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Abstract—Object detection is a fundamental task in many
applications of remote sensing image analysis. Problems such as
inter-class similarity, intra-class variability, and existence of het-
erogeneous backgrounds can benefit from leveraging contextual
information to improve the detection performance. Most context
modeling architectures introduce additional modules that aim to
extract contextual information from the main backbone that is
also used for learning the object representations. We propose a
new approach for contextual object detection via image inpaint-
ing named CODI where a custom module fuses object-specific
features from an object detector and contextual representations
from an inpainting-based generative model. The resulting multi-
scale representation named the contextual pyramid network is
injected into the feature extraction backbone so that both the
oriented region proposal network and the classification and
regression branches of the detector can benefit from the richer
representations resulting from this fusion. In contrast to others,
our architecture obtains semantic context independently from
and without relying on the backbone of the object detection model
to guide both localization and labeling. Extensive experiments
with quantitative and qualitative evaluation are performed on the
DOTA, HRSC2016, and DIOR-R datasets. With mean average
precision scores of 76.61%, 90.57 %, and 67.63% on these datasets
respectively, the proposed model achieves higher performance
compared to other models from the literature. Ablation experi-
ments also show that CODI enables improvements in precision
and recall with effective control of the score probability threshold
during detection.

Index Terms—Object detection, image inpainting, feature fu-
sion

I. INTRODUCTION

Advancements in remote sensing technology have driven
many applications in areas such as environmental monitoring,
urban development, agriculture, and disaster management. One
of the most fundamental problems in these applications is
object detection where accurate identification of objects is
essential for extracting meaningful information about chal-
lenging scenes. Object detection is typically studied as a com-
bination of two sub-problems: localization and classification.
However, object detection in remote sensing presents several
unique challenges compared to traditional object detection
applications.

One of the main challenges in remote sensing object de-
tection is the existence of complex and heterogeneous back-
grounds that make it difficult to distinguish objects from the
environment. For example, vehicles parked along densely built
urban areas can easily blend with their surroundings. Further-
more, objects of interest can have a very high variability in
scale, ranging from small vehicles that may occupy only a
few pixels to sports fields that are composed of multiple large
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structures. Finally, visual similarities between different object
categories (inter-class similarity) and large variations within
the same class (intra-class variability) increase the complexity
of the detection and classification tasks. For instance, different
types of sports fields can share certain characteristics, and
vehicles can significantly vary in color and size.

Solutions to these challenges can benefit from leveraging
contextual information to improve the detection performance.
For example, vehicles often appear on or near roads, buildings
form different types of clusters in different urban settings, and
ships appear with certain alignments in docks and harbors.
Consequently, context models that exploit spatial and semantic
relationships between objects and their surroundings can pro-
vide additional cues for accurate localization and classification.

Recent research on remote sensing object detection has
been dominated by deep learning architectures. Popular one-
stage and two-stage model such as Faster-RCNN [1], You
Only Look Once (YOLO) [2], and Retina-Net [3] have been
adopted for remote sensing images to overcome large-scale
scenes, high-resolution data, and multispectral inputs. Recent
improvements in this field focus more on improving small ob-
ject detection, optimizing models for computational efficiency,
and facilitating multi-scale feature learning. There has also
been a trend in integrating contextual information for further
improvements in performance. Most of these works introduce
additional modules that aim to extract contextual information
from the main backbone architecture that is also used for
learning the object representations [4]-[8]. These modules are
typically connected to the later stages of the detection pipeline
such as bounding box regression or classification heads to
improve object labeling.

Our main motivation in this work is to improve both the
localization and the classification of objects by integrating
an inpainting-based generative model with a two-stage object
detection architecture. Image inpainting has been shown to
have a potential for capturing image context while filling
missing regions based on their surroundings [9]. We pro-
pose a custom fusion module that integrates the contextual
information captured in the transformer layers of the Mask
Aware Transformer inpainting model [10] with the object
representations extracted in the feature pyramid network of
the Oriented R-CNN object detector model [11]. The fusion
module integrates pairs of transformer units and pyramid
levels based on the compatibility of their feature maps.
The resulting multi-scale feature representation named the
contextual pyramid network is used to replace the feature
pyramid network, and is injected into the feature representation
backbone given as input to both the object proposal generation
stage and the regression and classification branches to guide
both localization and detection. This context-enhanced multi-
scale representation benefits object detection as larger objects



