xi − µ̂)2. (9)

In other words, we can take the natural logarithm of each sample point and
treat the new data as a sample from a Normal(µ, σ2) distribution (Casella and
Berger (1990)).

The 99% cut-off value δx can be found as

P (x ≤ δx) = P (log x ≤ log δx) = P

(

log x − µ̂

σ̂
≤

log δx − µ̂

σ̂

)

= 0.99

=⇒ δx = eµ̂+2.4σ̂.

(10)
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3.5.3 Fitting an Exponential(λ) density

Let x1, . . . , xn ∈ R be a random sample from a population with density 1
λ
e−x/λ,

x ≥ 0, λ ≥ 0. The likelihood function for the parameter λ is

L(λ|x1, . . . , xn) =
1

λn
e−
∑n

i=1
xi/λ. (11)

The MLE of λ can be derived as

λ̂ =
1

n

n
∑

i=1

xi. (12)

The 99% cut-off value δx can be found as

P (x ≤ δx) = 1 − e−δx/λ̂ = 0.99

=⇒ δx = −λ̂ log 0.01.
(13)

Let x and y be two iid. random variables with an Exponential(λ) distribution.
The distribution of z = x − y can be found as

fz(z) =
1

2λ
e−|z|/λ , −∞ < z < ∞. (14)

It is called the Double Exponential(λ) distribution and similar to the previous
case, the MLE of λ can be derived as

λ̂ =
1

n

n
∑

i=1

|zi|. (15)

3.5.4 Fitting a Gamma(α, β) density

Let x1, . . . , xn ∈ R be a random sample from a population with density
1

Γ(α)βα xα−1e−x/β, x ≥ 0, α, β ≥ 0. Since closed forms for the MLEs of the

parameters α and β do not exist, 1 we use the method of moments (MOM)
estimators (Casella and Berger (1990)). After equating the first two sample
moments to the first two population moments, the MOM estimators for α and

1 MLEs of Gamma parameters can be derived in terms of the “Digamma” function
and can be computed numerically (Bury (1975); Press et al. (1990)).
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β can be derived as

α̂ =

(

1
n

∑n
i=1 xi

)2

(

1
n

∑n
i=1 x2

i

)

−
(

1
n

∑n
i=1 xi

)2 =
X

2

S2
, (16)

β̂ =

(

1
n

∑n
i=1 x2

i

)

−
(

1
n

∑n
i=1 xi

)2

(

1
n

∑n
i=1 xi

) =
S2

X
(17)

where X and S2 are the sample mean and the sample variance respectively.

It can be shown (Casella and Berger (1990)) that when x ∼ Gamma(α, β)
with an integer α, P (x ≤ δx) = P (y ≥ α) where y ∼ Poisson(δx/β). Then the
99% cut-off value δx can be found as

P (x ≤ δx) =
∞
∑

y=α̂

e−δx/β̂ (δx/β̂)y

y!
= 1 −

α̂−1
∑

y=0

e−δx/β̂ (δx/β̂)y

y!
= 0.99

=⇒
α̂−1
∑

y=0

e−δx/β̂ (δx/β̂)y

y!
= 0.01.

(18)

Johnson et al. (1994) represents equation (18) as

P (x ≤ δx) = e−δx/β̂
∞
∑

j=0

(δx/β̂)α̂+j

Γ(α̂ + j + 1)
(19)

Another way to find δx is to use the Incomplete Gamma function ((Abramowitz
and Stegun, 1972, p.260);(Press et al., 1990, sec. 6.2)) as

P (x ≤ δx) = Iδx/β̂(α̂). (20)

Note that unlike equation (18), α̂ does not have to be an integer in (20).

Let x and y be two iid. random variables with a Gamma(α, β) distribution.
The distribution of z = x − y can be found as (Springer, 1979, p.356)

fz(z) =
z(2α−1)/2

(2β)(2α−1)/2

1

π1/2

1

βΓ(α)
Kα−1/2(z/β) , −∞ < z < ∞ (21)

where Km(u) is the modified Bessel function of the second kind of order m
(m ≥ 0, integer) ((Springer, 1979, p.419);(Press et al., 1990, sec. 6.6)).

