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Department of Computer Engineering

Bilkent University
Bilkent, 06800, Ankara, Turkey

{saksoy,emelkaya}@cs.bilkent.edu.tr

Abstract
Automatic extraction of buildings and modeling of their

spatial arrangements provide essential information for ur-
ban applications. This paper describes our work on mod-
eling urbanization using spatial building patterns. Build-
ing detection is done using Bayesian classification of multi-
spectral information. The individual buildings are used
as textural primitives, and co-occurrence-based spatial do-
main features and Fourier spectrum-based frequency do-
main features are used to model their repetitiveness and
periodicity at particular orientations. These features are
used to classify neighborhoods as organized (regular) and
unorganized (irregular). Experiments with high-resolution
Ikonos imagery show that the proposed technique can be
used for automatic segmentation of urban scenes and ex-
traction of valuable information about urban growth.

1. Introduction
Increase in the spatial resolution of remotely sensed im-

agery has enabled new studies and, at the same time, has
brought out new challenges for urban applications. Most of
the previous work characterize urban areas using the density
of buildings [4]. This characterization is important in ur-
ban monitoring and change detection studies as fast growing
cities often face the problem of unorganized urban growth,
even illegal expansion, that causes the destruction of green
areas and has severe negative effects on the environment.

The complexity of urban scenes demands the develop-
ment of new techniques because the traditional approach
of pixel-based classification cannot model objects such as
buildings and their structure in an urban setting. Alternative
techniques model neighborhoods using histograms of tex-
ture elements to approximate spatial patterns [1], and prop-
erties of graphs of line segments for classification of scenes
as rural, residential or urban [7].

Our work involves detection of individual buildings us-
ing multi-spectral information, and texture-based modeling
of their spatial arrangements within image scenes. The
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(a) Regular (organized) (b) Irregular (unorganized)

Figure 1: Examples of building patterns.

individual buildings are used as textural primitives, and
co-occurrence-based spatial domain features and Fourier
spectrum-based frequency domain features are used to
model their repetitiveness and periodicity at particular ori-
entations. The spatial arrangements we are interested in cor-
respond to regular patterns and irregular patterns that repre-
sent highly organized and unorganized neighborhoods, re-
spectively, as shown in Figure 1. The former represent ur-
ban areas that undergo planned land development whereas
the latter correspond to areas that are affected by unorga-
nized and even potentially illegal expansion.

The rest of the paper is organized as follows. Section 2
discusses building detection. Section 3 presents the pro-
posed approach for modeling building patterns. Section
4 describes the classification of image sub-windows using
these models. Section 5 presents experiments using three
Ikonos scenes of Ankara, Turkey. Finally, Section 6 pro-
vides a summary and indicates future research directions.

2. Building Detection
Techniques that are specifically designed for detection of

buildings using their spectral, edge and shape properties can
be found in the literature. Our goal in this paper is to eval-
uate measures of arrangements of buildings so we devel-
oped a simple detector for individual buildings. This detec-
tor uses a two-class Bayesian classifier trained on the pan-
sharpened RGB bands of Ikonos images. Gaussian mix-
tures are used as the class-conditional distributions with 3



components for the building class and 6 components for the
non-building class.

To remove the false positives from the resulting binary
map, first, we clean small noisy pixels using the morpholog-
ical opening by reconstruction operation with a disk struc-
turing element with diameter of 5 pixels. Then, we remove
the connected components with an area smaller than 50 m2

or greater than 6,000 m2. These area thresholds were deter-
mined empirically by examining the sizes of the buildings
and the false positives.

3. Modeling Building Patterns
Detection of building groups needs region-based analy-

sis. However, segmentation techniques usually assume that
regions consist of uniform feature distributions and cannot
delineate areas that include several objects (buildings) and
the background (trees, grass, roads, etc.). Therefore, di-
viding images into non-overlapping sub-windows and ana-
lyzing the individual sub-windows have been the common
approach used for image partitioning [1, 7].

Texture has been acknowledged to be an important visual
feature used to classify and recognize objects and scenes. It
can be characterized by textural primitives as unit elements
and neighborhoods in which the organization and relation-
ships between the properties of these primitives are defined.
However, an important problem has been the definition and
detection of textural primitives. Thus, pixels are used as the
unit elements and features are extracted for pixel neighbor-
hoods. In this work, we use buildings as the unit primitives,
and use spatial domain and frequency domain texture fea-
tures for characterizing their spatial arrangements. Details
of the features are described below.

