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ABSTRACT 

We describe a system for interactive training of models for semantic labeling of land cover. The models are build based 
on three levels of features: 1) pixel level, 2) region level, and 3) scene level features.  We developed a Bayesian 
algorithm and a decision tree algorithm for interactive training. The Bayesian algorithm enables training based on pixel 
features. The scene level summaries of pixel features are used for fast retrieval of scenes with high/low content of 
features and scenes with low confidence of classification. The decision tree algorithm is based on region level features 
that are extracted based on 1) spectral and textural characteristics of the image, 2) shape descriptors of regions that are 
created through segmentation process, and 3) auxiliary information such as elevation data. The initial model can be 
created based on a database of ground truth and than be refined based on the feedback supplied by a data analyst who 
interactively trains the model using the system output and/or additional scenes. The combination of supervised and 
unsupervised methods provides a more complete exploration of model space. A user may detect the inadequacy of the 
model space and add additional features to the model. The graphical tools for the exploration of decision trees allow 
insight into the interaction of features used in the construction of models. The preliminary experiments show that 
accurate models can be build in a short time for a variety of land covers. The scalable classification techniques allow for 
fast searches for a specific label over a large area. 
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1. INTRODUCTION 

Satellite technology supplies data at an enormous rate. Most database research on the analysis of remotely sensed images 
has concentrated on data retrieval, and on simple queries that involve spatial joins and spatial selections. For example, 
the Sequoia 2000 project [15] aimed at the retrieval of raster data, while the Sloan Digital Sky Survey [16] posed the 
need for creation of a multi-terabyte astronomy archive. Large scale system studies for the analysis of remotely sensed 
images have been specialized for the detection of particular features, such as volcanoes [2], or have proposed distributed 
and parallel data storage and query processing systems for handling geo-scientific data retrieval queries [14].  

The VisiMine project provides the infrastructure and methodology required for the analysis of satellite images. In order 
to facilitate the analysis of large amounts of image data, we extract features of the images. Most systems for analyzing 
remotely sensed images allow simple queries based on the date of image capture, and location. Such systems also allow 
only simple analyses of single images. When we deal with large collections of remotely sensed images, however, the 
current systems do not scale well. Therefore, new algorithms and new indexing methods are needed to enable the 
analysis of data provided by satellite systems. 

In order to facilitate the analysis of large amounts of image data, we extract features of the images. Large images are 
partitioned into a number of smaller, more manageable image tiles. Partitioning allows fetching of just the relevant tiles 
when retrieval of only part of the image is requested, and provides faster segmentation of image tiles. Individual image 
tiles are processed to extract the feature vectors. The VisiMine architecture distinguishes between pixel, region and tile 
levels of feature vectors.  

Pixel level features describe spectral and textural information about each individual pixel. Polygon level features 
describe connected groups of pixels. Following the segmentation process, each polygon is described by its boundary and 
by a number of attributes that present information about the content of the region in terms of shape, size, etc. The 
spectral and texture properties are based on pixel features of points within the polygon. Tile level features present 
spectrum and texture information about whole image tiles. All image features, together with the original images, are 



stored in a database system and indexed for fast retrieval. The auxiliary raster data such as Digital Elevation Models 
(DEM) can also be stored in the database and can be used for feature extraction and data analysis. The Oracle database 
system provides the means for fast information retrieval and network accessibility.  

The data mining power of VisiMine includes similarity searches on tile and polygon levels, clustering of tiles, 
classification and regression analysis, label training using Bayesian and tree models, and connection to S-PLUS with 
over 3000 statistical functions. The data mining queries are specified in an SQL-like language. A user may specify the 
features that are used in the mining task and constraints used to select data for the mining process. The graphical query 
constructor enables fast query creation by non-technical users. 

The user has high level of flexibility in choosing the features and images used for data analysis. The graphical user 
interface enables presentation of the models on high and general levels as well as drilling down into the details. The label 
training module enables interactive definition of models for land cover labels. 

