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ABSTRACT

We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models
tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color
and texture values. Region level features include shape information and statistics of pixel level feature values.
Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level
features and high-level expert knowledge, we define the concept of prototype regions. The system learns the
prototype regions in an image collection using model-based clustering and density estimation. Different tissue
types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy
membership functions. The system automatically selects significant relationships from training data and builds
models which can also be updated using user relevance feedback. A Bayesian framework is used to classify
tissues based on these models. Preliminary experiments show that the spatial relationship models we developed
provide a flexible and powerful framework for classification and retrieval of tissue images.
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1. INTRODUCTION

A challenging problem in medical imaging is automatic classification and retrieval in large image databases.
Most of the proposed approaches use low-level features like color histograms and texture features to index
images and then use distance measures in these feature spaces to find similarities between them. However, there
is a large semantic gap between the low-level features and the high-level expert knowledge.

The VisiMine system1 supports interactive classification and retrieval of tissue images by modeling them
on pixel, region and image levels. Pixel level characterization includes color features and Gabor, co-occurrence
and Laws texture features. After the features are computed for each pixel, an automatic region segmentation
algorithm is used to compute an approximate polygon decomposition of each image. Then, region level features
are computed using moments for shape and orientation information, and statistics of pixel features within and
around individual regions.

Low-level features cannot always capture detailed knowledge in medical images. Traditional region or image
level search algorithms assume that the regions or images consist of uniform pixel feature distributions. How-
ever, complex tissue images usually contain many pixels and regions that have different feature characteristics.
Furthermore, two images with similar regions can have very different interpretations if the regions have different
spatial arrangements. Therefore, we need a higher level visual grammar to describe these scenarios.

Previous approaches for region-based analysis and modeling of their spatial relationships2 mostly include
manual delineation by experts. Shyu et al.3 developed a content-based image retrieval system that used features
locally computed from manually delineated regions. Neal et al.4 developed topology, part-of and spatial associ-
ation networks to symbolically model partitive and spatial adjacency relationships of anatomical entities. Tang
et al.5, 6 divided images into small sub-windows, and trained neural network classifiers using color and Gabor
texture features computed from these sub-windows and the labels assigned to them by experts. These classifiers
were used to assign labels to each sub-window in unknown images, and the labels were verified using a knowledge
base of label spatial relationships. These rules were created by experts as some labels could not exist together
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with other labels. Petrakis and Faloutsos7 used attributed relational graphs to represent features of objects
and their relationships in MRI images. They assumed that the graphs were already known for each image in
the database and concentrated on developing fast search algorithms. Chu et al.8 described a knowledge-based
semantic image model to represent image objects’ characteristics. Graph models are powerful representations
but are not usable due to the infeasibility of manual annotation in large databases. Different structures in
complex medical images have different sizes so fixed sized grids cannot capture all structures either.

In this paper, we describe an automatic probabilistic framework that includes prototypes of primitive regions,
their spatial relationships, and automatic and supervised algorithms to use them for content-based retrieval and
classification. The rest of the paper is organized as follows. The concept of prototype regions is defined in
Section 2. Spatial relationships of these prototype regions are described in Section 3. Algorithms for image
retrieval and classification using the spatial relationship models are discussed in Sections 4 and 5, respectively.
Conclusions are given in Section 6.

2. PROTOTYPE REGIONS

The first step to construct a visual grammar is to find meaningful regions in an image. Automatic extraction
of regions is required to handle large amounts of data. To mimic the identification of regions by experts, we
define the concept of prototype regions. A prototype region is a region that has a relatively uniform low-level
pixel feature distribution and describes a simple tissue structure or part of a more complex structure. Color
values or other pixel-level features like texture can be used for region segmentation. Ideally, a prototype is
frequently found in a specific class of tissues and differentiates this class of tissues from others. In addition,
using prototypes reduces the possible number of associations between regions and makes the combinatorial
problem of region matching more tractable. (This will be discussed in detail in Section 5.)