Fig. 1: Example detection results for the proposed model
and the oriented R-CNN model for different class probability
thresholds on the DOTA validation set where ground truth
annotations are available. Green indicates correct detections,
yellow indicates detections with wrong class labels, red indi-
cates false positives. Left to right: ground truth, detections of
the oriented R-CNN model, detections of the proposed model.
On the first row, our model achieves comparable precision
with better recall when the threshold is set as 0.04 and
0.02 for oriented R-CNN and our model, respectively. On
the second row, our model achieves comparable recall with
better precision when the threshold is set as 0.05 and 0.04 for
oriented R-CNN and our model, respectively.

are captured in higher layers with broader contexts, while
smaller objects appear in lower layers retaining finer details.
Consequently, the class probability threshold can be used to
control the tradeoff between precision and recall as illustrated
in Figure 1, where the proposed model enhances one of these
metrics while keeping the other one at a comparable level. By
using extensive comparative experiments and ablation studies,
we show the effectiveness of the proposed model named CODI
for Contextual Object Detection via Image Inpainting.
Compared to previous studies on contextual object detection
and image inpainting, our proposed architecture provides a
novel strategy to help enhance the objects’ representative
features for better localization and identification. The main
contributions of this work are summarized as follows:

« We propose an architecture to integrate a generative
inpainting model with a two-stage object detector to
exploit semantic context for remote sensing.

o In contrast to others, our architecture obtains semantic
context independently from and without relying on the
backbone of the object detection model. This prevents
the model from being limited by the feature-extraction
biases of the detection backbone.

« We introduce a custom fusion module that creates a multi-
scale contextual representation. This replaces the standard
feature pyramid network to better handle scale variability,
ensuring that large objects benefit from broader context
while small objects retain fine-grained details.

o To the best of our knowledge, this is the first work to

demonstrate that inpainting-derived features can signifi-
cantly improve not only the identification (classification)
of objects but also their spatial localization (proposal
generation) in complex remote sensing scenes.

e Through comprehensive experiments, we demonstrate
that our model achieves a superior precision-recall trade-
off compared to state-of-the-art models on challenging
datasets with heterogeneous backgrounds and high inter-
class similarity.

The rest of the paper is organized as follows. Section II
discusses the related work on object detection, contextual
modeling, and image inpainting. Section III describes the
proposed methodology. Section IV presents the experiments
and discusses the results. Section V provides the conclusions.

II. RELATED WORK

We discuss the related work in three parts: object detection,
contextual modeling, and image inpainting in remote sensing.
a) Object detection: Recent years have seen significant
developments on object detection in remotely sensed imagery.
Xie et al. [11] propose oriented RCNN, a two-stage detector
that efficiently generates oriented proposals, resulting in high-
quality detections with oriented bounding boxes. Pu et al. [12]
introduce the adaptive rotated convolution module, enabling
the kernels to rotate adaptively based on an object’s orienta-
tion, thereby improving feature extraction. Lu et al. [13] de-
scribe DecoupleNet, a lightweight backbone network tailored
for resource-constrained environments, demonstrating promis-
ing classification and detection performance among existing
lightweight networks. Xie et al. [14] present a one-stage de-
tector that uses a feature-interaction alignment module to pro-
vide mutual assistance between classification and regression
heads and jointly optimizes both anchor-based and anchor-free
predictions to improve the overall detection accuracy. They
also introduce an objectness activation network [15] that is a
lightweight fully-convolutional module designed to efficiently
filter non-object patches in large aerial images, significantly
accelerating inference while maintaining accuracy. Further-
more, they propose a fine-grained object detection network
[16] that learns discriminative representations via a dedicated
fine-grained branch that is trained by using a confusion-
minimized loss for subordinate-level object classification.
Wu et al. [17] describe a center-symmetry representation-
based localization detector that introduces an enhanced feature
pyramid, a center-symmetry proposal generation, and a dual
classification head to resolve various inconsistency issues in
two-stage oriented detection. A common characteristic of these
approaches is that they focus on performing detection based
solely on object features. Therefore, they cannot recover false
negatives when these objects lack representative features or
appear in cluttered backgrounds.

b) Contextual modeling: With the rapid rise of large
language models, transformer-based approaches have gained
interest in remote sensing object detection. Wang et al. [18§]
introduce the ViTAE model that adopts multi-scale window
attention with varying orientations to reduce computational
cost and enhance object representation. Yu et al. [19] propose



spatial transform decoupling using a separate network to pre-
dict bounding-box orientations within the detection head and
to improve object features via cascaded activation masks. Li
et al. [20] describe the large selective kernel network LSKNet
that dynamically adjusts the receptive fields of kernels within
its convolutional layers under the feature extraction backbone
to handle objects of varying scales. Zhao et al. [21] introduce
a point-axis representation to handle loss discontinuities and
abrupt rotation changes in bounding boxes, and integrate this
representation into a detection transformer framework. Zhao
et al. [22] present an end-to-end transformer detector that ad-
dresses orientation encoding, missing geometric relations, and
feature misalignment via positional encodings and attention
mechanisms. Zeng et al. [23] describe an angle classification
method and a rotated deformable attention module to im-
prove feature alignment for oriented object detection. These
approaches expect the self-attention mechanism to capture the
dependencies among different parts of the image and implicitly
model the contextual information within the detection pipeline.