The tile level summaries of pixel features are used for fast retrieval of tiles with high/low content of features and scenes 
with low confidence of classification. The initial model can be refined based on the feedback supplied by a data analyst 
who interactively trains the model using the system output and/or additional scenes. The experts may also refine models 
created by other users. The VisiMine system enables construction of sophisticated statistical models using the S-PLUS 
system, which can access data directly from the database, or using the GUI.  

In this paper we give an overview of the VisiMine System and present the examples of an interactive training of land 
cover classification models using Bayesian and decision tree classifiers. For these examples, we used the LANDSAT 
image of Western Washington State. This image contains about 500MB of raw pixel information in 6 bands (3 visible 
range and 3 near-infrared bands). The image was corrected for atmospheric and terrain distortions, and was 
georeferenced. The entire image then was divided into image tiles of size 512 x 512. 

2. ARCHITECTURE 

We decided to use a database system for storage of the images and their features in order to overcome some limits on to 
the maximum size of files, and to benefit from indexing, query optimization, and partit ioning features of the database. 
The image tiles and pixel level features are stored as BLOBs, with each band or feature stored in a separate column. The 
region and tile level features are stored in regular database tables that can be accessed easily for further processing, using 
VisiMine functions or other software.  

Spatial information about region levels also can be stored in ESRI's Spatial Data Engine (SDE), together with the 
relevant GIS information. SDE provides open data access across local and wide area networks, and the Internet, using 
the TCP/IP protocol. This information can be combined with region level features such as texture, spectral properties, or 
DEM features. Other ESRI products, such as, ArcInfo, ArcView, and MapObjects can access the data stored in the SDE, 
together with additional map data. The SDE format allows a fusion of GIS, optical, and DEM information for a variety 
of visualization methods and data analysis functions. 

A mining process or a similarity search is initiated by submitting a query written in a data mining language similar to 
SQL. The query language allows the user to specify the type of knowledge to be discovered, the set of data relevant to 
the mining process, and the conditions that have to be satisfied by the data. Based on this query, an SQL statement is 
constructed to retrieve the relevant data. The data mining module processes the data and passes the information about the 
resulting tiles and regions to the GUI, which in turn directly retrieves the images from the database. The capabilities of 
the data mining engine are enriched through the Java connection to the S-PLUS statistical data analysis engine.  

The graphical user interface enables browsing and manipulation of the satellite images and associated features, creation 
of data mining queries, and visualization of the results of the data analysis. The functionality of VisiMine includes a 
number of image processing tools, such as histogram equalization, spectral balancing, false colors, polarity switching, 
masking, overlays, multiband spectral mixing, etc. 

The user can create new image types, and can extract image features using the VisiMine Data Manager, which is a 
separate program. The data manager utility also enables loading of image and DEM data from a file system to the 
database, browsing of meta-data, and editing of the feature descriptions. Intuitive dialogs guide the user through the 
specification of parameters necessary for feature extraction, the creation of data types, and the loading of data. 



 
Fig. 1. The Architecture of the VisiMine System.  

3. FEATURE EXTRACTION 

The VisiMine architecture supports three levels of features: pixel, region, and tile level features. The feature extraction 
process starts with the analysis of spectral and textural properties at the pixel level. The numerical pixel data can be 
clustered in order to find a small number of classes. At the same time, tile level features may be extracted, thereby 
creating histograms of the pixel classes for each tile.  

The extraction of region level features starts with a segmentation algorithm. The geometrical properties of regions, such 
as image moments, are extracted. Based of the pixel features, the system computes statistical properties of regions such 
as histograms, max, min, mean, and standard deviation features for each region. Additional features are extracted using 
raster information, such as digital elevation maps. These features can also be created at all three levels. The VisiMine 
system supports extraction of the following features: 

• Texture features: 

− Gabor wavelets [6],  

− Haralick’s co-occurrence [5], and  

− Laws texture [10]. 