VisiMine uses unsupervised k-means and model-based clustering to automate the process of finding pro-
totypes. Before unsupervised clustering, a piecewise-polynomial multiscale energy-based region growing seg-
mentation algorithm9 is used to find regions in the image. K-means clustering10 partitions the input sample
into k clusters by iteratively minimizing a squared-error criterion function. After clustering, prototypes are
represented by the means of the feature vectors associated with each cluster. Then, Euclidean distance in the
feature space is used to match regions to prototypes. In model-based clustering,10 clusters are represented by
parametric density models. We use a Gaussian mixture model where prototypes correspond to the components
of the mixture. We use the Expectation-Maximization algorithm11 to estimate the parameters of the Gaussian
components and their weights in the mixture. Then, the maximum a posteriori probability (MAP) rule is
used to assign a prototype label to each region with the degree of match being the posterior probability of the
prototype given the feature vector of that region. Figure 1 shows example prototype regions for different tissue
images.

3. REGION RELATIONSHIPS

3.1. Second-order Region Relationships

Second-order region relationships consist of the relationships between region pairs. These pairs can occur in
the image in many possible ways. However, the regions of interest are usually the ones that are close to each
other. Representations of spatial relationships depend on the representations of regions. In VisiMine, regions are
represented by their boundary pixels and moments. Other possible representations include minimum bounding
rectangles, Fourier descriptors2 and graph-based approaches.7

The spatial relationships between all region pairs in an image can be represented by a region relationship
matrix. To find the relationship between a pair of regions represented by their boundary pixels and moments,
we first compute

• perimeter of the first region, πi

• perimeter of the second region, πj



(a) Epiphyseal plate in a bone tissue (b) Eosinophil and red blood cells in a peripheral
blood tissue

(c) Mast cells in a connective tissue (d) Anterior lobe acidophils in a pituitary gland tis-
sue

(e) Acidophils and basophils in a pituitary gland tis-
sue

(f) Interstitial cells of leydig in a male reproductive
system tissue

(g) Plicae, villi and mucosa in a small intestine tissue

Figure 1. Example prototype regions for different tissue images. Images on the left are the original color images, images
on the right contain pseudo-colored prototype labels for all regions.



• common perimeter between two regions, πij

• ratio of the common perimeter to the perimeter of the first region, rij = πij

πi

• centroid of the first region, νi

• centroid of the second region, νj

• distance between the centroids, dij = ‖νi − νj‖
• angle between the horizontal (column) axis and the line joining the centroids, θij

where i, j ∈ {1, . . . , n} and n is the number of regions in the image. Then, the n× n region relationship matrix
is defined as

R = {{rij , dij , θij} | i, j = 1, . . . , n, ∀i 6= j} . (1)

One way to define the spatial relationships between regions i and j is to quantize the rij , dij and θij

values. However, quantization gives crisp (Boolean) decisions and may have limited expressiveness. An-
other way is to define them as relationship classes. Each region pair can be assigned a degree of their spa-
tial relationship using fuzzy class membership functions. Denote the class membership functions by Ωc with
c ∈ {DIS, BOR, INV,SUR,NEAR, FAR, RIGHT, LEFT, ABOVE, BELOW} corresponding to disjoined, bordering, in-
vaded by, surrounded by, near, far, right, left, above and below, respectively. Then, the value Ωc(rij , dij , θij)
represents the degree of membership of regions i and j to class c.

Among the above, disjoined, bordering, invaded by and surrounded by are perimeter-class relationships, near
and far are distance-class relationships, and right, left, above and below are orientation-class relationships.
These relationships are divided into sub-groups because multiple relationships can be used to describe a region
pair, e.g. invaded by from left, bordering from above, and near and right, etc. See Figure 2 for illustrations.

For the perimeter-class relationships, we use the perimeter ratios rij with the trapezoid membership functions
shown in Figure 3(a). The motivation for the choice of these functions is as follows. Two regions are disjoined
when they are not touching each other. They are bordering each other when they have a common perimeter.
When the common perimeter between two regions gets closer to 50%, the larger region starts invading the smaller
one. When the common perimeter goes above 80%, the relationship is considered an almost complete invasion,
i.e. surrounding. For the distance-class relationships, we use the perimeter ratios rij and centroid distances dij

with the sigmoid membership functions shown in Figure 3(b). For the orientation-class relationships, we use
the angles θij with the truncated cosine membership functions shown in Figure 3(c).