Histograms and fitted distributions for some of the 28 features are given
in Figure 1. After comparing the Kolmogorov-Smirnov test statistics as the
goodness-of-fits, the line-angle-ratio features were decided to be modeled by
Exponential densities and the co-occurrence features were decided to be mod-
eled by Normal densities. Histograms of the normalized features are given in
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Figures 2 and 3. Histograms of the differences of normalized features are given
in Figures 4 and 5.

Some example feature histograms and fitted distributions from 60 Gabor fea-
tures (Manjunath and Ma (1996)), 4 QBIC features (Flickner et al. (1993))
and 36 moments features (Cheikh et al. (1999)) are also given in Figure 6.
This shows that many features from different feature extraction algorithms
can be modeled by the distributions that we presented in Section 3.5.

4 Similarity Measures

After computing and normalizing the feature vectors for all images in the
database, given a query image, we have to decide which images in the database
are relevant to it and we have to retrieve the most relevant ones as the result of
the query. A similarity measure for content-based retrieval should be efficient
enough to match similar images as well as being able to discriminate dissimilar
ones. In this section, we describe two different types of decision methods;
likelihood-based probabilistic methods and the nearest neighbor rule with an
Lp metric.

4.1 Likelihood-based similarity measures

In our previous work (Aksoy and Haralick (2000b)) we used a two-class pat-
tern classification approach for feature selection. We defined two classes, the
relevance class A and the irrelevance class B, in order to classify image pairs
as similar or dissimilar. A Bayesian classifier can be used for this purpose as
follows. Given two images with feature vectors x and y, and their feature dif-
ference vector d = x− y, x, y, d ∈ R

q with q being the size of a feature vector,
the a posteriori probability that they are relevant is

P (A|d) = P (d|A)P (A)/P (d) (22)

and the a posteriori probability that they are irrelevant is

P (B|d) = P (d|B)P (B)/P (d). (23)

Assuming that these two classes are equally likely, the likelihood ratio is de-
fined as

r(d) =
P (d|A)

P (d|B)
. (24)

In the following sections, we describe two methods to estimate the condi-
tional probabilities P (d|A) and P (d|B). The class-conditional densities are
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represented in terms of feature difference vectors because similarity between
images is assumed to be based on the closeness of their feature values, i.e.
similar images have similar feature values (therefore, a difference vector with
zero mean and a small variance) and dissimilar images have relatively different
feature values (a difference vector with a non-zero mean and a large variance).

4.1.1 Multivariate Normal assumption

We assume that the feature differences for the relevance class have a multi-
variate Normal density with mean µA and covariance matrix ΣA,

f(d|µA, ΣA) =
1

(2π)q/2|ΣA|1/2
e−(d−µA)′Σ−1

A
(d−µA)/2. (25)

Similarly, the feature differences for the irrelevance class are assumed to have
a multivariate Normal density with mean µB and covariance matrix ΣB,

f(d|µB, ΣB) =
1

(2π)q/2|ΣB|1/2
e−(d−µB)′Σ−1

B
(d−µB)/2. (26)

The likelihood ratio in (24) is given as

r(d) =
f(d|µA, ΣA)

f(d|µB, ΣB)
. (27)

Given training feature difference vectors d1, . . . , dn ∈ R
q, µA, ΣA, µB and

ΣB are estimated using the multivariate versions of the MLEs given in Sec-
tion 3.5.1 as

µ̂ =
1

n

n
∑

i=1

di and Σ̂ =
1

n

n
∑

i=1

(di − µ̂)(di − µ̂)′. (28)

To simplify the computation of the likelihood ratio in (27), we take its loga-
rithm, eliminate some constants, and use

r(d) = (d − µA)′Σ−1
A (d − µA) − (d − µB)′Σ−1

B (d − µB) (29)

to rank the database images in ascending order of these values which cor-
responds to a descending order of similarity. This ranking is equivalent to
ranking in descending order using the likelihood values in (27).

