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ABSTRACT

Whole slide image (WSI) classification methods typically use fixed-size patches that are processed separately
and are aggregated for the final slide-level prediction. Image segmentation methods are designed to obtain a
delineation of specific tissue types. These two tasks are usually studied independently. The aim of this work is
to investigate the effect of region of interest (ROI) detection as a preliminary step for WSI classification. First,
we process each WSI by using a pixel-level classifier that provides a binary segmentation mask for potentially
important ROIs. We evaluate both single-resolution models that process each magnification independently and
multi-resolution models that simultaneously incorporate contextual information and local details. Then, we
compare the WSI classification performances of patch-based models when the patches used for both training and
testing are extracted from the whole image and when they are sampled from only within the detected ROIs. The
experiments using a binary classification setting for breast histopathology slides as benign vs. malignant show
that the classifier that uses the patches sampled from the whole image achieves an F1 score of 0.68 whereas the
classifiers that use patches sampled from the ROI detection results produced by the single- and multi-resolution
models obtain scores between 0.75 and 0.83.
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multi-resolution image analysis

1. INTRODUCTION

Whole slide images (WSIs) that are digitized biopsy slides contain billions of pixels due to their high resolution.
This level of detail enables pathologists to observe both the contextual patterns and the individual characteristics
of cancer cells. For example, a pathologist may interpret the general pattern of cell groups, and then zoom in
to regions of interest (ROIs) to make a more detailed analysis. The combination of these observations allows
pathologists to evaluate the existence of cancer and its malignancy level.

The ROIs are defined as regions that are identified to be diagnostically relevant by human experts. For
the example case of breast histopathology, the ROIs refer to variations in the tissue content that correspond
to proliferative changes in ductal or lobular structures. Localizing and diagnosing these changes necessitate the
exploitation of information from different magnifications in the decision process. Furthermore, examination of
the viewing behavior of different pathologists shows that they do not necessarily evaluate the whole slide in detail
and make their decision by focusing on only some parts of the image.1

Advances in deep learning methods on image detection, segmentation, and classification tasks have also found
widespread application in computational pathology. However, most studies on histopathological image analysis
suffer from the limitations of using WSIs because processing huge images requires high computational power and
developing slide-level methods is a complicated task when the diagnostically relevant portions of the image, i.e.,
the ROIs, occupy only small areas. Hence, most studies focus on manually selected well-defined ROIs compared
to the large and complex WSIs. Even though ROI classification can be beneficial for some cases, extending these
methods to slide level is not always straightforward.

To process massive WSIs with limited memory resources, slide-level methods usually split an image into fixed-
size patches and process each patch separately before aggregating their outputs.2 While some studies use the
sliding window approach to generate the patches, some use random sampling to reduce the computational cost.
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Figure 1. The proposed WSI classification pipeline. Patches sampled from the output of the ROI detection algorithm are
input to the WSI classifier that makes the slide-level diagnosis as benign or malignant.

However, not all such patches are equally important for the diagnosis. Furthermore, the contextual information
is lost when the patches are treated individually. Some recent work on image semantic segmentation aim to
obtain a delineation of specific tissue types by using multi-resolution processing.3 However, image segmentation
and classification tasks are typically studied independently.

In this paper, we study the effect of ROI detection as a preliminary step for WSI classification. Previous work
has also shown that fusing ROI detection and patch classification outputs improves the slide-level accuracy.4

Here, first, we process each WSI by using a pixel-level classifier that provides a binary segmentation for ROIs.
We evaluate both single-resolution models that are based on the U-Net5 architecture and multi-resolution models
such as HookNet3 that simultaneously incorporate contextual information and local details. Then, we compare
the WSI classification performance of patch-based models when the patches are extracted from the whole image
and when they are sampled from only within the ROIs. In the rest of the paper, we describe the details of the
ROI detection methodology and present the experimental results for both ROI detection and WSI classification.

