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Abstract. We describe an annotation and retrieval framework that uses
a semantic image representation by contextual modeling of images us-
ing occurrence probabilities of concepts and objects. First, images are
segmented into regions using clustering of color features and line struc-
tures. Next, each image is modeled using the histogram of the types of its
regions, and Bayesian classifiers are used to obtain the occurrence proba-
bilities of concepts and objects using these histograms. Given the obser-
vation that a single class with the highest probability is not sufficient to
model image content in an unconstrained data set with a large number of
semantically overlapping classes, we use the concept/object probabilities
as a new representation, and perform retrieval in the semantic space for
further improvement of the categorization accuracy. Experiments on the
TRECVID and Corel data sets show good performance.

1 Introduction

Image annotation and content-based retrieval have been very active research
areas with open problems due to the constant increase in the richness of the
available image content. Contextual information plays a very important role for
characterizing such content. A promising method for modeling context in images
is scene classification because associating scenes with semantic labels has a high
potential for providing a natural grouping of images instead of relying only on
low-level features.

Scene classification and the related retrieval problems have two critical com-
ponents: representing scenes and learning models for associating labels to these
scenes. Given the difficulty of image segmentation in unconstrained data sets,
most of the recent work use histograms of local features [1] or fixed grid layouts
[2–4] for image representation but region-based models [5] can also be found.
Intermediate semantic models that make use of the occurrence of common con-
cepts, such as sky, water, grass, snow, have also been shown to improve the
classification of natural scenes [4]. Although, recent work was mostly limited in
terms of grid-based representations [2–4] or the small number of classes used [4],
contextual modeling of image scenes using combinations of concepts and objects
looks promising for decreasing the semantic gap.
? This work was supported in part by the TUBITAK Grant 104E077.



In this paper, we describe an image annotation and retrieval framework that
uses scene classification to detect high-level concepts for image indexing. First,
images are segmented using clustering of color features and grouping of line
structures (Sections 2 and 3). Next, each image is modeled using the histogram
of quantized region types, and Bayesian classifiers are used to obtain the oc-
currence probabilities of high-level concepts and objects in images using these
histograms (Section 4). An important observation is that a single class with the
highest probability is not always sufficient to model image content in an uncon-
strained data set with semantically overlapping classes [2]. Therefore, we use the
concept/object probabilities as a new representation, and perform retrieval in
the semantic space for further improvement of the categorization accuracy (Sec-
tion 5). Performance of the proposed models is evaluated using the TRECVID
and Corel data sets.

2 Segmentation using color information

Image segmentation is still an unsolved problem in computer vision. Although
numerous algorithms have been shown to work well for images with only a few
objects and a simple background, it seems impossible to find a fixed set of
parameters that produces reasonable results in a large unconstrained data set.
In this paper, we assume that a very precise segmentation of an image is not
required for the scene classification and retrieval problem. Therefore, our goal is
to obtain a rough estimate of important regions using unsupervised classification
of color features and grouping of line segments.

For segmentation using color, we use the combined classifier approach in [6]
because it fuses color and spatial information, and does not require the number of
regions as an input parameter. First, an initial labeling of an image is done using
k-means clustering of only the HSV values of pixels. Next, these pixel labels are
used to train a multi-class nearest mean classifier on the HSV color features and
a Parzen window classifier with a Gaussian kernel using the pixel positions as
spatial features. The nearest mean classifier is selected for its simplicity and the
Parzen window classifier is selected for its nonparametric nature for modeling
a distribution with an indefinite number of modes (each mode corresponds to
a segment). Then, the posterior probability outputs of each classifier for each
pixel are combined using the product rule, and the pixels are assigned to the
class with the largest probability. A new pair of classifiers are trained using these
new pixel labels and the iterations continue until the pixel labels stabilize. Note
that the number of clusters in the initial k-means clustering does not directly
correspond to the number of segments, and can be empirically estimated using
the number of dominant colors that can be found in the images in the selected
data set.

Figure 1 shows example segmentations. The regions that are smaller than an
area threshold are removed from the final segmentation where the results contain
only contiguous sets of pixels that have a relatively uniform color distribution
and are large enough.



Fig. 1. Segmentation using color. Top row: color images; bottom row: segmentation
results in pseudocolor (pixels marked as white are not segmented).

