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Abstract

This paper presents the initial results of the Algo-
rithm Performance Contest that was organized as part
of the 5th IAPR Workshop on Pattern Recognition in Re-
mote Sensing (PRRS 2008). The focus of the 2008 con-
test was automatic building detection and digital sur-
face model (DSM) extraction. A QuickBird data set
with manual ground truth was used for building de-
tection evaluation, and a stereo Ikonos data set with a
highly accurate reference DSM was used for DSM ex-
traction evaluation. Nine submissions were received for
the building detection task, and three submissions were
received for the DSM extraction task. We provide an
overview of the data sets, the summaries of the methods
used for the submissions, the details of the evaluation
criteria, and the results of the initial evaluation.
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1. Introduction

The goal of the algorithm performance contest that
was organized as part of the 5th IAPR Workshop on
Pattern Recognition in Remote Sensing (PRRS 2008,
http://www.iapr-tc7.org/prrs08) was the evaluation of
pattern recognition techniques on different remote sens-
ing data sets with known ground truth. The contest was
coordinated jointly by the International Association for
Pattern Recognition (IAPR) Technical Committee 7 on
Remote Sensing (http://www.iapr-tc7.org) and the IS-
FEREA Action of the European Commission, Joint Re-
search Centre, Institute for the Protection and Security
of the Citizen (http://isferea.jrc.ec.europa.eu).

The focus of the 2008 contest was automatic building
detection and building height extraction. The precise
identification and localization of settlement features is
one of the key information sets needed for territorial
planning and in any assessment related to human secu-
rity and safety decision process, from the preparedness
to natural hazards and to post-disaster evaluation. Since
buildings are one of the most salient settlement features,
their detection from satellite imagery has long been an
important research topic in remote sensing image anal-
ysis.

Despite the fact that current generation Earth Obser-
vation (EO) data can provide an updated and detailed
source of information related to human settlements,
the available geo-information layers derived from these
data are often too outdated and/or not enough for the
user needs. Furthermore, accurate automatic interpre-
tation using traditional techniques that are based on
spectral properties is only possible for low-resolution
EO data, while new methods are not stable and mature
enough for supporting high- and very high-resolution
(VHR) satellite data.

In this perspective, optimization of the automatic in-
formation extraction from human settlements using new
generation satellite data is particularly important, and



the present contest offers an important contribution to-
ward this direction. This paper presents the initial re-
sults of the performance evaluation of building detec-
tion and digital surface model (DSM) extraction tasks in
the PRRS 2008 Algorithm Performance Contest. Sec-
tion 2 presents the QuickBird data used for building
detection, the summaries of nine methods contributed
by six groups, the evaluation criteria used, and the re-
sults of initial evaluation. Section 3 presents the stereo
Ikonos data used for DSM extraction, the summaries of
three methods contributed by one group, the evaluation
criteria used, and the results of initial evaluation.

2. Task 1: Building detection from monocu-
lar data

2.1. Background and data set

Legaspi City, the capital of the Albay province in Bi-
col, the Philippines, is a multi-hazard hot-spot with cy-
clone, volcano eruption, earthquake, tsunami and flood
risks. Therefore, the city of Legaspi was selected in the
context of a cooperation research project of the World
Bank and JRC/ISFEREA to perform a multi-hazard risk
analysis based on VHR remote sensing data.

A cloud-free QuickBird scene covering the city of
Legaspi was acquired on November 7, 2005, and field
data such as differential GPS measurements, building
structure and infrastructure information were collected.
In order to perform a detailed risk analysis based on
geospatial data, it is necessary to know the quality of
building structure and infrastructure as well as social
discrepancies and their geospatial distribution. One of
the most required data layers is a building layer prefer-
ably available as vector layer. Therefore, all buildings
in Legaspi were digitized manually; a time demanding
and very tedious work.

An automatic or semi-automatic approach to detect
and extract buildings would very much simplify the ini-
tial step of building information gathering before per-
forming any kind of built-up structure related hazard
vulnerability and risk analysis. Consequently, the de-
velopment of such an algorithm was decided to be a
task advertised in this contest. The data provided to
the participants consisted of a panchromatic band with
0.6m spatial resolution and 1668 × 1668 pixels, and
four multispectral bands with 2.4m spatial resolution
and 418×418 pixels (Figure 1). The manually digitized
ground truth was used for evaluation (Figure 2(a)).