2. METHODOLOGY

The focus of this study is to improve the slide-level classification for breast histopathology images by employing
ROI detection as an initial step. This preliminary step aims to imitate the viewing behavior of the pathologist by
using multiple magnifications. Given the resultant ROIs identified by the ROI detector, the experiments for WSI
classification use convolutional neural network (CNN) models that adopt a patch-based approach by selecting
the fixed-size patches from these ROIs. The whole pipeline is shown in Figure 1. The ROI detection step uses
binary ROI masks and the WSI classification step uses slide-level diagnostic labels for training.

2.1 ROI detection

The ultimate goal of this step is to produce a slide-wide pixel-level segmentation map for detecting ROIs. Studies
centered on cancer detection often adopt an encoder-decoder architecture called U-Net.5 We also use U-Net as
our leading network architecture for both single- and multi-resolution experiments.

Single-resolution architecture. For single-resolution experiments, we use U-net models independently trained
by using images at 2.5× and 5× magnifications. The network architecture starts with the encoder path where
each block contains two 3 × 3 convolution operations followed by batch normalization and max pooling layers
having a 2×2 down-sampling factor. This process is repeated four times before continuing with the decoder path
where multi-channel local information maps acquired from the encoder path are up-sampled by up-convolutional
operations. Then, the corresponding feature maps are concatenated with the up-sampled features, followed by
two convolutional operations. This process is repeated four times before the last 1×1 convolution, which reduces
the channel size to one, producing the final segmentation map.

Multi-resolution architecture. Using U-Net5 as the leading backbone network, we introduce two different
pipelines to process a WSI at multiple magnification levels. The pyramidal pipeline structure considers different
resolutions independently and progressively extracts patches from lower resolutions while producing the final
segmentation map at the highest resolution. The second structure is based on HookNet,3 where the higher
resolution outputs the final result by obtaining extra information from a larger context in a lower resolution.



Figure 2. Illustration of the multi-resolution pyramidal pipeline. Patches from low-resolution slide are extracted. The
results are cropped from a higher resolution, with a buffer around the bounding box of each potential ROI. The relevant
patches are given to another model trained at a higher resolution to produce the final result.

Figure 3. Illustration of the multi-resolution HookNet architecture. Same-sized patches from low and high resolutions
are input to two branches resembling U-Net. Considering the resolution, feature vectors from the context branch are
“hooked” to the bottleneck layer of the target branch. The final result is generated by processing all patches by the target
branch.

• The pyramidal pipeline starts by processing the WSI by using a U-Net model that is trained at the lowest
resolution. The model outputs a pixel-wise probability map for diagnostically relevant regions. A mask is
generated for the slide by thresholding this probability map. Then, connected components of this mask are
cropped from a higher resolution image where a buffer is used around the component before cropping. The
cropped ROIs are then processed by a different U-Net model that is trained at that resolution. Thresholding
of the following output probability map produces a finer ROI mask. This process can continue at higher
resolutions but we use only two magnifications, 2.5× and 5×, in the experiments as illustrated in Figure 2.

• HookNet is a convolutional model that aims to process patches extracted from different resolutions. It
consists of two branches with the same architecture based on the U-net model. The first branch is called
the context branch that aims to extract contextual information from low-resolution patches with a large
field of view. The second branch is called the target branch that aims to obtain fine-grained details from
high-resolution patches with a smaller field of view. Same-sized patches from low and high resolutions
are input to HookNet’s context and target branches, respectively. Context branch patches have a wider



field of view, and target branch patches represent the center of each patch in a higher resolution. The
crucial process of this structure is the part where the feature maps from the context branch are cropped
and are concatenated with the feature maps of the target branch, called the “hooking” mechanism. After
combining both contextual and fine-grained information into the target branch, the final segmentation map
is constructed. The model is illustrated in Figure 3.