3.1. Spatial domain periodicity analysis
Several comparative studies showed that features ex-

tracted from co-occurrence matrices are very effective fea-
tures for texture analysis [8]. Co-occurrence, in general
form, can be specified in a matrix of relative frequencies
P (i, j; d, θ) with which two texture elements separated by
distance d at orientation θ occur in the image, one with
property i and the other with property j.

In order to use the information contained in co-
occurrence matrices, Haralick et al. [3] defined 14 statis-
tical features that measure textural characteristics such as
homogeneity, contrast, organized structure, and complex-
ity. Conners and Harlow [2] showed that the local min-
ima of the contrast (inertia) feature among these 14 can be
used to detect periodicity at a given orientation. Zucker and
Terzopoulos [9] defined a χ2 (chi-square) statistic to mea-
sure the amount of structure at a particular inter-pixel dis-
tance and orientation. Starovoitov et al. [6] compared 22
co-occurrence-based features for periodicity analysis, and
concluded that seven of these features are useful for this
purpose.
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Figure 2: Example building patterns (first column), the con-
trast features for 0 and 67.5 degree orientations (second and
third columns), and the χ2 features for 0 and 67.5 degree
orientations (fourth and fifth columns). The first two rows
represent organized neighborhoods where the third row is
an example of an almost random arrangement. x-axes in
the feature plots represent inter-pixel distances of 1 to 60.

We use both contrast and χ2 features to detect periodicity
and directionality. Given a binary classification map where
1 represents buildings and 0 represents everything else, and
the corresponding co-occurrence matrix computed at partic-
ular d and θ, the contrast feature [6] reduces to

xi = P (0, 1) + P (1, 0) (1)

and the χ2 statistic [6] reduces to

yi =
(P (0, 0)P (1, 1)− P (0, 1)P (1, 0))2

a
(2)

where a = (P (0, 0) + P (0, 1)) × (P (1, 0) + P (1, 1)) ×
(P (0, 1)+P (1, 1))×(P (0, 0)+P (1, 0)). We compute these
features at 1 to 60 inter-pixel distances and eight different
orientations iπ

8 , i = 0, . . . , 7.
Example building patterns and the corresponding fea-

tures are given in Figure 2. These examples show that the
features at a particular orientation exhibit a periodic struc-
ture as a function of distance if the neighborhood contains
a regular arrangement of buildings along that direction. On
the other hand, features are very similar for different orien-
tations if there is no particular arrangement in the neighbor-
hood. To extract a single feature vector, we sum the feature
values along each orientation and obtain a feature vector of
length 8 (one value for each direction). Vectors for contrast
and χ2 features are computed separately. Finally, values in
these vectors are sorted to achieve rotation invariance.
3.2. Frequency domain periodicity analysis

It is well known that the radial distribution of values in
the Fourier spectrum of an image (which is analogous to
spatial autocorrelation [5]) is sensitive to texture coarseness
in that image. It is also well known that the angular distri-
bution of values in the spectrum is sensitive to the direction-
ality of the texture in the image [8].
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Figure 3: Example building patterns (first column), Fourier
spectrum of these patterns (second column), and the corre-
sponding ring- and wedge-based features (third and fourth
columns). (Neighborhoods are described in Figure 2.) x-
axes for the feature plots represent the rings and wedges.

Given the spectrum function S(r, θ) expressed in polar
coordinates, features that capture texture periodicity and di-
rectionality can be computed by integrating (summing in
the discrete case) S over ring-shaped and wedge-shaped re-
gions centered at the origin, respectively. The ring-based
(periodicity) features have the form

xi =
ri+1∑
r=ri

π∑
θ=0

S(r, θ) (3)

where ri and ri+1 are the inner and outer radii of the ring.
We set r to powers of 2 (e.g., [0, 2), [2, 4), [4, 8), etc.) as in
[8]. The wedge-based (directional) features have the form

yi =
θi+1∑
θ=θi

rmax∑
r=1

S(r, θ) (4)

where θi and θi+1 are the slope and rmax is the radius of the
wedge. (The DC component is omitted since it is common
to all wedges.) We set θ as θi = (2i − 1) π

2n , i = 0, . . . , n,
where n is the number of wedges and is set to 24.