(a) Panchromatic band

(b) Visible multispectral bands

Figure 1. QuickBird image of Legaspi, the
Philippines. (QuickBird c© DigitalGlobe
2005, Distributed by Eurimage.)

2.2. Participating methods

Nine results were submitted by six groups for the
building detection tasks. The methods used for obtain-
ing these results are described below.

Orfeo Two submissions were made by Emmanuel
Christophe and Jordi Inglada using the open source Or-
feo Toolbox Library [19]. First, pan-sharpening was
used to combine the panchromatic and multi-spectral
data to get a high-resolution 4-band data set. Usually
there is some important contextual information to use
to avoid obvious mistakes. It is unlikely to find a house
in the middle of the water unless the goal is specifi-



cally to count houses flooded during a natural disas-
ter. This basic level information can be exploited by
first creating a rough land cover classification. Classes
such as water, vegetation, roads, shadows, bare soil
and few ad-hoc classes provide a good starting point.
To obtain this classification, a Support Vector Machine
(SVM) classifier was used on a specific set of features
such as the four spectral bands, the NDVI index, a local
variance, and morphological profiles. This classifica-
tion was used as a mask to remove some obvious false
alarms in the following steps.

The next step was to segment the pan-sharpened im-
age in order to lower the complexity of the input data.
The level of details available in high-resolution images
can have a strong negative effect at some stages of the
processing: roof superstructures are irrelevant when try-
ing to extract the whole building for example. The mean
shift algorithm [6] was used as an efficient way to sim-
plify such images. The segmented image was combined
with the classification to remove irrelevant segments.
This was the main step where some simple high level
information concerning the object was introduced.

Segments were vectorized to enable higher level
processing. Finally, some adjustments of the de-
tected objects were made according to the original pan-
sharpened data (precise edge adjustment). This steps
fitted the obtained polygons to the input data by intro-
ducing shifts to the position of the vertices in order to
maximize the overlap with respect to the edges of the
original image.

The two submissions (namely, Orfeo1 and Orfeo2 in
the experiments) used the same process but differed in
two points:

• The land cover classification used was different.
Same classes were used but different samples were
given for the learning step.

• Parameter for the mean shift clustering was differ-
ent, thus, leading to different objects.

The results for Orfeo1 and Orfeo2 are shown in Figures
2(b) and 2(c), respectively.

METU Two submissions were made by researchers
from Middle East Technical University (METU). First,
the multispectral and panchromatic images were fused
by using the PANSHARP algorithm of PCI Geomatica.
To determine man-made regions, it was needed to mask
vegetation, shadow and water regions. The NDVI was
calculated by using the NIR and red bands of the pan-
sharpened image. A threshold was determined depend-
ing on the intensity values to mask the vegetated regions
from the pan-sharpened image. The water and shadow

areas were masked by applying a suitable threshold to
the NIR band. After masking out water, shadow and
vegetation regions from the pan-sharpened image, the
mean-shift segmentation method [6] was used to obtain
man-made regions. To mask the roads, the segmented
image was classified by using the maximum likelihood
classifier.

The resultant image included only the building
patches and some erroneous regions because of the
masking processes. To remove these erroneous re-
gions, the data were converted to vector by using the
RAS2POLY algorithm of PCI Geomatica. The mean
intensity values were assigned to each vector data and
some threshold values depending on the intensity val-
ues were determined to remove these erroneous regions.
The cleaned building patches were converted to raster
in the ArcGIS environment. In this way the buildings
with unique values were obtained. To merge the over-
segmented building patches, hue image, which is invari-
ant to illumination direction and highlights, was gener-
ated. The mean hue values were calculated and the hue
image was divided into two classes by using the areas
of building patches as small and large, where 170m2
of area was considered to be the threshold. The neigh-
boring building patches that had close mean hue val-
ues were merged for both small and large building data
with different closeness thresholds. Finally, the small
and large building data were combined to get the final
building patches. The results of this step are referred to
as METU1 in the experiments and are shown in Figure
2(d).

Since some building patches might not have valid
shapes such as long, line artifacts, principle component
analysis was used to eliminate non-building patches. A
high ratio of the eigenvalues of long and line shaped ar-
tifacts was used as an evidence of being non-building
patches. After eliminating the artifacts, the candidate
building patches were obtained. The results of this step
are referred to as METU2 in the experiments and are
shown in Figure 2(e).