Some methods propose to add extra modules that aim to
focus on the contextual information. For example, Ma et al. [4]
introduce a multi-model decision fusion framework that inte-
grates local and relational contextual features and multi-region
object parts to handle the complexities in object appearance
and spatial structure. Zhang et al. [5] describe CAD-Net that
exploits global and local contextual information via attention
modules that operate on the feature representations extracted
by the ResNet and feature pyramid backbones. Dong et al. [6]
propose a gating function to replace the RoiAlign module to
incorporate the local context surrounding each proposal and
the global context of the whole image. Min et al. [7] use
a contextual transformer module to capture spatial attributes
and channel characteristics by integrating global residuals and
local fusion mechanisms as well as a decoupled detection
head to improve classification and regression tasks. Zhao et
al. [8] present SCDNet that includes a dedicated scene clas-
sification subnetwork and a context-guided fusion module to
improve the representations of tiny objects while suppressing
the background information. Xie et al. [24] propose a contex-
tual dependence mining network that constructs features with
different receptive fields by stacking convolutional operations
to individual layers of the feature pyramid network to capture
varying contextual dependencies of objects and aggregates
these features into a contextual representation that is used
for both classification and regression. These methods share a
common theme of deriving the contextual information from
the same backbone used for extracting the object features,
and integrating these contextual representations into the later
detection stages using extra modules. Our proposed approach
aims to capture the context via an inpainting based generative
mechanism that learns short- and long-range dependencies
among different parts of the image independently from the
object detection architecture.

c) Image inpainting: Image inpainting models have the
potential to capture the image context when they are tasked
to generate the contents of an image region conditioned on its
surroundings [9]. However, the main focus of image inpainting
studies in remote sensing is to address object removal and

filling of occluded areas with applications such as cloud and
shadow removal, elimination of artifacts, and anonymization
of sensitive locations. For example, Khan et al. [25] introduce
a spatiotemporal inpainting approach that fills missing surface
reflectance information by using the data available from nearby
temporal instances. Dong et al. [26] train a deep convolutional
generative adversarial network to learn uncorrupted distribu-
tions of sea surface temperature from historical images and
use this generative model to reconstruct the regions occluded
by clouds. Similarly, Sun et al. [27] propose a two-stage
generative network for removing clouds from optical remote
sensing images by combining a recurrent convolution network
for cloud mask generation with an autoencoder employing
partial convolutions for cloud removal. Du et al. [28] describe
a coarse-to-fine deep generative model with spatial semantic
attention to enhance local continuity and global semantic
relevance to improve the inpainting performance for missing
regions in high-resolution remote sensing images. Sha et
al. [29] tackle missing data reconstruction from a single source
image by designing a mask extraction network that obtains
versatile soft masks of missing regions and an inpainting
network that includes dilated pyramidal convolutions and an
attention fusion mechanism. Zhang et al. [30] describe a
masked image modeling approach that focuses on learning
representative features from masked image reconstruction by
treating original image patches as reconstructive templates and
using a Siamese network to impose context consistency con-
straints during reconstruction. These inpainting studies apply
common use cases such as occlusion or artifact reduction, and
neither one exploits inpainting’s contextual learning potential
to improve the effectiveness of object detection.

III. METHODOLOGY

The main goal of the proposed methodology is to improve
both the detection (localization) and the classification (label-
ing) performance of the object detection model by injecting the
contextual information into the feature representation pipeline.
Our approach builds on three key aspects: obtaining multi-
scale object features using a pyramid network, extracting
contextual information via image inpainting, and fusing them
into the representation backbone given as input to the proposal
generation as well as classification and regression branches.
The proposed architecture for CODI is given in Figure 2. The
following sections describe the oriented object detector, the
inpainting model, the fusion module, and the overall training
strategy.