2.2 WSI classification

We follow a two-step approach for WSI classification. The first step uses a patch classifier and the second step
uses a majority voting-like decision among the patches to obtain the slide-level prediction.4 The patch classifier
is trained on 256 × 256 pixel patches sampled from the WSIs where the slide-level diagnoses are used as weak
labels for the corresponding patches. Patch features used during classification are extracted by using an ImageNet
pre-trained ResNet-based feature extractor, and patch classification is done using a multilayer perceptron (MLP)
trained using the weak labels.

During inference, the malignancy probability for each patch is calculated using this classifier, and the slide-
level diagnosis is obtained as malignant if the average malignancy probability of the patches exceeds a threshold.
The slide is classified as benign otherwise. We use this relatively simple approach and the binary diagnosis
setting for WSI classification because the dataset used in the experiments does not have sufficient number of
slides for training more complex models in a multi-class setting. This process is evaluated when the patches are
extracted from the whole image and when they are sampled from only within the detected ROIs during both
training and testing.

3. EXPERIMENTS

3.1 Dataset

The dataset was collected from Hacettepe University, Department of Pathology archives. It contains 98 breast
WSIs digitized from haematoxylin and eosin-stained specimens of 81 patients. They were scanned by an Olympus
slide scanner at 40× magnification and 1376 ROIs were delineated by pathologists in free form. ROI-level
annotations are gathered into four diagnostic classes: benign (including samples containing non-proliferative
changes, apocrine metaplasia, usual ductal hyperplasia, columnar cell hyperplasia, flat epithelial hyperplasia,
and intraductal papilloma without atypia), atypia (including samples containing atypical ductal hyperplasia,
atypical lobular hyperplasia, and intraductal papilloma with atypia), in situ carcinoma (including both ductal
carcinoma in situ and lobular carcinoma in situ), and invasive carcinoma. Each slide can include multiple labels
as ROIs with different classes can reside in the same slide. The final slide-level labels are formed by choosing the
most severe diagnostic class from the corresponding multi-label sets. In this work, the ROI detection problem is
studied by using binary pixel-level labels as ROI vs. background, and the WSI classification problem is studied
by using binary slide-level labels as benign vs. malignant (atypia, in situ carcinoma, invasive).

The specimens in the collection were acquired at various points in time; hence, they were processed by
different staining protocols. To reduce the variations among the samples, we perform stain normalization as a
preprocessing step. Furthermore, the dataset is split into four folds, by considering each fold’s class distribution
and ensuring that no two WSIs from the same patient fall into different folds. Table 1 shows the class distribution
of the folds.

3.2 Experimental setup

Both the ROI detection and the WSI classification experiments use two folds for training and one fold each
for the validation and test sets. This setup is repeated four times so that each slide is used once for testing.
We report the average values and confidence intervals for the performance metrics using these cross-validation
experiments.

Before training the ROI detection models, all slides are divided into 1024 × 1024 pixel patches with a 10%
overlap. Background patches are eliminated using a threshold on saturation values. In the pyramidal pipeline
experiments, the resultant ROIs from the lower magnification are enlarged with a 10% buffer on all sides before
cropping the corresponding locations from the higher magnification.



Table 1. Slide-level and ROI-level class distribution of the four folds in the dataset.
Benign Atypia In Situ Invasive Total

Slide

Fold 1 9 2 7 7 25
Fold 2 6 6 4 7 23
Fold 3 10 0 7 7 24
Fold 4 7 4 8 7 26
Total 32 12 26 28 98

ROI

Fold 1 144 35 95 56 330
Fold 2 147 38 128 59 372
Fold 3 140 34 102 58 334
Fold 4 151 39 90 60 340
Total 582 146 415 233 1376

Table 2. Quantitative results for ROI detection for single- and multi-resolution models.