Note that the pairwise relationships are not always symmetric, i.e. Ωc(rij , dij , θij) is not necessarily equal to
Ωc(rji, dji, θji). An implementation should keep track of the direction of asymmetric relationships. Furthermore,
some relationships are stronger than others. For example, surrounded by is stronger than invaded by, and
invaded by is stronger than bordering, e.g. the relationship “small region invaded by large region” is preferred
over the relationship “large region bordering small region”. The class membership functions are chosen so that
only one of them is the largest for a given set of measurements rij , dij , θij . We label a region pair as having the
perimeter-class, distance-class and orientation-class relationships

c1
ij = arg max

c∈{DIS,BOR,INV,SUR}
Ωc(rij , dij , θij)

c2
ij = arg max

c∈{NEAR,FAR}
Ωc(rij , dij , θij)

c3
ij = arg max

c∈{RIGHT,LEFT,ABOVE,BELOW}
Ωc(rij , dij , θij)

(2)

with the corresponding degrees
ρt

ij = Ωct
ij

(rij , dij , θij), t = 1, 2, 3. (3)



(a) Perimeter-class relationships: disjoined, bordering, invaded by and sur-
rounded by

(b) Distance-class relationships:
near and far

(c) Orientation-class relationships: right, left, above and below

Figure 2. Spatial relationships of region pairs.
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Figure 3. Fuzzy membership functions for pairwise spatial relationships.



3.2. Higher-order Region Relationships
Higher-order region relationships can be decomposed into multiple second-order relationships. Therefore, the
measures defined in the previous section can be used for each of the pairwise relationships and can be combined
to measure the combined relationship. The equivalent of the Boolean “and” operation in fuzzy logic is the
“min” operation. For a combination of k regions, there are

(
k
2

)
= k(k−1)

2 pairwise relationships. Therefore, the
relationship between these k regions can be represented as lists of

(
k
2

)
pairwise relationships using Equation (2)

as
ct
1...k = {ct

ij | i, j = 1, . . . , k, ∀i < j}, t = 1, 2, 3 (4)

with the corresponding degrees computed using Equation (3) as

ρt
1...k = min

i,j=1,...,k
i<j

ρt
ij , t = 1, 2, 3. (5)

See Figures 4 and 5 for example decompositions.

4. IMAGE RETRIEVAL
Users can compose queries for complex tissue structures by giving a set of example regions or by selecting an
area of interest. VisiMine encodes and searches for the query using the proposed visual grammar as follows:

1. Let k be the number of regions selected by the user. Find the prototype label for each of the k regions.

2. Find the perimeter ratio, centroid distance and orientation for each of the
(
k
2

)
possible region pairs.

3. Find the spatial relationship and its degree for these k regions using Equations (4) and (5). Denote them
by c̄t = {c̄t

ij | i, j = 1, . . . , k, ∀i < j}, t = 1, 2, 3 and ρ̄t, t = 1, 2, 3, respectively.

4. For each image in the database,

(a) For each query region, find the list of regions with the same prototype label as itself. Denote these
lists by Ui, i = 1, . . . , k.

(b) Rank region groups (u1, u2, . . . , uk) ∈ U1 × U2 × · · · × Uk according to the distance
∣∣∣∣ min
t=1,2,3

ρ̄t − min
t=1,2,3

min
i,j=1,...,k

i<j

Ωc̄t
ij

(ruiuj , duiuj , θuiuj )
∣∣∣∣ (6)

or alternatively according to

max
t=1,2,3

max
i,j=1,...,k

i<j

∣∣∣ρ̄t
ij − Ωc̄t

ij
(ruiuj , duiuj , θuiuj )

∣∣∣. (7)

(c) The equivalent of the Boolean “or” operation in fuzzy logic is the “max” operation. To rank image
tiles, use the distance

∣∣∣∣∣ min
t=1,2,3

ρ̄t − max
(u1,u2,...,uk)∈
U1×U2×···×Uk

{
min

t=1,2,3
min

i,j=1,...,k
i<j

Ωc̄t
ij

(ruiuj , duiuj , θuiuj )
}∣∣∣∣∣ (8)

or alternatively the distance

min
(u1,u2,...,uk)∈
U1×U2×···×Uk

{
max

t=1,2,3
max

i,j=1,...,k
i<j

∣∣∣ρ̄t
ij − Ωc̄t

ij
(ruiuj , duiuj , θuiuj )

∣∣∣
}

. (9)

In some cases, some of the spatial relationships (e.g. above, right) can be too restrictive. Relevance feedback
can be used to find the most important relationship class (perimeter, distance or orientation) for a particular
query. Example queries are given in Figures 6 and 7. These images come from a dataset of 615 images obtained
from a histology course12 at the University of Delaware. The dataset contains a single example for most of the
tissue types so precision is expected to be low in query results.