• Clustering (spectral, textural, and others) using: 

− CLARA [8] (medoid algorithm),  

− RHSEG [17] (hierarchical algorithm),  

− k-means [8], and 

− model based [8]. 

• Spectral Mixture Analysis features. 

• Segmentation and shape descriptors of the regions. 

• Spatial relationships between regions. 

• Histograms, max, min, mean, and standard deviation of pixel features for each region and tile.  

4. DATA MINING FUNCTIONALITY 

VisiMine uses an SQL-like query language that enables specification of the data mining task, features to be used in the 
mining process, and any additional constraints [4]. The queries are constructed using any text editor, or using Query 
Constructor, i.e., a GUI tool which guides a user through selection of data and conditions for the query presenting 
choices for the data that can be used in the query.  In the example below we present a query for region similarity 



searches based on the content of six endmembers within a region. Only regions with an area larger than 1000 pixels will 
be retrieved and used in the search.  
   FIND SIMILAR TO SELECTED REGION 
   IN RELEVANCE TO A.IMAGETILEID,A.REGIONID, 
   A.CONCRETE,A.CONIFER,A.SOIL,A.GRASS,A.DECIDUOUS,A.WATER 
   FROM GEOBROWSE.LANDSAT_SMA_R A,GEOBROWSE.LANDSAT_SEGM_R B 
   WHERE A.IMAGETILEID=B.IMAGETILEID AND  
   A.REGIONID=B.REGIONID AND  
   B.AREA > 1000 

The system is capable of performing similarity searches based on any combination of features. A user can look for the 
most similar image tiles, or for the most similar regions based on a pattern tile or a pattern region. VisiMine allows 
weighting of the features. The values of the features can be adjusted to have the range [0, 1], they can be multiplied by a 
specific value, or they can remain unchanged.  

Fig. 2 presents the result of a search for regions similar to McCord Air Force Base. Among the top 4 most similar 
regions are Olympia Municipal Airport, Whidbey Island Naval Air Station, Arlington Airport, and Abbotsford Airport. 
We compared the results of the tile similarity search with the region similarity search for the case when the tile 
containing the pattern region is treated as the pattern tile. In this case, the returned tiles contain only a small fraction of 
the most similar regions that were returned by region based similarity function. The features of the smaller regions tend 
to be overwhelmed by the overall features of the tile.  

 

 

Fig. 2. Region Similarity Search for Airports. 

In addition to the similarity search, the VisiMine system provides functionality for other types of analyses of remotely 
sensed data. This functionality includes the data clustering, building regression and classification models, prediction of 
land cover types, summarizing data, etc. The system is capable of clustering images into groups of image tiles that have 
similar features using three different clustering methods. Regions can also be clustered using a model based clustering in 
order to construct region prototypes for probabilistic retrieval with visual grammar. The medoids of clusters are 
displayed and a user can examine images that belong to each cluster. Regression trees provide an alternative to clustering 
by grouping images or regions that have similar values of one of the variables. Regression trees also may be applied on a 
region level to predict values of numerical attributes based on values of other attributes.  

Classification is a data mining technique in which data in a database is analyzed to identify rules that describe the 
partition of the database into a given set of classes. Each object in the database (in relational databases, a tuple is treated 
as an object) is assumed to belong to a predefined class, as determined by one of the attributes called the class label 
attribute. The most common classification method uses decision trees. Such a method employs a top-down, divide-and-
conquer strategy that partitions the set of given objects into smaller subsets where the leaf nodes are associated primarily 
with a single class. Decision tree methods can deal with both numerical and symbolic data. A user can interactively 
explore parts of the tree, and can prune the tree.  

To reduce the gap between low-level features and high-level user semantics, and to support complex query scenarios that 
consist of many regions with different feature characteristics, VisiMine uses a probabilistic visual grammar that includes 



automatic identification of region prototypes and modeling of their spatial relationships [1]. Regions are clustered using 
a model based clustering into a number of prototype classes, such as cities, rivers, lakes, residential areas, forests, etc. 
Users can compose queries for complex scenarios by giving a set of example regions that satisfy spatial relationships, 
such as, bordering, invaded by, disjoint, etc.  The system retrieves the image tiles that contain regions with relationships 
similar to the query pattern.  