Example building patterns and the corresponding feature
vectors are given in Figure 3. These examples show that the
peaks in the features correspond to the periodicity and direc-
tionality of the buildings, whereas no dominant peaks can
be found when there is no regular building pattern. Since
we are interested only in the periodicity (i.e., organization)
but not the directionality, the wedge-based feature vectors
are circularly shifted so that the largest value is at the origin
for rotation invariance.

4. Scene Classification
Given the multi-spectral image of a large scene, first,

each pixel is classified as building or non-building using

Table 1: Confusion matrix for building detection (test data).
Detected Total Accuracy

building non-building (%)

True building 73,518 6,163 79,681 92.26
non-building 26,029 535,535 561,564 95.36

Total 99,547 541,698 641,245 94.98

the classifier in Section 2. Then, the resulting classifica-
tion map is partitioned into non-overlapping sub-windows
of 100 × 100 pixels and textural features are computed for
each sub-window as in Section 3. Finally, each sub-window
is classified using binary decision tree classifiers trained by
manual labeling of several sub-windows as regular (orga-
nized) or irregular (unorganized). Decision trees were cho-
sen because they do not require any assumptions about nei-
ther the distributions nor the independence of features, and
they also automatically perform feature selection.

5. Experiments
Three scenes (4, 000 × 3, 000 pixels each) of pan-

sharpened RGB bands of 1 m spatial resolution Ikonos im-
ages of Ankara, Turkey were used to evaluate the proposed
features. Two separate sets of pixels were manually labeled
to form independent training and testing data for evaluating
building detection. After the buildings were detected, the
scenes were divided into 100× 100 sub-windows, and each
sub-window was classified using the texture features.

5.1. Evaluation of building detection
Table 1 shows the performance of the Gaussian mixture-

based building classifier on testing data where the error rate
was obtained as 5.02% (error for the independent training
data was 5.06%). Note that these rates were computed be-
fore applying morphological and area-based cleaning op-
erators that further decrease the number of false positives.
The error rates were quite low considering that only multi-
spectral values were used for classification. Examples of
detected buildings are shown in Figure 4.

5.2. Evaluation of scene classification
Example classification results are given in Figure 4. We

performed classification using two spatial domain and two
frequency domain feature sets, and the results were sim-
ilar for different sets (since ground truth is limited, only
qualitative results are given). Figure 4 presents only two
cases due to space limitations. Visual evaluation of the re-
sults showed that most of the neighborhoods were classi-
fied correctly. Errors were mostly caused by different den-
sities of buildings in different neighborhoods. In particular,
some neighborhoods were incorrectly classified as unorga-
nized when they contained a low density of regularly placed
buildings. Some errors were also due to sub-windows that
were on the boundary between organized and unorganized
neighborhoods. The overall evaluation of the three scenes



Figure 4: Example classification results for two 4, 000× 3, 000 Ikonos scenes. The left, middle and right columns show the
original data, the detected buildings, and the neighborhoods classified using the χ2-based spatial domain features, respec-
tively. Buildings (connected components) belonging to neighborhoods classified as organized are shown as green, buildings
in unorganized neighborhoods are shown in red, and buildings that could not be classified to either type are shown in blue.

showed that the texture features can capture spatial building
patterns and can model urbanization in most of the cases.

6. Summary
We described a new method for analyzing land develop-

ment in high-resolution satellite imagery in terms of spatial
arrangements of buildings. Spatial domain (co-occurrence
based) and frequency domain (Fourier spectrum based) tex-
ture features were used to quantify the building patterns and
classify neighborhoods as organized (regular) and unorga-
nized (irregular).

We believe that segmentation of scenes based on high-
level content such as the spatial patterns described in this
paper will provide a significant contribution toward auto-
matic semantic analysis of remote sensing image data sets,
and will enable new results in urban planning, development
and monitoring, and change detection studies. Future work
includes using additional features for improving building
detection, combination of different texture features for pe-
riodicity analysis, automatic selection of sub-window sizes
for different neighborhoods, and application of spatial pat-
terns to detect other periodic structures.
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