4.1.2 Independently fitted distributions

We also use the fitted distributions to compute the likelihood values. Using the
Double Exponential model in Section 3.5.3 for the 20 line-angle-ratio feature
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differences and the Normal model in Section 3.5.1 for the 8 co-occurrence
feature differences independently for each feature component, the joint density
for the relevance class is given as

f(d|λA1, . . . , λA20,µA21, . . . , µA28, σ
2
A21, . . . , σ

2
A28) =

20
∏

i=1

1

2λAi
e−|di|/λAi

28
∏

i=21

1
√

2πσ2
Ai

e−(di−µAi)
2/2σ2

Ai
(30)

and the joint density for the irrelevance class is given as

f(d|λB1, . . . , λB20,µB21, . . . , µB28, σ
2
B21, . . . , σ

2
B28) =

20
∏

i=1

1

2λBi
e−|di|/λBi

28
∏

i=21

1
√

2πσ2
Bi

e−(di−µBi)
2/2σ2

Bi .
(31)

The likelihood ratio in (24) becomes

r(d) =
f(d|λA1, . . . , λA20, µA21, . . . , µA28, σ

2
A21, . . . , σ

2
A28)

f(d|λB1, . . . , λB20, µB21, . . . , µB28, σ2
B21, . . . , σ

2
B28)

. (32)

λAi, λBi, µAi, µBi, σ
2
Ai, σ

2
Bi are estimated using the MLEs given in Sections 3.5.3

and 3.5.1. Instead of computing the complete likelihood ratio, we take its
logarithm, eliminate some constants, and use

r(d) =
20
∑

i=1

|di|
(

1

λAi

−
1

λBi

)

+
1

2

28
∑

i=21

[

(di − µAi)
2

σ2
Ai

−
(di − µBi)

2

σ2
Bi

]

(33)

to rank the database images.

4.2 The nearest neighbor rule

In the geometric similarity measures like the nearest neighbor decision rule,
each image n in the database is assumed to be represented by its feature
vector y(n) in the q-dimensional feature space. Given the feature vector x for
the input query, the goal is to find the y’s which are the closest neighbors of
x according to a distance measure ρ. Then, the k-nearest neighbors of x will
be retrieved as the most relevant ones.

The problem of finding the k-nearest neighbors can be formulated as follows.
Given the set Y = {y(n)|y(n) ∈ R

q, n = 1, . . . , N} and feature vector x ∈ R
q,

find the set of images U ⊆ {1, . . . , N} such that #U = k and

ρ(x, y(u)) ≤ ρ(x, y(v)) , ∀u ∈ U, v ∈ {1, . . . , N}\U (34)

where N being the number of images in the database. Then, images in the set
U are retrieved as the result of the query.
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4.2.1 The Lp metric

As the distance measure, we use the Minkowsky Lp metric (Naylor and Sell
(1982))

ρp(x, y) =

( q
∑

i=1

|xi − yi|
p

)1/p

(35)

for p ≥ 1 where x, y ∈ R
q and xi and yi are the i’th components of the feature

vectors x and y respectively. A modified version of the Lp metric as

ρp(x, y) =
q
∑

i=1

|xi − yi|
p (36)

is also a metric for 0 < p < 1. We use the form in (36) for p > 0 to rank the
database images since the power 1/p in (35) does not affect the ranks. We will
describe how we choose which p to use in the following section.

4.2.2 Choosing p

Commonly used forms of the Lp metric are the city-block (L1) distance and the
Euclidean (L2) distance. Sclaroff et al. (1997) used Lp metrics with a selection
criterion based on the relevance feedback from the user. The best Lp metric
for each query was chosen as the one that minimized the average distance
between the images labeled as relevant. However, no study of the performance
of this selection criterion was presented.

We use a linear classifier to choose the best p value for the Lp metric. Given
training sets of feature vector pairs (x, y) for the relevance and irrelevance
classes, first, the distances ρp are computed as in (36). Then, from the his-
tograms of ρp for the relevance class A and the irrelevance class B, a threshold
θ is selected for classification. This corresponds to a likelihood ratio test where
the class-conditional densities are estimated by the histograms.

After the threshold is selected, the classification rule becomes

assign (x, y) to







classA if ρp(x, y) < θ

classB if ρp(x, y) ≥ θ.
(37)

We use a minimum error decision rule with equal priors, i.e. the threshold is
the intersecting point of the two histograms. The best p value is then chosen
as the one that minimizes the classification error which is 0.5 misdetection +
0.5 false alarm.
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5 Experiments and Results

5.1 Database population

Our database contains 10,410 256×256 images that came from the Fort Hood
Data of the RADIUS Project and also from the LANDSAT and Defense Mete-
orological Satellite Program (DMSP) Satellites. The RADIUS images consist
of visible light aerial images of the Fort Hood area in Texas, USA. The LAND-
SAT images are from a remote sensing image collection.

