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Abstract. Automatic content modeling and retrieval in remote sens-
ing image databases are important and challenging problems. Statis-
tical pattern recognition and computer vision algorithms concentrate
on feature-based analysis and representations in pixel or region levels
whereas syntactic and structural techniques focus on modeling symbolic
representations for interpreting scenes. We describe a hybrid hierarchical
approach for image content modeling and retrieval. First, scenes are de-
composed into regions using pixel-based classifiers and an iterative split-
and-merge algorithm. Next, spatial relationships of regions are computed
using boundary, distance and orientation information based on differ-
ent region representations. Finally, scenes are modeled using attributed
relational graphs that combine region class information and spatial ar-
rangements. We demonstrate the effectiveness of this approach in query
scenarios that cannot be expressed by traditional approaches but where
the proposed models can capture both feature and spatial characteris-
tics of scenes and can retrieve similar areas according to their high-level
semantic content.

1 Introduction

The constant increase in the amount of data received from satellites has made
automatic content extraction and retrieval highly desired goals for effective and
efficient processing of remotely sensed imagery. Most of the existing systems
support building supervised or unsupervised statistical models for pixel level
analysis. Even though these models improve the processing time compared to
manual digitization, complete interpretation of a scene still requires a remote
sensing analyst to manually interpret the pixel-based results to find high-level
structures. In other words, there is still a large semantic gap between the outputs
of commonly used models and high-level user expectations.

The limitations of pixel-based models and their inability in modeling spatial
content motivated the research on developing algorithms for region-based analy-
sis. Conventional region level image analysis algorithms assume that the regions
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consist of relatively uniform pixel feature distributions. However, complex image
scenes and land structures of interest usually contain many pixels and regions
that have different feature characteristics. Furthermore, two scenes with similar
regions can have very different interpretations if the regions have different spatial
arrangements. Even when pixels and regions can be identified correctly, manual
interpretation is often necessary for many applications of remote sensing image
analysis like land cover/use classification, urban mapping and monitoring, and
ecological analysis in public health studies.

Symbolic representation of scenes and retrieval of images based on these rep-
resentations are very challenging and popular topics in structural and syntactic
pattern recognition. Previous work on symbolic representation attempted to de-
velop languages and data structures to model the attributes and relationships
of symbols/icons, and work on symbolic retrieval concentrated on finding exact
or partial (inexact) matches between these representations [1, 2].

Most applications of syntactic and structural techniques to remote sensing
image analysis assumed that object detection and recognition problems were
solved. Using structures such as strings, graphs, semantic networks and produc-
tion rules, they concentrated on the problem of interpreting the scene given the
objects. Other related work in the computer vision literature used grid-based
representations [3], centroids and minimum bounding rectangles [4]. Centroids
and minimum bounding rectangles are useful when regions have circular or rect-
angular shapes but regions in natural scenes often do not follow these assump-
tions. Similar work can also be found in the medical imaging literature where
rule-based models [5], grid-based layouts [6], and attributed relational graphs
[7] were used to represent objects and their relationships given manually con-
structed rules or delineation of objects by experts. Most of these models are not
usable due to the infeasibility of manual annotation in large volumes of images.
Different structures in remote sensing images have different sizes so fixed sized
grids cannot capture all structures either.

We propose a hybrid hierarchical approach for image content modeling and
content-based retrieval. The analysis starts from raw data. First, pixels are la-
beled using Bayesian classifiers. Then, scenes are decomposed into regions us-
ing pixel-based classification results and an iterative split-and-merge algorithm.
Next, resulting regions are modeled at multiple levels of complexity, and pair-
wise spatial relationships are computed using boundary, distance and orienta-
tion information. Finally, scenes are modeled using attributed relational graphs
that combine region class information and spatial arrangements. Our work dif-
fers from other approaches in that recognition of regions and decomposition of
scenes are done automatically after the system learns region models with only a
small amount of supervision in terms of examples for classes of interest.

The rest of the paper is organized as follows. Decomposition of scenes into
regions is described in Section 2. Modeling of regions and their spatial relation-
ships are presented in Section 3. Scene modeling with graphs is discussed in
Section 4. Using these graphs in content-based retrieval is described in Section
5 and conclusions are given in Section 6.



(a) LANDSAT scene (b) Region decomposition

Fig. 1. False color representation of a LANDSAT scene and the region decomposition
obtained after applying the split-and-merge algorithm to the results of a pixel-based
Bayesian classifier. White pixels in (b) represent region boundaries.

2 Scene Decomposition

The first step in scene modeling is to find meaningful and representative regions
in the image. An important requirement is the delineation of each individual
structure as an individual region. Automatic extraction and recognition of these
regions are also required to handle large amounts of data.

In previous work [8], we used an automatic segmentation algorithm based on
energy minimization, and used k-means and Gaussian mixture-based clustering
algorithms to group and label the resulting regions according to their features.
Our newer experiments showed that some popular density-based and graph-
theoretic segmentation algorithms were not successful on our data sets because
of the large amount of data and the detailed structure in multi-spectral images.