Soman One submission was made by Jyothish Soman
using a fast unsupervised algorithm involving intuitive
definitions to find artificial objects in a satellite image.
The algorithm used the definition of an isolated artifi-
cial object as a section of the image that had a vari-
ance lower than its immediate surroundings [17]. Mul-
tispectral image was stretched to the size of the pan im-
age by resizing the image using a bi-cubic interpolation.
The pre-processing removed water bodies, shadows and
vegetation from the image, using derived information
from the multispectral data.

The algorithm started by finding points such that the



number of its neighboring pixels with relative differ-
ence less than the variance of the image was greater
than 5, i.e., the point had a nearly uniform surround-
ing. Thus the most probable seed points were found
for region growing. The generated points formed clus-
ters, which were joined to form regions. These regions
were then used as starting zones for a variance based
region growing. The mask for region growing was kept
such that edges were maintained and the regions did not
grow into areas containing natural bodies and shadows.
Pixels were added to the regions if their values did not
exceed the sum of the mean of the current region and
the variance of the initial region. A final thresholding
was done so that regions with an area within a range
was kept. This submission is referred to as Soman in
the experiments and is shown in Figure 2(f).

Borel One submission was made by Christoph Borel
using a series of IDL programs. First, the multispec-
tral data were pan-sharpened to the pan band resolution.
Then, a mask generation step was performed to find col-
ored building roofs. The operations in this step included
performing a 2% histogram stretch on each band, per-
forming a hue-saturation-value (HSV) transformation
on the true color byte image cube, finding the red roofs
if the red band’s values were greater than a weight mul-
tiplied with the sum of green, blue and NIR bands (re-
droof), finding the green roofs if hue was between two
limits and the value above a threshold (greenroof), find-
ing the blue roofs if hue was between two limits and
the value above a threshold (blueroof), and finding the
bright roofs by thresholding the value (brightroof). The
mask generation step was followed by size filtering and
shape analysis. The operations in this step included ap-
plying a median filter to remove very small regions from
all mask images, and labeling all regions and keeping
the ones with a size greater than a threshold. Since the
brightroof image contained some road features, every
region was analyzed for its aspect ratio (length/width)
and fill factor (area of minimum enclosing rectangle
over actual area). Only regions with an aspect ratio
greater than a threshold and a filling factor greater than
a threshold were considered buildings. Finally, build-
ings were found by logical OR operation on the masks
redroof, greenroof, blueroof and brightroof. This sub-
mission is referred to as Borel in the experiments and is
shown in Figure 2(g).

LSIIT Two submissions were made by Sébastien
Lefèvre and Régis Witz using a recent segmentation
method described in [15] that is not specific to the prob-
lem under consideration. This method improves the
widely used marker-based watershed segmentation by

making use of the markers’ content (and not only the
markers’ location) to guide the segmentation process.
To do so, this supervised segmentation technique asso-
ciates each marker to a class (a class may contain sev-
eral markers). These markers are then considered as a
learning set in a fuzzy classification procedure (e.g., 5-
nearest neighbours) which returns a membership map
per class. These maps are inverted and combined with
a multispectral gradient (e.g., the Euclidean norm of a
marginal morphological gradient) to produce as many
topographic surfaces as classes. Finally, the segmenta-
tion is obtained following the flooding procedure which
has been adapted to the case of several surfaces: wa-
ter is flooding simultaneously on the different surfaces,
and each pixel is given the label of the marker which
reaches it first (i.e., before the other markers).

The direct application of this algorithm required to
set a marker per building to be detected. Thus a second
algorithm was designed as a semi-supervised solution to
the problem of building detection. To limit the user in-
tervention, a marker identification procedure was added
as a pre-processing step. It was based on the mark-
ers defined by the user and aimed to find new markers.
To do so it relied on a pixel classification step using
user markers as a learning set. To ensure a minimum
robustness to noise, the classification map was filtered
with morphological opening (i.e., the minimum size of
a building). To avoid border effects between close com-
ponents, each connected component was also eroded us-
ing a small square structuring element. This additional
procedure was designed especially for the contest (or
for images where it was not relevant to manually mark
each object).