Two traditional measures for retrieval performance in the information retrieval
literature are precision and recall. Given a particular number of images re-
trieved, precision is defined as the percentage of retrieved images that are
actually relevant and recall is defined as the percentage of relevant images
that are retrieved. For these tests, we randomly selected 340 images from
the total of 10,410 and formed a groundtruth of 7 categories; parking lots,
roads, residential areas, landscapes, LANDSAT USA, DMSP North Pole and
LANDSAT Chernobyl.

The training data for the likelihood-based similarity measures was generated
using the protocol described in (Aksoy and Haralick (1998)). This protocol
divides an image into sub-images which overlap by at most half their area
and records the relationships between them. Since the original images from
the Fort Hood Dataset that we use as the training set have a lot of structure,
we assume that sub-image pairs that overlap are relevant (training data for
the relevance class) and sub-image pairs that do not overlap are usually not
relevant (training data for the irrelevance class).

The normalization methods that are used in the experiments in the following
sections are indicated in the caption to Table 1. The legends in the following
figures refer to the same caption.

5.2 Choosing p for the Lp metric

The p values that were used in the experiments below were chosen using
the approach described in Section 4.2.2. For each normalization method, we
computed the classification error for p in the range [0.2,5]. The results are
given in Figure 7. We also computed the average precision for all normalization
methods for p in the range [0.4,2] as given in Table 1. The values of p that
resulted in the smallest classification error and the largest average precision
were consistent. Therefore, the classification scheme presented in Section 4.2.2
was an effective way of deciding which p to use. The p values that gave the
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Table 1
Average precision when 18 images are retrieved. Columns represent different nor-
malization methods. Rows represent different p values. The largest average pre-
cision for each normalization method is also marked. The normalization methods
that are used in the experiments are represented as: Norm.1: Linear scaling to
unit range; Norm.2: Linear scaling to unit variance; Norm.3: Transformation to
a Uniform[0,1] random variable; Norm.4: Rank normalization; Norm.5.1: Fitting
Exponentials to line-angle-ratio features and fitting Normals to co-occurrence fea-
tures; Norm.5.2: Fitting Exponentials to line-angle-ratio features and fitting Log-
normals to co-occurrence features; Norm.5.3: Fitting Exponentials to all features;
Norm.5.4: Fitting Exponentials to line-angle-ratio features and fitting Gammas to
co-occurrence features.

Method
p

Norm.1 Norm.2 Norm.3 Norm.4 Norm.5.1 Norm.5.2 Norm.5.3 Norm.5.4

0.4 0.4615 0.4801 0.5259 0.5189 0.4777 0.4605 0.4467 0.4698

0.5 0.4741 0.4939 0.5404 0.5298 0.4936 0.4706 0.4548 0.4828

0.6 0.4800 0.5018 0.5493 0.5378 0.5008 0.4773 0.4586 0.4892

0.7 0.4840 0.5115 0.5539 0.5423 0.5033 0.4792 0.4582 0.4910

0.8 0.4837 0.5117 0.5562 0.5457 0.5078 0.4778 0.4564 0.4957

0.9 0.4830 0.5132 0.5599 0.5471 0.5090 0.4738 0.4553 0.4941

1.0 0.4818 0.5117 0.5616 0.5457 0.5049 0.4731 0.4552 0.4933

1.1 0.4787 0.5129 0.5626 0.5479 0.5048 0.4749 0.4510 0.4921

1.2 0.4746 0.5115 0.5641 0.5476 0.5032 0.4737 0.4450 0.4880

1.3 0.4677 0.5112 0.5648 0.5476 0.4995 0.4651 0.4369 0.4825

1.4 0.4632 0.5065 0.5661 0.5482 0.4973 0.4602 0.4342 0.4803

1.5 0.4601 0.5052 0.5663 0.5457 0.4921 0.4537 0.4303 0.4737

1.6 0.4533 0.5033 0.5634 0.5451 0.4868 0.4476 0.4231 0.4692

2.0 0.4326 0.4890 0.5618 0.5369 0.4755 0.4311 0.4088 0.4536

smallest classification error for each normalization method were used in the
retrieval experiments of the following section.