Magnification(s) λ Precision Recall F1

Single-resolution
U-Net 2.5× - 0.37 ± 0.06 0.62 ± 0.05 0.46 ± 0.03

U-Net 5× - 0.34 ± 0.06 0.73 ± 0.05 0.47 ± 0.05

Multi-resolution

Pyramidal 2.5×, 5× - 0.33 ± 0.05 0.71 ± 0.05 0.45 ± 0.05

HookNet 2.5×, 5× 1 0.30 ± 0.05 0.75 ± 0.05 0.43 ± 0.05

HookNet 2.5×, 5× 0.75 0.31 ± 0.03 0.72 ± 0.03 0.43 ± 0.03

HookNet 2.5×, 5× 0.50 0.24 ± 0.05 0.83 ± 0.04 0.37 ± 0.04

For ROI detection experiments, we use the Adam optimizer with an initial learning rate of 10−4 and apply
exponential learning rate decay with a value of 0.98. We also use a weight decay of 10−6 and a dropout rate of
0.4 after the downsampling layers of U-Net’s encoder path. In HookNet experiments, losses of context and target
branches are combined by using the function L = λLtarget + (1 − λ)Lcontext, where λ represents the relative
importance given to the loss of target branch Ltarget and context branch Lcontext.

3 We evaluate three different
values of λ. Due to class imbalance in the dataset, we employ the focal Tversky loss6 for all models, using the
parameters α, β, γ with the values 0.7, 0.3, and 1.25, respectively. The models are updated with a batch size of
2 patches and are trained for 20 epochs.

For WSI classification experiments, we train the patch classifiers using the cross entropy loss and optimize
their parameters using stochastic gradient descent with a learning rate of 0.02 and with a weight decay of 10−4.
For the inference phase, we pick malignancy probability thresholds based on their performance on the validation
set. For training and inference, we use only the patches classified as ROI by the corresponding ROI detection
model. We also conduct experiments without any ROI detection where all foreground patches are used for both
training and inference.

3.3 Results

For each combination in the cross-validation experiments, two folds are assigned as training sets, and the other
two are assigned as validation and test sets such that all folds are used once for the evaluation of the models.
Pixel-level precision and recall are computed for each slide and their mean values together with 95% confidence
intervals computed from the folds are obtained for the evaluation of ROI detection. We also compute F1 scores
from the resulting mean precision and recall values.

Table 2 summarizes the quantitative performances for the ROI detection step for all single- and multi-
resolution experiments. All models perform similarly in terms of F1 scores. The performance for the HookNet
architecture decreases with decreasing λ value, indicating that the contribution of the target branch that uses the
higher resolution image is important in the final decision. The single-resolution models perform slightly better
than the multi-resolution models, suggesting that a more detailed tuning of the parameters of the latter models
is needed.



Table 3. Quantitative results for WSI classification when the patches are extracted from the whole slide (Non-ROI) and
when the patches are sampled from the ROIs detected by different models.