The experimental setup for processing the Legaspi
image started with a fusion of panchromatic and
multispectral bands. Then, the markers were de-
fined manually over the image by a computer
scientist (novice in remote sensing), using a web
interface such as the one available at http://dpt-info.u-
strasbg.fr/∼lefevre/demos/supervisedWatershedApplet.
For the first experiment (supervised watershed), the
markers were defined using 10 classes (6 for buildings
with different roofs, water, vegetation, road, boats). Al-
most each visible object was marked with the relevant
class using a square of 5× 5 pixels (smaller if needed).
The manual labeling resulted in around 2460 objects
identified by the user in 90 minutes. The segmentation
procedure was much faster and required between
100 and 180 seconds depending on the optimizations
considered. The results of this step are referred to as
LSIIT1 in the experiments and are shown in Figure
2(h).

For the second experiment (semi-supervised water-



shed), the markers were defined using 2 classes (build-
ing and non-building), with a total of markers as small
as 14 markers (7 for the buildings, 7 for the other ob-
jects). Hence, the goal was to produce some markers
required by the semi-supervised method very quickly
(setting 14 markers on the contest image was achieved
in only a few seconds). The minimum size of objects
was assumed to be 11 × 11 pixels (6 × 6 meters) and
was used as the structuring element size in the morpho-
logical filtering step. The segmentation procedure re-
quired between 60 and 150 seconds depending on the
optimizations considered. Since the computation time
was rather low and the user intervention was rather in-
tuitive, it would be possible to consider an interactive
segmentation strategy (e.g., by adding markers where
the segmentation fails). The results of this step are re-
ferred to as LSIIT2 in the experiments and are shown in
Figure 2(i).

Purdue One submission was made by Ejaz Hussein
and Jie Shan using an object-based image classification
technique. The method mainly consisted of three steps:
pan-sharpening, image segmentation, and object classi-
fication. The segmentation and classification were per-
formed in an iterative manner.

In the data pre-processing step, the four-band mul-
tispectral image was sharpened with the panchromatic
image using the Gram-Schmidt method. The resultant
pan-sharpened multispectral image was then segmented
to form image objects. Using NDVI, band ratio of
IR to green, and brightness as features, the segmented
objects were classified to two classes: vegetation and
water/shadow. After performing histogram stretching
on the panchromatic image, it was segmented with the
vegetation and water/shadow classes being the mask.
By selecting the brightness, area, and rectangular fit as
features, the last segmented results were classified to
find bright buildings in the panchromatic image. For
other buildings, the pan-sharpened multispectral image
was classified with the pre-classified vegetation, wa-
ter/shadow, and bright building classes being the mask.
This was carried out sequentially for green, magenta,
dark, and cyan buildings. Once the buildings of one
color were classified, they were used as an additional
mask for the next classification. When this was com-
pleted, all building object classes were combined into
one image, which was then segmented to form individ-
ual buildings. In this way, a building with several roof
colors, which were initially classified as different build-
ing classes, could be combined and identified as one
building. Finally, building objects of small size were
filtered out. ENVI, ArcGIS and Definiens Developer
were used in this submission that is referred to as Pur-

due in the experiments and is shown in Figure 2(j).

2.3. Evaluation criteria

In [21], it is stated that “there is no single method
which can be considered good for all images, nor are
all methods equally good for a particular type of im-
age”. Therefore, several error measures were used in
this contest for the comparison of the algorithms.

In the building detection task, the outputs of the al-
gorithms are images where the pixels corresponding to
each detected building are labeled with a unique integer
value. These outputs can be considered as segmenta-
tions of the image data. Therefore, all of the measures in
this contest were adapted from different studies on the
evaluation of image segmentation algorithms. Adapta-
tion of these measures involved handling of the objects
and the background separately.

The overlapping area matrix (OAM) introduced in
[1] makes computation of performance measures eas-
ier. All object-based measures given below can be com-
puted from the OAM. Let Cij be the number of pix-
els in the i’th object in a reference map that overlap
with the j’th object in an output map produced by an
algorithm. Ortiz and Oliver [20] formulated some of
the performance measures used in the contest using the
OAM. A similar notation is used in this paper. The i’th
reference object is denoted as Oi while the j’th out-
put object is shown as Ôj . The objects of interest in
the contest include the buildings and the background.
The set of objects in the reference map are denoted as
Or = {O0, O1, . . . , ONr} and the output objects are
denoted as Oo = {Ô0, Ô1, . . . , ÔNo}. O0 and Ô0 cor-
respond to the backgrounds in the reference and the out-
put maps, respectively. Nr and No are the number of
objects in the reference and the output maps, respec-
tively. The sizes of the objects Oi and Ôj and the whole
image I can be calculated from the OAM as

n(Oi) =
No∑
j=0

Cij , (1)

n(Ôj) =
Nr∑
i=0

Cij , (2)

n(I) =
Nr∑
i=0

n(Oi) =
No∑
j=0

n(Ôj). (3)