5.3 Retrieval performance

Retrieval results, in terms of precision and recall averaged over the groundtruth
images, for the likelihood ratio with multivariate Normal assumption, the like-
lihood ratio with fitted distributions and the Lp metric with different normal-
ization methods are given in Figures 8, 9, and 10 respectively. Note that, linear
scaling to unit range involves only scaling and translation and it does not have
any truncation so it does not change the structures of distributions of the fea-
tures. Therefore, using this method reflects the effects of using the raw feature
distributions while mapping them to the same range. Figures 11 and 12 show
the retrieval performance for the normalization methods separately. Example
queries using the same query image but different similarity measures are given
in Figure 13.
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5.4 Observations

• Using probabilistic similarity measures always performed better in terms of
both precision and recall than the cases where the geometric measures with
the Lp metric were used. On the average, the likelihood ratio that used the
multivariate Normality assumption performed better than the likelihood
ratio that used independent features with fitted Exponential or Normal
distributions. The covariance matrix in the correlated multivariate Normal
captured more information than using individually better fitted but assumed
to be independent distributions.

• Probabilistic measures performed similarly when different normalization
methods were used. This shows that these measures are more robust to nor-
malization effects than the geometric measures. The reason for this is that
the parameters used in the class-conditional densities (e.g. covariance ma-
trix) were estimated from the normalized features, therefore the likelihood-
based methods have an additional (built-in) normalization step.

• The Lp metric performed better for values of p around 1. This is consistent
with our earlier experiments where the city-block (L1) distance performed
better than the Euclidean (L2) distance (Aksoy and Haralick (2000a)). Dif-
ferent normalization methods resulted in different ranges of best performing
p values in the classification tests for the Lp metric. Both the smallest clas-
sification error and the largest average precision were obtained with nor-
malization methods like transformation using the cumulative distribution
function (Norm.3) or the rank normalization (Norm.4), i.e. the methods
that tend to make the distribution uniform. These methods also resulted
in relatively flat classification error curves around the best performing p
values which showed that a larger range of p values were performing simi-
larly well. Therefore, flat minima are indicative of a more robust method.
All the other methods had at least 20% worse classification errors and 10%
worse precisions. They were also more sensitive to the choice of p and both
the classification error and the average precision changed fast with smaller
changes in p. Besides, the values of p that resulted in both the smallest classi-
fication errors and the largest average precisions were consistent. Therefore,
the classification scheme presented in Section 4.2.2 was an effective way of
deciding which p to use in the Lp metric.

• The best performing p values for the methods Norm.3 and Norm.4 were
around 1.5 whereas smaller p values around 0.7 performed better for other
methods. Given the structure of the Lp metric, a few relatively large differ-
ences can effect the results significantly for larger p values. On the other
hand, smaller p values are less sensitive to large differences. Therefore,
smaller p values tend to make a distance more robust to large differences.
This is consistent with the fact that L1-regression is more robust than least
squares with respect to outliers (Rousseeuw and Leroy (1987)). This shows
that the normalization methods other than Norm.3 and Norm.4 resulted in
relatively unbalanced feature spaces and smaller p values tried to reduce
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this effect in the Lp metric.
• Using only scaling to unit range performed worse than most of the other

methods. This is consistent with the observation that spreading out the
feature values in the [0,1] range as much as possible improved the discrimi-
nation capabilities of the Lp metrics.

• Among the methods with fitting distributions, fitting Exponentials to the
line-angle-ratio features and fitting Normals to the co-occurrence features
performed better than others. We can conclude that studying the distribu-
tions of the features and using the results of this study significantly improves
the results compared to making only general or arbitrary assumptions.

6 Conclusions

This paper investigated the effects of feature normalization on the retrieval
performance in an image database retrieval system. We described five normal-
ization methods; linear scaling to unit range, linear scaling to unit variance,
transformation to a Uniform[0,1] random variable, rank normalization and
normalization by fitting distributions to independently normalize each feature
component to the [0,1] range. We showed that the features were not always
Normally distributed as usually assumed, and normalization with respect to
a fitted distribution was required. We also showed that many features that
were computed by different feature extraction algorithms could be modeled
by the methods that we presented, and spreading out the feature values in the
[0,1] range as much as possible improved the discrimination capabilities of the
similarity measures. The best results were obtained with the normalization
methods of transformation using the cumulative distribution function and the
rank normalization. The final choice of the normalization method that will be
used in a retrieval system will depend on the precision and recall results for
the specific data set after applying the methods presented in this paper.