3 Segmentation using line structure

Not all objects/regions of interest can be characterized using uniformity of colors.
Li and Shapiro [7] showed that features of line segments can be exploited for
building recognition. We also use properties of nearby line segments to extract
regions.

A line segment is found either at the boundary of two different regions or
within a highly textured region. We expect that nearby line segments that have a
similar color distribution around them may belong to the same object. Given the
line segments in an image, they are grouped using average linkage hierarchical
clustering according to the average color values on opposite sides of each segment.
The average link criterion is used because we want all line segments that are
selected as belonging to the same object to have similar color values.

The resulting clusters can contain line segments that have similar color pairs
but belong to different objects. Therefore, a second level of clustering is per-
formed to select the neighboring ones. This is done separately for each cluster
using single linkage hierarchical clustering according to the distances between the
end points of line segments. The single link criterion is used because we want
to merge two groupings of line segments only by considering their nearest pair
of end points. In both clustering steps, the number of clusters is automatically
determined from the dendrogram [8].

Li and Shapiro [7] also required the line segments to have similar orienta-
tions in their building recognition algorithm. We do not consider orientation
here because we observed that clustering of line segments can also detect highly
textured regions such as trees where the tree branches have an almost random
orientation. However, we perform a final post-processing step to eliminate the
clusters with a very small number or a very sparse spatial distribution of line
segments where the spatial coverage of a line cluster is computed as the ratio



Fig. 2. Segmentation using line structure. First column: color images; second column:
line clusters in pseudocolor; third column: final regions (pixels marked as white are not
segmented).

of the area of the convex hull formed by the corresponding line segments to the
number of line segments.

Finally, the resulting line segment clusters are converted to region representa-
tions by partitioning an image into non-overlapping grid cells and labeling each
grid cell with the label of the cluster whose lines most frequently intersect with
the cell. Figure 2 shows example segmentations.

4 Scene classification

In this paper, a scene’s content is represented as a collection of its regions. The
regions that are extracted using pixel-based color information (Section 2) are
modeled using their HSV histograms with 8 bins used for the H channel and
3 bins for each of S and V channels. Then, the k-means algorithm is used to
create a codebook of k1 region types. The regions that are extracted using line
structure information (Section 3) are modeled using a 10-bin histogram of the
orientation of their line segments. Similarly, the k-means algorithm is used to
create a codebook of k2 region types for the whole data set. After each region
is assigned a type label, as the final representation, each scene is modeled using
the histogram of k1 + k2 region types.

We use a Bayesian framework for scene classification and investigate two
different settings for probability estimation. In both settings, the goal is to es-
timate the posterior probabilities p(wj |x), j = 1, . . . , c, where wj represents the
j’th class, c is the number of classes, and x is the histogram of the quantized
region types.



The first setting treats the region types independently and estimates the
class-conditional probabilities using the multinomial model. The parameters of
the model are computed using maximum likelihood estimates that involve count-
ing the number of times each region type is observed for each class in the training
data [9].

The second setting treats each class separately and trains a one-class Gaus-
sian classifier using the training examples for each class independently. The one-
class setting is particularly suitable here because the classes are not mutually
exclusive and the commonly used two-class (target vs. others) approach is not
applicable because sampling a sufficient number of training data from the “oth-
ers” class is not always possible. One-class classifiers model only the “target”
class and assume a low uniform distribution for the “others” class [10]. After
a probability density (in this case, a Gaussian) is estimated using the training
examples of the target class, a threshold is set on the tails of this distribution
and a specified amount of the target data is rejected.
Experiments: We used the TRECVID 2005 and Corel data sets and their
ground truth to evaluate the algorithms proposed in this paper. The TRECVID
data set contains 24517 video shots in 18 classes and the Corel data set contains
4999 images in 21 classes. Two thirds of the images were used for training and
the remaining one third for testing. Both k1 and k2 were set as 1000.