Correct detection, over-detection, under-detection,
missed detection, false alarm rates Hoover et al.
[12] classify every pair of reference Oi and output Ôj

objects as correct detections, over-detections, under-
detections, missed detections or false alarms with re-



(a) Ground truth (b) Orfeo1 (c) Orfeo2 (d) METU1 (e) METU2

(f) Soman (g) Borel (h) LSIIT1 (i) LSIIT2 (j) Purdue

Figure 2. Ground truth (3065 buildings) and submissions for the building detection task dis-
played in pseudocolor.

spect to a given threshold T , where 0.5 < T ≤ 1, as
follows:

1. A pair of objects Oi and Ôj is classified as an in-
stance of correct detection if

• Cij ≥ T × n(Ôj),

• Cij ≥ T × n(Oi).

2. An object Oi and a set of objects Ôj1 , . . . , Ôjk
,

2 ≤ k ≤ No, are classified as an instance of over-
detection if

• Cijt ≥ T × n(Ôjt),∀t ∈ {1, . . . k}, and

•
∑k

t=1 Cijt ≥ T × n(Oi).

3. A set of objects Oi1 , . . . , Oik
, 2 ≤ k ≤ Nr, and

an object Ôj are classified as an instance of under-
detection if

•
∑k

t=1 Citj ≥ T × n(Ôj), and

• Citj ≥ T × n(Oit),∀t ∈ {1, . . . k}.

4. A reference object Oi is classified as a missed de-
tection if it does not participate in any instance
of correct detection, over-detection or under-
detection.

5. An output object Ôj is classified as a false alarm
if it does not participate in any instance of correct
detection, over-detection or under-detection.

For 0.5 < T < 1, an object can contribute to at most
three classifications, namely, one correct detection, one
over-detection and one under-detection [12]. When
an object participates in two or three classification in-
stances, the instance with the highest overlap score is
selected for that object. For equal scores, we bias to-
ward selecting correct detection, then over-detection,
then under-detection to obtain unique classifications.

Maximum-weight bipartite graph matching The
next measure is adapted from [14] where a bipartite
graph matching algorithm is used for evaluating image
segmentation results. First, Or and Oo are represented
as one common set of nodes {O0, O1, . . . , ONr} ∪
{Ô0, Ô1, . . . , ÔNo} of a graph. Then, this graph is set
up as a complete bipartite graph by inserting edges be-
tween each pair of nodes where the weight of the edge
between (Oi, Ôj) is equal to Cij . Given this graph, the
match between the reference object map and the output
object map can be found by determining a maximum-
weight bipartite graph matching that is defined by a sub-
set {(Oi1 , Ôj1), . . . , (Oik

, Ôjk
)} such that each of the

nodes Oi and Ôj has at most one incident edge, and the
total sum of the weights is maximized over all possible
subsets of edges.

The problem of computing maximum-weight bipar-
tite graph matching is known as an assignment problem,
and one of the solutions for this problem is the Munkres
Assignment Algorithm (also known as the Hungarian
Algorithm) [18]. In the Munkres algorithm, the min-



imum cost is aimed instead of the maximum weight.
Consequently, by negating the overlapping area matrix,
we obtain the cost matrix that can be used for the al-
gorithm. Finally, a modified version of the maximum-
weight bipartite graph matching measure is defined as

BGM(Oo,Or) = 1− w

n(I)− C00
(4)

where w is the sum of the weights. In [14], the sum of
the weights is divided by image size. In this version,
w is divided by the size of the union of the objects in
the reference and output object maps. The measure in
(4) represents the error so smaller values correspond to
a better performance.