We also described two new probabilistic similarity measures and compared
their retrieval performances with those of the geometric measures in the form
of the Lp metric. The probabilistic measures used likelihood ratios that were
derived from a Bayesian classifier that measured the relevancy of two images,
one being the query image and one being a database image, so that image
pairs which had a high likelihood value were classified as “relevant” and the
ones which had a lower likelihood value were classified as “irrelevant”. The
first likelihood-based measure used multivariate Normal assumption and the
second measure used independently fitted distributions for the features. A
classification-based approach with a minimum error decision rule was used to
select the best performing p for the Lp metric. The values of p that resulted
in the smallest classification errors and the largest average precisions were
consistent and the classification scheme was an effective way of deciding which
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p to use. Experiments on a database of approximately 10,000 images showed
that both likelihood-based measures performed significantly better than the
commonly used Lp metrics in terms of average precision and recall. They were
also more robust to normalization effects.
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Fig. 1. Feature histograms and fitted distributions for example features. An Ex-
ponential model (solid line) is used for the line-angle-ratio features and Normal
(solid line), Lognormal (dash-dot line) and Gamma (dashed line) models are used
for the co-occurrence features. The vertical lines show the 99% cut-off point for each
distribution.
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Fig. 2. Normalized feature histograms for the example features in Figure 1. Num-
bers in the legends correspond to the normalization methods as follows: Norm.1:
Linear scaling to unit range; Norm.2: Linear scaling to unit variance; Norm.3:
Transformation to a Uniform[0,1] random variable; Norm.4: Rank normalization;
Norm.5.1: Fitting a Normal density; Norm.5.2: Fitting a Lognormal density;
Norm.5.3: Fitting an Exponential density; Norm.5.4: Fitting a Gamma density.
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Fig. 3. Normalized feature histograms for the example features in Figure 1 (cont.).
Numbers in the legends are described in Figure 2.
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Fig. 4. Histograms of the differences of the normalized features in Figure 2. Numbers
in the legends are described in Figure 2.
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Fig. 5. Histograms of the differences of the normalized features in Figure 3 (cont.).
Numbers in the legends are described in Figure 2.
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Fig. 6. Feature histograms and fitted distributions for some of the Gabor, QBIC
and moments features. The vertical lines show the 99% cut-off point.
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(a) Norm.1 (Best p = 0.6)
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(b) Norm.2 (Best p = 0.8)
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(c) Norm.3 (Best p = 1.3)
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(d) Norm.4 (Best p = 1.4)
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Fig. 7. Classification error vs. p for different normalization methods. The best p

value is marked for each method.
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Fig. 8. Retrieval performance for the whole database using the likelihood ratio with
the multivariate Normal assumption.
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Fig. 9. Retrieval performance for the whole database using the likelihood ratio with
the fitted distributions.
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Fig. 10. Retrieval performance for the whole database using the Lp metric.
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(a) Linear scaling to unit range
(Norm.1).
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(b) Linear scaling to unit variance
(Norm.2).
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(c) Transformation to a Uniform r.v.
(Norm.3).
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(d) Rank normalization (Norm.4).

Fig. 11. Precision vs. Number of images retrieved for the similarity measures used
with different normalization methods.
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(a) Fitting Exponentials and Normals
(Norm.5.1).
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(b) Fitting Exponentials and Lognormals
(Norm.5.2).
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(c) Fitting Exponentials (Norm.5.3).
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(d) Fitting Exponentials and Gammas
(Norm.5.4).

Fig. 12. Precision vs. Number of images retrieved for the similarity measures used
with different normalization methods (cont.).
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(a) Likelihood ratio (MVN) (12 similar
images retrieved)

(b) Likelihood ratio (Fit) (11 similar im-
ages retrieved)

(c) City-block (L1) distance (9 similar
images retrieved)

(d) Euclidean (L2) distance (7 similar
images retrieved)

Fig. 13. Retrieval examples using the same parking lot image as query with differ-
ent similarity measures. The upper left image is the query. Among the retrieved
images, first three rows show the 12 most relevant images in descending order of
similarity and the last row shows the 4 most irrelevant images in descending order
of dissimilarity. Please note that both the order and the number of similar images
retrieved with different measures are different.
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