NEAR INVADED BY SURROUNDED BY
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Figure 4. Spatial relationships of an eosinophil, a red blood cell and the surrounding plasma in a peripheral blood tissue
decomposed into pairwise relationships.
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Figure 5. Spatial relationships of a mast cell, nuclei and the surrounding interstitial space in a connective tissue
decomposed into pairwise relationships.



Figure 6. Top 8 search results for the red blood cell described in Figure 4.

Figure 7. Top 8 search results for the mucosa, villi and the surrounding cavity in a small intestine tissue.



5. IMAGE CLASSIFICATION

The visual grammar can also be used to classify images in a Bayesian framework. The input to the system is
a set of example images for each class defined by the user. Let s be the number of classes, m be the number
of relationships defined for region pairs, k be the number of regions in a region group, and t be a threshold
for the number of region groups that will be used in the classifier. Denote the classes by w1, . . . , ws. VisiMine
automatically builds classifiers from the training data as follows:

1. Count the number of times each possible region group with a particular spatial relationship is found in
the set of training images for each class. This is a combinatorial problem because the total number of
region groups (unordered arrangements without replacement) in an image with n regions is

(
n
k

)
and the

total number of possible relationships (unordered arrangements with replacement) in a region group is(m+(k
2)−1

(k
2)

)
. A region group of interest is the one that is frequently found in a particular class of images

but rarely exists in other classes. For each region group, this can be measured using class separability
which is computed in terms of within-class and between-class variances of the counts.

2. Select the top t region groups with the largest class separability values. Let x1, . . . , xt be Bernoulli random
variables for these region groups, where xj = T if the region group xj is found in an image and xj = F
otherwise. Let p(xj = T ) = θj . Then, the number of times xj is found in images from class wi has a
Binomial(vi, θj) distribution where vi is the number of training images for class wi. Using a Beta(1, 1)
distribution as the conjugate prior, the Bayes estimate for θj is computed as

p(xj = T |wi) =
vij + 1
vi + 2

(10)

where vij is the number of training images for wi that contain xj . Using a similar procedure, the Bayes
estimate for an image belonging to class wi is computed as

p(wi) =
vi + 1∑s
i=1 vi + s

. (11)

In other words, discrete probability tables are constructed using vi and vij , i = 1, . . . , s, j = 1, . . . , t, and
conjugate priors are used to update them when new images become available via relevance feedback.

3. For an unknown image, search for each of the t region groups (determine whether xj = T or xj = F, ∀j)
and compute the probability for each class using the conditional independence assumption as

p(wi|x1, . . . , xt) =
p(wi, x1, . . . , xt)

p(x1, . . . , xt)

=
p(wi)p(x1, . . . , xt|wi)

p(x1, . . . , xt)

=
p(wi)

∏t
j=1 p(xj |wi)

p(x1, . . . , xt)
.

(12)

Assign that image to the best matching class using the MAP rule as

w∗ = arg max
wi

p(wi|x1, . . . , xt)

= arg max
wi

p(wi)
t∏

j=1

p(xj |wi).
(13)

Classification examples are given in Figures 8 and 9.



Figure 8. A distinguishing region group for a male reproductive system tissue (marked in the top-left image) and other
images that contain a similar region group.

Figure 9. A distinguishing region group for a pituitary gland tissue (marked in the top-left image) and other images
that contain a similar region group.



6. CONCLUSIONS

In this paper we described a probabilistic framework to automatically analyze complex tissue images using
spatial relationships of regions and described algorithms to use them for content-based image classification
and retrieval. The proposed approach includes identification of prototype regions in images, fuzzy modeling
of region spatial relationships, and Bayesian classifiers to learn image classes based on automatic selection of
distinguishing relations between regions. Future work includes using supervised methods to update prototype
models, automatic generation of metadata for very large databases, and natural language search support.
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