Normalized Hamming distance Huang and Dom
[13] proposed a single overall performance measure de-
pending on region matching according to the maximum
overlapping area. In the contest, we are interested in
how successfully the algorithms can detect the fore-
ground object regions, so we discard the background
from the original formula. The directional Hamming
distance from the output object map to the reference ob-
ject map is defined as

DH(Oo ⇒ Or) =
Nr∑
i=1

∑
j 6= arg max

k=1,...,No

{Cik}

Cij . (5)

Similarly, the directional Hamming distance from the
reference map to the output map is defined as

DH(Or ⇒ Oo) =
No∑
j=1

∑
i 6= arg max

k=1,...,Nr

{Ckj}

Cij . (6)

Finally, these two distances are averaged and normal-
ized in order to obtain a modified version of the nor-
malized Hamming distance

DNH(Or,Oo) =
1

2

 
DH(Oo ⇒ Or)

n(I)− n(O0)
+

DH(Or ⇒ Oo)

n(I)− n( bO0)

!
(7)

where DNH(Or,Oo) ∈ [0, 1]. The value of one in-
dicates a total mismatch and zero indicates a perfect
match.

Clustering indices Each object map can be consid-
ered as a clustering of pixels [14]. As a result, mea-
sures that compare two different clustering outputs can
be used for object detection evaluation. Object pairing
is one of the methods used for cluster comparison. Each
pair of pixels (pa, pb) in the image is a member of one
of the following groups

• pa and pb belong to the same object both in the
reference map and the output map (N11),

• pa and pb belong to the same object in the refer-
ence map but belong to different objects in the out-
put map (N10),

• pa and pb belong to the same object in the output
map but belong to different objects in the reference
map (N01),

• pa and pb belong to different objects both in the
reference map and the output map (N00).

The number of pixel pairs in each group can be com-
puted from the OAM.

The Rand Index given in [23] can be computed as

R(Or,Oo) = 1− N11 + N00

n(I)× (n(I)− 1)/2
. (8)

Another measure using pixel pairing is introduced by
Fowlkes and Mallows in [8], and can be computed as

F (Or,Oo) = 1−
√

W1(Or,Oo)×W2(Or,Oo) (9)

where

W1(Or,Oo) =
N11∑Nr

i=0 n(Oi)(n(Oi)− 1)/2
, and

(10)

W2(Or,Oo) =
N11∑No

j=0 n(Ôj)(n(Ôj)− 1)/2
. (11)

Yet another measure that uses pixel pairings for cluster
comparison is the Jaccard index [2], and is defined as

J(Or,Oo) = 1− N11

N11 + N10 + N01
. (12)

All three measures are in the [0, 1] range and are mod-
ified to represent the error (by subtracting the original
index from 1) so smaller values correspond to a better
performance.

2.4. Results

The measures described in Section 2.3 were com-
puted for all nine submissions. Figure 3 shows the
object-based correct detection, over-detection, under-
detection, missed detection, and false alarm rates. Fig-
ure 4 shows the graph matching measure, normalized
Hamming distance, and clustering indices. Higher val-
ues for correct detection, over-detection, and under-
detection represent better performance. Lower values
indicate better performance for the rest of the measures.
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(a) Correct detection

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

50

100

150

200

250

300

350

400

T

O
ve

r−
de

te
ct

io
ns

 

 
Orfeo1
Orfeo2
METU1
METU2
Soman
Borel
LSIIT1
LSIIT2
Purdue

(b) Over-detection
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(c) Under-detection
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(d) Missed detection
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(e) False alarm

Figure 3. Object-based correct detection, over-detection, under-detection, missed detection,
and false alarm rates for the nine submission for the building detection task (Task 1).
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(a) Graph matching measure
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(b) Normalized Hamming distance
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(c) Rand index

Orfeo1 Orfeo2 METU1 METU2 Soman Borel LSIIT1 LSIIT2 Purdue
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.23

0.48

0.29 0.3 0.3

0.22

0.31

0.23 0.22

F
ow

lk
es

 a
nd

 M
al

lo
w

s 
in

de
x

(d) Fowlkes and Mallows index
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(e) Jaccard index

Figure 4. Graph matching measure, normalized Hamming distance, and clustering indices for
the nine submissions for the building detection task (Task 1).



The nine submissions shared many steps such as
pan-sharpening, spectral feature extraction (e.g., NDVI
or other band combinations), mask generation using
thresholding or classification, segmentation, and filter-
ing based on shape (e.g., area or aspect ratio). The
amount of supervision differed among different meth-
ods, ranging from only setting several thresholds to
manually placing a marker on every building. As can
be seen in Figures 3 and 4, no single method stood out
as the best performer with respect to all performance
measures. Similarly, different criteria favored differ-
ent methods. New criteria for measuring performance
based on boundary errors and fragmentation errors will
be added, and all performance measures will be com-
bined to provide a ranking of the submissions using
methods such as Hasse diagrams [22] or multi-objective
optimization [3] in future work.