5. TRAINING USING INTERACTIVE MODELS 

In many cases it is very difficult to describe analytically the features of the objects that a user is interested in.       
Therefore, improvement of the quality of the description may play an important role in image analysis. A method for 
interactive training of land cover labels using naïve Bayesian classifiers is described in [13]. In that approach, a user can 
interactively train a Bayesian model to define a number of land cover classes, which can be based on textural, spectral, 
or DEM properties of images and terrain. The training is done based on categorical pixel level features extracted from 
numerical pixel features using a clustering algorithm. First, beginning with a single image tile, a user provides positive 
examples by selecting regions with pixels that belong to the same class, and the system then builds a model for use in 
identification of additional regions belonging to that class. He/she also has to provide negative examples, by selecting 
regions with pixels that belong to other classes. Based on this information, a model that estimates the posteriori 
probability of a pixel's class me mbership is built. The probability of pixels of the selected tile is shown on the screen. 
When a user judges the model to be good enough for pixels in the currently selected tile, he/she poses a query that finds 
either images with a high probability of belonging to the defined class, or images with a low probability (high 
separability from the class). Using these images, the user may choose to continue training based on other image tiles 
until the model is judged to be sufficiently good.  

While the training is based on pixel level features, the retrieval is based on tile level features. Due to the nature of the 
naïve Bayesian classifier, which assumes conditional independence of the attributes, it is possible to find the average 
probabilities of the pixel class assignments in a tile based on the aggregated information about all pixels in the image 
tile. Despite the fact that the assumption of conditional independence is not always true, naïve Bayesian classifiers 
perform well in practice. The parameters for each feature can be estimated separately and this simplifies learning. 

Formally we want to train a classifier for content label C so that we can estimate the probability that a pixel belongs to 
class C given the class labels for that pixel’s attributes (e.g. spectral, SMA, textural). The attribute class labels are 
assigned to each pixel in an offline clustering (unsupervised training) stage separately done for pixel-level spectral, SMA 
and textural features. The description of the algorithm is presented below. 

Algorithm Bayes_Label_Train 

Input: 

Content label : C ∈ {T, F}. 

Feature class labels: A1, …, AN where N is the number of different pixel features computed for each pixel and Ai is the 
i’th features (e.g. spectral, SMA, textural) with value ai ∈ {0, …, Ki-1} with Ki being the number of possible classes for 
that attribute (e.g. there are 15 classes (Ki = 15) for Laws’ texture feature (A i)). 

Procedure 

1. Load a tile and its features 

2. While training on a single image tile { 

If the user labels a pixel with attribute values a1, …, aN as a positive example 
Increment  count{C = T}. 
Increment  count{Ai = ai, C = T} for all i ∈ {1, …, N}. 

If the user labels a pixel with attribute values a1, …, aN as a negative example, 
Increment  count{C = F}. 
Increment  count{Ai = ai, C = F} for all i ∈ {1, …, N}. 

Present the probability map for an image shows the probability of each pixel belonging to the content class C 
given its attribute values a1,…,aN, i.e. 
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3. Compute for each image tile probabilities Ptile: 

• Average probability that a pixel within the tile belongs to class C. 
• Percentage of pixels with probability that pixel belongs to class C larger than coverage_threshold. 
• Percentage of pixels with probability that pixel belongs to class C larger than min_separability_threshold and 

smaller than max_separability_threshold. 