The segmentation approach we have used in this work consists of pixel-based
classification and an iterative split-and-merge algorithm [9]. Bayesian classifiers
that fuse information from multiple features are used to assign each pixel to one
of these classes. Since pixel-based classification ignores spatial correlations, the
initial segmentation may contain isolated pixels with labels different from those
of their neighbors. We use an iterative algorithm that merges pixels and pixel
groups using constraints on probabilities (confidence of pixel classification) and
splits existing regions based on constraints on connectivity and compactness.

The algorithms proposed in this paper are evaluated using a LANDSAT
scene of southern British Columbia in Canada. The false color representation
of this 1, 536× 1, 536 scene with 6 multi-spectral bands and 30 m/pixel ground
resolution is shown in Fig. 1(a), and the region decomposition consisting of 1,946
regions is shown in Fig. 1(b). Spectral, textural and elevation information were
used to train the Bayesian classifiers.



Fig. 2. Region representation examples. Rows show representations for two different
regions. Columns represent, from left to right: original boundary, smoothed polygon,
convex hull, grid representation, and minimum bounding rectangle.

3 Spatial Relationships

3.1 Region Modeling

A straightforward way of representing regions of an image is by using a member-
ship array where each pixel stores the id of the region that it belongs. Hierarchical
structures such as quad trees can be used to encode this membership information
for faster access. Regions can also be represented using contour-based approaches
such as chain codes that exploit the boundary information.

Operations on complex regions with a large number of pixels on the boundary
may be computationally infeasible so regions are often modeled using approxima-
tions [10, 11]. The simplest approximation is the minimum bounding rectangle
that can be useful for representing compact regions. Another simple but finer
approximation is the grid representation. More detailed approximations such
as polygonal representations, B-splines, or scale space representations are often
necessary when operations include multiple regions.

In this work, we represent each region using its boundary chain code, polyg-
onal representations at different smoothing levels, grid representation and min-
imum bounding rectangle. Regions with holes have additional lists for chain
codes and polygonal approximations of their inner boundaries. Grid representa-
tion, that consists of a low-resolution grid overlaid on the region, stores all grid
cells that overlap with the given region and contain at least one more region.
In addition, each region has an id (unique within an image) and a label that
is propagated from its pixel’s class labels as described in the previous section.
Example representations are given in Fig. 2. These representations at different
levels of complexity are used to simplify the computation of spatial relationships
between regions as described in the next section.

3.2 Pairwise Relationships

After the images are segmented and the regions are modeled at multiple levels
of detail, the next step is the modeling of their spatial relationships. Regions



Fig. 3. Spatial relationships of region pairs: disjoined, bordering, invaded by, sur-
rounded by, near, far, right, left, above and below.

can appear in an image in many possible ways. However, regions of interest are
usually the ones that are close to each other. The relationships we compute for
each region pair can be grouped as boundary-class relationships (disjoined, bor-
dering, invaded by, surrounded by), distance-class relationships (near, far), and
orientation-class relationships (right, left, above, below) as illustrated in Fig. 3.
Boundary-class relationships are based on overlaps between region boundaries.
Distance-class relationships are based on distances between region boundaries.
Orientation-class relationships are based on centroids of regions.

Since large scenes can easily contain thousands of regions with thousands of
boundary pixels, pixel-to-pixel comparison of all possible region pairs to compute
their overlaps and distances is not feasible. These computations can be signif-
icantly simplified by applying a coarse-to-fine search to find region pairs that
have a potential overlap or are very close to each other. In previous work [8,
9], we used brute force comparisons of region pairs within smaller tiles obtained
by dividing the original scene into manageable sized images. However, regions
that occupy multiple tiles may not be handled correctly after that division. The
coarse-to-fine search strategy that compares different region approximations in
increasing order of complexity enables us to perform exact computations only
for very close regions whereas relationships between the remaining ones are ap-
proximated using different levels of simpler boundary representations.

Since the relations between two regions can be described with multiple re-
lationships at the same time (e.g., invaded by from left, bordering from above,
near and right), the degree of a region pair having a particular relationship is
modeled using fuzzy membership functions. These relationships are based on:

– ratio of the common boundary (overlap) between two regions to the perime-
ter (total boundary length) of the first region,

– distance between two regions,
– angle between the horizontal (column) axis and the line joining the centroids

of the regions.

Details of the membership functions are not included here due to space restric-
tions but more information can be found in [8].



(a) Region decomposition (b) Relationship graph

Fig. 4. Attributed relational graph of the LANDSAT scene given in Fig. 1. Region
boundaries are shown here again for easy reference. Nodes are located at the centroids
of the corresponding regions. Edges are drawn only for pairs that are within 10 pixels
of each other to keep the graph simple.