3. Task 2: Digital surface model extraction
from stereo data

3.1. Background and data set

The objective of this task was to extract a digital sur-
face model (DSM) for buildings from stereo Ikonos data
of Graz, Austria. The data provided to the participants
consisted of a pair of stereo images where each image
had a panchromatic band with 1m spatial resolution and
2974 × 2918 pixels, and four multispectral bands with
4m spatial resolution and 792 × 749 pixels (Figure 5).
Together with the data the rational polynomials were
delivered to orthorectify the stereo images.

A highly accurate reference DSM was made avail-
able by the city of Graz (Figure 6). The reference DSM
covered an area of 2km by 1km, and represented build-
ings typically found in European cities such as multi-
storey buildings with center courtyards, large industrial
buildings, residential row houses, and single residential
houses. The elevation in the Graz study area ranged
from 390m to 480m above sea level, rising from West
to East.

3.2. Participating methods

Three submissions were made by Jan Čech and
Radim Šára. The first submission used a matching algo-
rithm called Growing Correspondence Seeds (GCS) by
Jan Čech. The second submission used a matching al-
gorithm called 3-Label Dynamic Programming (3LDP)
by Radim Šára. The submissions differed in putative
correspondence pre-selection, and shared the match-
ing procedure and disparity map post-processing. The
third submission was a fusion of the GCS and 3LDP

(a) Panchromatic band

(b) Visible multispectral bands

Figure 5. One of the Ikonos images of
Graz, Austria. (Copyright c©2007 GeoEye)

algorithms. These submissions are referred to as GCS,
3LDP, and Fusion, respectively in the experiments.

The putative correspondence stage of the GCS algo-
rithm [5] was based on growing disparity patches (com-
ponents) from sparse seed correspondences. The seed
matches were found automatically. The normalized
cross-correlation (MNCC) [16] was used for computing
image similarity in a 5×5 neighborhood. This stage was
followed by Confidently Stable Matching (CSM) [24]
which performed pixel-wise selection from the grown
components in a process of their mutual competition.
The matching used a modified inhibition zone as de-
scribed in [4]. Efficiency of this algorithm was achieved
by avoiding aggregation over all possible correspon-
dences in the disparity space. Usually, less than 1%
of the disparity space was visited. The GCS algorithm



Figure 6. Part of the reference DSM used
for task 2. (Kindly made available by Dr.
Karlheinz Gutjahr, Joanneum Research,
Institute of Digital Image Processing, A-
8010 Graz, Austria, Wastiangasse 6, for in-
ternal use only.)

produced semi-dense disparity maps with explicitly la-
beled occlusions and textureless regions. A mixed Mat-
lab/C implementation of the GCS algorithm is available
at [4]. This implementation processed the test data in
130 sec using a single core of 2.2GHz Quad-Core AMD
Opteron Processor 2354.

The 3LDP algorithm was a previously unpublished
three-state dynamic programming stereo. It used all
possible correspondences within a disparity search
range as putative correspondences. The dynamic pro-
gramming was used not to obtain a matching but to ag-
gregate support for a subsequent matching procedure.

The algorithm was similar to four-state dynamic
stereo programming by Criminisi et al. [7] and to an ear-
lier work by Gimelfarb [9]. Unlike in [7], the matched
state was modeled by a single label. Unlike in Gimel-
farb, MNCC was used for image similarity [16]. The
dynamic programming computed the total cost of the
optimum path through every possible correspondence.
This became the cost of a correspondence. Such ag-
gregation was similar to the work of Gong and Yang
[10]. The aggregation process was followed by a robust
matching decision based on CSM, in exactly the same
way as in GCS. The 3LDP algorithm produced semi-
dense disparity maps in the same format as GCS did.
The 3LDP algorithm including aggregation processed
the test data in 323 sec using the same processor as in
GCS but with a C implementation.

A simple fusion of the GCS and 3LDP algorithms
was performed by projecting the resulting disparity
maps into a common disparity space, computing im-

age similarity anew, and re-running the final CSM pro-
cedure, as in GCS. Hereby, better correspondence hy-
potheses, proposed by either algorithm, were selected.
This was an updated version of the disparity map fu-
sion from [25]. The result of fusion was a more dense
disparity map.