4. Present to the user four sets of tiles: 

• N tiles with the largest average probability that a pixel belongs to class C, 
• N tiles with the smallest average probability that a pixel belongs to class C, 
• N tiles with the highest coverage, i.e., the tiles with the largest percentage of pixels with probability that pixel 

belongs to class C larger than coverage_threshold. 
• N tiles with the lowest separability, i.e. the tiles with the largest percentage of pixels with probability that pixel 

belongs to class C larger than min_separability_threshold and smaller than max_separability_threshold. 

5. If the user is satisfied save the model else load another tile and continue from step 2. 

In the Naïve Bayesian classifier, the attributes A1, …, AN are assumed to be conditionally independent given the content 
label C, so 
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Based on the assumption of independence of features we can assume that percentage of the pixels within a tile that have 
classes A1 = a1, …, AN = aN is equal to the product of the percentages of pixels that belong to each class within the image. 
Such features are stored in the tile level features. Having this and the probabilities )a  A , ,a A | T P(C NN11 =…==  

we can compute the Ptile probabilities. 

The marginal content label probabilities are estimated using relative frequencies (maximum likelihood estimates) as 
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Note that P(C = T) and P(C = F) should be estimated using the other methods below if count {C = T} or count {C = 
F} is zero, i.e. we do not have any training example for that class. 

We use five different methods to estimate the conditional attribute class label probabilities as follows. Some of these 
methods are also called laws of succession because they give the conditional probability that an attribute will have a 
particular value given its values in previous cases, i.e. training examples, for that class. 

Relative frequencies: 
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An attribute value is ignored if there are no examples for it. If there are only positive examples for one attribute value 
and only negative examples for another one, we set the probability to be 0.5. 

The relative frequency estimate is the maximum likelihood estimate. However, if we have only a few training examples, 
the relative frequency estimate can give extreme values and becomes unreliable. A typical solution is the Bayes estimate 
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, where p is the prior estimate for P(A i = ai | C = T) and m is 

the weight given to the prior (i.e. the number of training examples required for the significance of their estimate to be the 
same as the significance of the prior) [9, 11]. It can also be explained as a linear interpolation between the maximum 
likelihood estimate (relative frequency) and the prior p [12]. Laplace’s law of succession is a special case which is the 
Bayesian estimate starting from the uniform prior of 1/Ki on the attribute values and using m = Ki. Jeffreys-Perks’ law of 
succession is the special case with m = 0.5 Ki. These two estimates have been criticized for assigning either too much or 
too little probability to specific events [12] but were also decided to be safe choices when the distribution of the source is 
unknown and the number of possible classes (Ki) is fixed and known [11]. 

Ristad’s law of succession can be explained as follows. We consider each attribute value to be a symbol in an alphabet. 
Then, a training session is a string that is a subset of symbols in the alphabet. In the first interpretation, all nonempty 
subsets of the alphabet are equally likely (uniform subsets prior). In the second interpretation, all nonzero subset 
cardinalities are equally likely (uniform cardinality prior). According to the uniform subsets prior, both very large and 
very small subsets are relatively improbable. On the other hand, the uniform cardinality prior assigns more probability to 
small and large subsets of the alphabet and less to subsets of moderate cardinality. Both laws reduce to Laplace’s law of 
succession when all the symbols are attested, i.e. q iT = Ki in our case [12]. 

After initial training a user may choose another set of features for training. The sequence of positive and negative 
examples is stored in the original model and a new model can be build based on the same set of examples. This features 
enable a user to try combinations of different features and choose the most appropriate for a given task. 

Fig.  3 presents the tile used for training of cloud label, the first set of tiles with the highest coverage after the initial 
training and the final set of tiles with the highest coverage after the training on the tile that contains snow. The first 
coverage set of tiles contained a tile 1504, which contains a snow-covered mountain. Because the model was not trained 
to distinguish between white cloud and white snow this tile is treated as containing clouds. The tile with snow was 
loaded and model was adjusted using snow as negative example. 

Multiple labels can be trained and they can be combined using a probabilistic framework. The pixels are classified using 
all models and a label with the highest probability is assigned to the pixel. Optionally different pixel features may be 
tried. During the construction of a model the locations of positive and negative examples are stored. Using this 
information the Bayesian model can be build using any combination of pixel features. A user can choose the best 
combination of features for the final model. 