4 Scene Modeling using Graphs

At the end of the previous section, each region pair is assigned a degree for each
relationship class. In previous work [8], we modeled higher-order relationships
(of region groups) by decomposing them into
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k
2

)
second-order relationships (of

region pairs) combined using the fuzzy “min” operator that corresponds to the
Boolean “and” operator. In this work, we model higher-order relationships us-
ing attributed relational graph (ARG) structures. ARGs are very general and
powerful representations of image content. Petrakis et al. [7] used ARGs to rep-
resent objects and their relationships in medical images. They assumed that the
regions were segmented and labeled manually, and concentrated on developing
fast matching algorithms for these manually constructed graphs. However, ap-
plications of ARGs for representing contents of natural scenes have been quite
limited because of inaccurate object recognition and the computational com-
plexity of finding associations between objects in different images. Automatic
decomposition of regions in Section 2 and automatic modeling of their spatial
relationships in Section 3 gives us an important advantage over the existing
methods that require manual segmentation and labeling of the regions.

The ARG can be adapted to model the scenes by representing regions by the
graph nodes and their spatial relationships by the edges between such nodes.
Nodes are labeled with the class (land cover/use) names and the corresponding
confidence values (posterior probabilities) for these class assignments. Edges are
labeled with the spatial relationship classes (pairwise relationship names) and
the corresponding degrees (fuzzy membership values) for these relationships. The
ARG for the LANDSAT scene of Fig. 1 is given in Fig. 4.



5 Scene Retrieval

When the scenes are represented using ARGs, image retrieval can be modeled as
a relational matching [12] and subgraph isomorphism [13] problem. Relational
matching has been extensively studied for structural pattern recognition. We use
the “editing distance” [7, 14] as the (dis)similarity measure. The editing distance
between two ARGs is defined as the minimum cost taken over all sequences
of operations (error corrections) that transform one ARG to the other. These
operations are defined as substitution, insertion and deletion. The computation
of the distance between two ARGs involves not only finding a sequence of error
corrections that transforms one ARG to the other, but also finding the one that
yields the minimum total cost.

The retrieval scenario starts with the user’s selecting of an area of interest
(i.e., a set of regions) in an image. The system automatically constructs the graph
for that area. Then, this graph is used to query the system to automatically find
other areas (i.e., sets of regions) with similar structures in the database. In some
cases, some of the relationships (e.g., above, right) can be too restrictive. Our
implementation includes a relationship value named don’t care that allows users
to constrain the searches where insertion or deletion of graph edges corresponding
to relationship classes set as don’t care do not contribute any cost in the editing
distance. Finally, resulting areas are presented to the user in increasing order of
the editing distance between the subgraphs of these areas and the subgraph of
the query.

Example queries are given in Figs. 5–71. Traditionally, queries that consist of
multiple regions are handled by averaging the features of all regions. However,
this averaging causes a significant information loss because it ignores relative
spatial organization and distorts the multimodal feature characteristics of the
query. On the other hand, our experiments using the scene in Fig. 1 showed that
the proposed ARG structure can capture both feature and spatial characteristics
of region groups and can retrieve similar areas according to their high-level
semantic content.

Experiments also showed that the coarse-to-fine search strategy of Section
3.2 significantly improves the performance. For the example scene with 1,946
regions shown in Fig. 1, computation of all individual region properties (bound-
ary chain code, centroid, perimeter) took 10.56 minutes, and computation of all
pairwise spatial relationships took 33.47 minutes using brute force comparisons
of regions. On the other hand, computation of all additional region represen-
tations (smoothed polygon, grid representation, minimum bounding rectangle)
took 2.57 seconds, and computation of all pairwise relationships took 1.7 minutes
using coarse-to-fine comparisons. As for the graph search examples, the queries
in Figs. 5–7 took 5.52, 7.13 and 15.96 seconds, respectively, using an unoptimized
C++-based implementation on a Pentium 4, 3.0 GHz computer running Linux.

1 Since no ground truth exists for this semantic level of analysis, we provide only
qualitative examples in this paper.



Fig. 5. Searching for a scene where a residential area is bordering a city center that is
bordering water. Orientation-class is set to don’t care. Identified regions are marked as
cyan, magenta and yellow for city, residential and water, respectively. Scenes are shown
in increasing order of their editing distance to the query given on top-left.

Fig. 6. Searching for a scene where a residential area is bordering a field and both
are bordering water. Identified regions are marked as cyan, magenta and yellow for
residential, field and water, respectively.

6 Conclusions

We described a hybrid hierarchical approach for image content modeling that
involves supervised classification of pixels, automatic grouping of pixels into
contiguous regions, representing these regions at different levels of complexity,
modeling their spatial relationships using fuzzy membership classes, and encod-
ing scene content using attributed relational graph structures. We demonstrated
the effectiveness of this approach for content-based retrieval using queries that
provide a challenge where a mixture of spectral and textural features as well
as spatial information are required for correct identification of the scenes. The

Fig. 7. Searching for a scene where a park is invaded by water and a city center is
bordering the same water. Identified regions are marked as cyan, magenta and yellow
for city, park and water, respectively.



results showed that the proposed models can capture both feature and spatial
characteristics of region groups and can retrieve similar areas according to their
high-level semantic content. Regarding future work, we believe that improving
pairwise relationship models (such as orientation-class relationships where cen-
troids are not always very meaningful for large and non-compact regions) will
make the overall representation more powerful and will prove further useful to-
ward bridging the gap between low-level features, representations and semantic
interpretation.
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