Since the disparity maps from the above three algo-
rithms were semi-dense (76% density for GCS and 43%
for 3LDP), a simple heuristic disparity map densifica-
tion was included. The densification was designed ex-
clusively for the purpose of evaluation in this contest
where a 100% disparity map was required. Densifica-
tion received a disparity map and the input images, and
attempted to fill in the textureless and occluded regions.
The result was a fully dense map. A similar procedure
was shown effective for aerial imagery in [11].

The first stage of densification worked by proposing
new disparities as follows. The reference image was
over-segmented by the mean-shift algorithm [6]. Indi-
vidual segments were processed one by one, and the
contents of each segment Si in the disparity map was
subject to the following editing rules (in this order):

1. Small Component Deletion Rule: If the disparity
map density in Si fell below threshold Td, the seg-
ment was deleted.

2. Small Hole Patch Rule: If the disparity map
density in Si raised above threshold Tp and the
standard deviation of disparities in Si was below
threshold Ts, the Si was replaced by its mean
value.

3. Occlusion Boundary Clip Rule: If (1) the disparity
histogram in Si was strongly bimodal, and (2) one
if its modes m2 was significantly more prominent,
and (3) narrow, the Si was replaced by the mode
value m2.

4. Large Hole Patch Rule: The disparities around the
periphery of every contiguous hole in the dispar-
ity map were collected. If their standard deviation
fell below threshold Ts, the entire component was
replaced by the mean value of the periphery. Oth-
erwise, if the lower mode m1 (corresponding to
background disparity) was prominent and narrow,
the segment was replaced by m1.

All parameters were chosen manually to achieve vi-
sually acceptable results on a set of outdoor scenes sim-
ilar to those used in [4]. The procedure removed small
errors by Rule 1, patched small holes by Rule 2, re-
moved occlusion artifacts by Rule 3, and patched the
majority of large holes in textureless areas by Rule 4.
The resulting disparity map was projected to a disparity



space, MNCC image similarities were computed anew,
and the CSM procedure was re-run once again, as in
GCS. The result of this stage was a denser map, albeit
not yet 100% dense since occlusions were preserved.

The purpose of the second densification stage was
to extrapolate the disparity to occluded areas, most im-
portantly, to mutually occluded regions occurring be-
tween tall buildings, where ground disparity should be
assigned but the periphery of the occluded region had
the building roof disparity. The procedure worked as
follows. The image was split to overlapping tiles of
100 × 100 pixels. Lower quartile of disparity in each
tile was computed. This approximated the terrain dis-
parity. All remaining holes in the tile were replaced by
this value. Contributions from multiple tiles covering
the same pixel were averaged. The output from this pro-
cedure was a full-density disparity map.

3.3. Evaluation criteria

The performance of digital surface model extraction
was evaluated using the residuals (difference) between
the reference DSM and the output DSM. The following
statistics were computed from the residuals:

• Bias: mean, standard deviation, and skewness of
the residuals.

• Precision: root-mean-squared error (RMSE) and
frequency of outliers in the residuals.

3.4. Results

The digital surface models produced by the GCS,
3LDP, and Fusion methods without and with densifi-
cation are shown in Figure 7. The statistics described
in Section 3.3 were computed for all three submissions
as shown in Table 1. The 3LDP method produced the
most accurate result compared to the ground truth. This
is also confirmed by visual comparison of the resulting
DSMs.

4. Conclusions

This paper presented the results of the PRRS 2008
Algorithm Performance Contest. The contest tasks con-
sisted of automatic building detection from a single
QuickBird image, and digital surface model extraction
from stereo Ikonos data. Both data sets included ground
truth for performance evaluation. We described the data
sets, the methods used in the contest submissions, the
objective evaluation criteria, and the results of the ini-
tial evaluation.

(a) GCS, no densification (b) GCS, with densification

(c) 3LDP, no densification (d) 3LDP, with densification

(e) Fusion, no densification (f) Fusion, with densification

Figure 7. Submissions for the digital sur-
face model extraction task.

The submissions shared some steps such as pan-
sharpening, thresholding, mask generation, segmenta-
tion, etc., but different in the ways such steps were
combined as well as the amount of supervision used.
The evaluation showed that no single method stood out
as the best performer with respect to all performance
measures. Similarly, different criteria favored different
methods. Future work includes combining these perfor-
mance measures to provide a ranking of the submissions
using methods such as Hasse diagrams [22] or multi-
objective optimization [3].
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