The Bayesian classifier assigns each image to the class with the highest pos-
terior. Table 1 shows the confusion matrices when the multinomial model was
used. The matrices show that the error rates were rather high (12.83% accu-
racy for the TRECVID data set and 34.76% accuracy for the COREL data set)
but most of the misclassifications occurred among the classes that have a se-
mantic overlap (e.g., boat–water, bus–road, sky–sunset). The confusions for the
one-class Gaussian model were worse as most of the images were assigned to
the outdoor class for the TRECVID data set and to the vegetation class for the
Corel data set when the highest posterior was used. We also ran the bag-of-words
model with probabilistic latent semantic analysis [1] on the Corel data set and
obtained 19.58% accuracy (compared to 34.76% by the multinomial model in
Table 1(b)).

An important observation was that, when all probabilities were considered,
the image content can be modeled by multiple classes instead of a single class
that has the highest probability. Figure 3 shows the posterior probability values
for example images. These examples also confirm that the class models and the
resulting probabilities are not necessarily wrong but a single class assignment is
not appropriate when an unconstrained data set with a diverse set of classes is
considered [2].

5 Image annotation and retrieval

The classification results show that an image cannot always be assigned to a
single class if the categories are not mutually exclusive. Furthermore, different
users may have different requirements where one may be interested in urban



Table 1. Confusion matrices for Bayesian classification using the multinomial model.

(a) TRECVID

(b) Corel
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Ground truth: building
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Fig. 3. Posterior probability examples. Although the ground truth class is not the one
that received the highest posterior (i.e., counted as error in Table 1), the probability
values are semantically correct.

scenes but another may specifically look for vehicles. In image annotation, a
threshold is often applied to the posterior probabilities, and the concepts/classes
with probabilities higher than this threshold are assigned to the image. To further
improve the classification accuracy in an adaptive way regarding different user
interests, we use the probabilities obtained from the Bayesian classifier as new
features for each scene. This corresponds to a new representation in terms of a
feature vector of length c for c classes.

This representation maps images to a semantic space where each component
of the new feature vector corresponds to the probability of observing a particular
concept/object in an image. Furthermore, the features complement each other
and provide contextual information. For example, a car detector that uses low-
level features may not be very reliable when used alone but the occurrence of
a region that exhibits feature characteristics of a car becomes more relevant



if that image also has a high probability of containing a road and having an
urban context. Therefore, this new representation compensates the limitations
of individual object and scene detectors that use low-level features, and brings
us one more step closer to bridging the semantic gap.

We use this representation in a retrieval framework. First, the user selects
a category and the images that have a high probability of belonging to that
category are retrieved. Next, the user selects one of these images as the query
and an initial retrieval is performed.

The result of this query is a ranked list of the images in the database. If the
user marks some of the images as relevant or irrelevant, this relevance feedback
information can be used for further improvements. In this paper, we use the
support vector data description (SVDD) model [11] as a one-class classifier. The
one-class framework is intuitively applicable to the feedback problem because
the images that are labeled as relevant provide a good sample for the target
class of interest whereas the images that may be labeled as irrelevant often do
not provide sufficient training data to learn a separate class. The SVDD model
uses the relevant examples to learn a hypersphere that encloses the target class,
and uses the irrelevant examples to minimize the volume of this sphere. Once the
classifier is trained for a given iteration, the images can be re-ranked according
to their distances to the resulting hypersphere. These results can also be used
for annotating the query image using the most common concept/object labels
among the images that fall into the hypersphere.
Experiments: The ground truth was used to automatically generate queries
and provide feedback using the top 30 images by automatically labeling them
as relevant or irrelevant at each iteration. Figure 4 shows the average precision
results when the one-class Gaussian model was used for the Bayesian classifier.
The first iteration gave the largest increase. Following iterations provided minor
improvements. Although the classification accuracy was low when only the class
with the highest posterior was considered, feedback iterations successfully con-
verged to the true set of images by making use of the concept/object occurrence
probabilities as semantic features.

6 Summary

We described an image annotation and retrieval framework that used scene
classification for extracting semantic features for image representation. Scene
classification was performed using Bayesian modeling of histograms of regions
segmented using clustering of color features and line structures. Given the ob-
servation that multiple classes can describe the image content, a new semantic
representation was constructed by contextual modeling of images using the oc-
currence probabilities of concepts and objects. The experiments showed that this
new representation provided an increased precision in an unconstrained data set
with a large number of semantically overlapping classes.
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(a) TRECVID
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(b) Corel

Fig. 4. Precision vs. the number of images retrieved for the initial query and four
feedback iterations.
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