 



 

Fig. 3 Training using Bayesian models  

 



 

 

 
Fig. 4. Label training using region level spectral and elevation features. 

Another method for label training is based on decision tree models [11]. Because the classification process on the pixel 
level would be extremely expensive to compute, the decision tree models are based on the region level features. In 



addition to spectral properties of the regions we can perform classification based on shape properties and areas of 
regions, as well as on auxiliary GIS information. For example, the spectral reflectance of concrete is very similar to 
spectral reflectance of different types of rocks. Additional information, such as Digital Elevation Models can be used to 
distinguish between these two types of land cover. In a way similar to Bayesian label training, a user provides the system 
with positive examples by pointing to regions that belong to the trained class, and negative examples by pointing to other 
regions. For the first tile used for training a user has to provide examples for all regions within the tile. Default value is 
false (region does not belong to land cover class). For all other tiles used for training only regions pointed by the user are 
added to the model. Fig. 4 shows the results of decision tree label training that utilizes region spectral class histograms 
and DEM information. The examples of tidal flats are presented to the system and the regions with the highest coverage 
of the regions with high probability to be a tidal flat according to the model are shown. The decision tree is presented the 
highlighted node presents the split based on the average elevation of the region. 

6. S-PLUS CONNECTIVITY 

Insightful's S-PLUS is an interactive computing environment for graphics, data analysis, statistics, and mathematical 
computing. It contains a superset of the S object-oriented language and system originally developed at AT&T Bell 
Laboratories, and it provides an environment for high-interaction graphical analysis of multivariate data, mo dern 
statistical methods (e.g., robust and non-parametric methods), data clustering and classification, and mathematical 
computing. In total, S-PLUS contains over 3000 functions for scientific data analysis. VisiMine data can be accessed 
from within S-PLUS by using Java connectivity for images and ODBC connectivity for image and region data. In 
addition, VisiMine has the S-PLUS command tool, which provides for easy transfer of images to S-PLUS, and for data 
processing using the S-PLUS language. The S-PLUS images can be returned to VisiMine and displayed there.  

The VisiMine can also display S-PLUS graphics, which are created using a command line interface and shown within 
S-PLUS plot window. Fig. 5 shows computations of NDVI index for a residential area of Burnaby British Columbia [7].  

The combination of S-PLUS and VisiMine features creates a unique environment for interactive exploration and analysis 
of remotely sensed data. The rich statistical functionality of S-PLUS, together with the VisiMine user interface and the 
scalability of its data mining engine, allows for easy and powerful customization of the data analysis process.   

7. CONCLUSIONS 

We have designed, and implemented, the VisiMine system for data mining of remotely sensed images. Three levels of 
feature are extracted from image tiles and used in the data mining process. In addition to simple queries based on simple 
properties, such as geographic location or acquisition date, a user can submit queries based on feature vectors describing 
the images. Interactive training of the classification models that describe new types of objects can be easily performed. 
Scalability to the large databases is addressed through indexing of the feature vectors and by using scalable data mining 
algorithms in the query processing. Our region level indexing strategy enhances the data analysis and similarity search 
processes by allowing for the more refined classification of information derived from images. VisiMine can convert 
large quantities of multispectral satellite imagery into GIS format. The results of image segmentation are stored in the 
raster format in any database and in vector format in ESRI's Spatial Data Engine (SDE). Other ESRI products, such as, 
ArcInfo, ArcView, and MapObjects can access the data stored in SDE together with additional map data. The GIS, 
optical and DEM information can be combined together in order to be used in a variety of visualization methods and 
data analysis functions. The functionality of S-PLUS software can be interactively accessed from VisiMine and data can 
be transferred to and from S-PLUS system for further processing and visualization. 
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Fig. 5. S-PLUS Interface and Graphics. 

 

 