ROI detection model Accuracy Precision Recall F1

Non-ROI 0.59 ± 0.14 0.70 ± 0.07 0.67 ± 0.17 0.68 ± 0.12

U-Net (2.5×) 0.65 ± 0.05 0.73 ± 0.09 0.78 ± 0.12 0.75 ± 0.03

U-Net (5×) 0.75 ± 0.01 0.80 ± 0.12 0.87 ± 0.17 0.82 ± 0.04

Pyramidal pipeline 0.76 ± 0.03 0.77 ± 0.04 0.91 ± 0.10 0.83 ± 0.03

HookNet (λ = 1) 0.73 ± 0.06 0.78 ± 0.11 0.87 ± 0.09 0.81 ± 0.04

The results also show that all ROI detection methods perform poorly in terms of precision, but manage to
predict positively labeled pixels relatively well, as indicated in the recall scores. This is due to the difference
between the actual content of the slides and the particular masks used for training. Each slide contains several
regions that correspond to ductal or lobular structures. However, since the focus of the annotations is to mark the
diagnostically significant proliferative changes in these regions, the ROI masks used for training and evaluation
do not contain such structures that can be considered as normal. We actually have some additional annotations
that include an extra class named normal where breast ducts are mainly located. However, these extra markings
are not included in the masks used during training and evaluation. Visual inspection of the results show that
the ROI detection models tend to attend to nuclei-dense regions and predict the regions considered as normal as
well. This is consistent with the high correlation between the regions viewed by the pathologists and epithelium-
rich regions in the slides as observed in eye tracking studies.7 Figure 4 illustrates examples for pathologists’
annotations, masks used for training, and output from one of the ROI detection models (HookNet, with λ = 1).
The predictions for normal regions are counted as false positives in the quantitative performance evaluation in
Table 2.

A factor that can be considered as a source for decrease in the recall performance is the tendency of the
models to leave inner areas of the ductal regions unmarked. Figure 5 shows additional outputs for some ROI
detection models along with the masks used in training. The resulting ROIs are generally similar to the reference
markings, yet their shapes do not fully match. While the reference masks include more generic and smoother
boundaries of ROIs, the predictions are more detailed at pixel-level and are more complex in their shapes. The
predictions also often include only the epithelial regions at the outer boundaries of the ducts because the inner
details of the ductal regions such as the empty areas, secretion, and necrosis have a high visual similarity to the
tissue structures marked as background in the training masks. Moreover, we also observe that the predictions are
more accurate for the ROIs that are individually labeled as benign or in situ as a consequence of their visually
consistent structure and frequent representation in the dataset compared to ROIs labeled as atypia that occupy
relatively smaller areas and rarely occur in the dataset.

Table 3 presents the quantitative performances for WSI classification when the patches used for both training
and testing are extracted from the whole slide and when they are sampled from only within the ROIs detected by
using different models. The results show that slide-level classification performance can be significantly improved
by removing the uninformative patches with the support of the ROI detection step. Both the classification
accuracy and the F1 score are improved with all ROI detection models compared to the baseline performance of
using no ROI information. Among the ROI detection approaches, the multi-resolution pyramidal pipeline is the
best performer in terms of both accuracy and F1 score.

4. CONCLUSION

We studied the effect of ROI detection as a preliminary step for WSI classification. First, we evaluated both single-
resolution and multi-resolution models that were trained on pixel-level binary masks for ROI vs. background
classification. Then, we compared the performance for patch-based classification of breast histopathology slides
as benign vs. malignant when the patches used for both training and testing were extracted from the whole image
and when they were sampled from only within the detected ROIs. The results showed that using the predicted
ROIs for sampling the patches produced significantly better results in terms of all performance metrics. We



Pathologists’ annotation Training mask Output (HookNet, λ = 1)

Figure 4. Example slides with an overlay of pathologists’ ROI annotations (left), binary reference masks used for training
and evaluating the ROI detection models (middle), and predictions by the HookNet model (right). Light blue ROIs in the
annotations represent the normal category, red ROIs represent apocrine metaplasia (benign), green ROIs represent usual
ductal hyperplasia and columnar cell change hyperplasia (also benign), and dark blue ROIs represent lobular carcinoma
in situ. The ROI detection model successfully predicts most of the normal regions in the pathologists’ extra annotations
but these regions are not considered as positive during training or evaluation as they are not included in the masks.



Training mask U-Net (2.5×) U-Net (5×) Pyramidal pipeline HookNet (λ = 1)

Figure 5. Example outputs from different ROI detection models. The binary masks for ROI detection do not include the
regions annotated as normal. The first row presents a slide that includes ROIs of benign, atypia, and in situ classes, as
well as many normal ROIs. The slide in the second row is dominated by in situ ROIs, but also contains some ROIs of
type benign, invasive, and normal. The third example contains large areas of in situ and invasive ROIs, but also includes
benign and normal regions. The fourth row includes a slide that mainly consists of benign and atypia regions.

believe that further enhancements in ROI detection using additional refinement of ROI masks, better parameter
tuning, and longer training epochs can lead to even further improvements in WSI classification.
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