A. Oriented object detector

Well-known one-stage and two-stage detectors such as
YOLO [2] and Faster-RCNN [1] have also been applied
to remote sensing imagery. Despite improvements, one-stage
models face challenges such as localization in complex en-
vironments [31] and detecting small objects [32]. Therefore,
we choose two-stage detection as our baseline approach. In
particular, we use the oriented R-CNN [11] architecture that
has been one of the best performing models among two-stage
detectors while providing competitive efficiency with respect
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Fig. 2: Overall architecture for the proposed Contextual Object Detection via Inpainting (CODI) model. The parts highlighted
in blue correspond to the feature pyramid network (FPN) for obtaining multi-scale object features as well as the oriented
region proposal network (RPN) and classification and regression heads that are part of the oriented R-CNN object detector
as described in Section III-A. The part highlighted in yellow corresponds to the mask-aware transformer (MAT) architecture
used for inpainting-based contextual information extraction as described in Section III-B. The part highlighted in red illustrates
the proposed fusion module that combines the object-specific local feature representations encoded in the FPN levels with the
contextual feature representations captured by the transformer layers (highlighted in green) to produce the contextual pyramid
network (CPN) that is used for both object localization and classification stages as described in Section III-C.

to one-stage detectors. Its oriented region proposal generation
and rotated alignment-based feature extraction strategy makes
it particularly effective in the detection of arbitrary-oriented
objects in remote sensing images.

Oriented R-CNN uses a feature pyramid network (FPN)
[33] backbone to produce the feature map that is given as
input to an oriented region proposal network (RPN) for the
proposal generation stage which is followed by the proposal
classification and regression stage. These stages are illustrated
in the bottom part of Figure 2. During inference, if a ground
truth object does not have any overlap with a selected proposal
or a proposal has a large location offset that leads to noisy
features, the detection performance deteriorates with false
negatives or mis-classifications, respectively. Similar to other
detection networks, oriented R-CNN uses a class probability
threshold that affects the final number of output detections.
Increasing this threshold leads to fewer detections and po-
tentially increased precision, and decreasing it leads to more
candidate detections and potentially increased recall.

Our aim in this work is to enhance the feature representation
using contextual information for a more precise control and
improvement on both precision and recall. In the oriented R-
CNN framework, FPN offers a multi-scale representation that
supports generating object proposals and refining the resulting
detections. This capability enables accurate identification of
objects with various sizes and orientations. While there is
information flow between the layers of the network through
residual connections, oriented R-CNN particularly uses four
of these levels as input to the classification and regression

stages. We denote these levels as Fi, Fs, F3, and Fy from
top to bottom with the upper layers corresponding to higher-
level semantics and larger objects due to their larger receptive
fields while the lower layers capture finer details and are
particularly useful for smaller objects. Given the input image
X € R¥>*HXW where H and W are image height and width
in number of pixels, respectively, the representation at each
FPN level Fy,i = 1,...,4 is XF' € RZOXHI W yhere
HE x Wl = H/32 x W/32, HY' x W = H/16 x W/16,
HE x WE = H/8 x W/8, and HF x WF = H/4 x W/4.
Each level has 256 feature channels, and for an example image
of 1024 x 1024 pixels, the four levels have sizes 32 x 32,
64 x 64, 128 x 128, and 256 x 256 pixels, respectively. These
representations are used in the contextual feature fusion in
Section III-C.

B. Inpainting model

We use the mask-aware transformer (MAT) architecture
[10] for inpainting that utilizes the self-attention mechanism
to model long-range dependencies among different parts of
the image, helping the model effectively understand the rela-
tionships between both distant and neighboring regions. MAT
is differentiated from other inpainting models that use only
convolutional approaches with a natural restriction to look only
at limited receptive fields to fill the masked regions.

The MAT components are specifically designed to process
high-resolution images, making it suitable for analyzing re-
mote sensing data with a lot of details corresponding to a wide
range of object types appearing in many different scales. The



architecture consists of a convolutional head, a transformer
body, a convolutional tail, and a reconstruction module. The
convolutional head is used to extract down-scaled image
patches as tokens. The transformer body contains five stages of
transformer blocks at varying resolutions to model the long-
range interactions among the tokens. The convolutional tail
that employs transposed convolutions is used to upsample
the output tokens back to the input resolution. Finally, the
reconstruction module uses a convolutional U-net structure to
refine the high-frequency details and produce the final output
image. These components are illustrated from left to right
in the top part of Figure 2. The original architecture also
includes a style manipulation module that supports pluralistic
generation to handle multiple plausible solutions by changing
the weight normalization of the convolution layers with an
additional noise input. Even though the style manipulation
module is used as part of the full inpainting pipeline during
training, it is omitted from Figure 2 for simplicity because it
is not used in our inference phase.

An important design decision in adapting the MAT archi-
tecture as our contextual backbone is the choice for the input
mask. The conventional inpainting scenario requires an input
mask to explicitly identify image regions or objects that need
to be filled. However, our setting has no explicit mask as the
objects of interest in the image are unknown. Furthermore,
unlike natural scenes where objects are few and large, remote
sensing images often contain densely populated areas with
many different and small objects where the commonly used
random masks may lose important local details. Therefore,
we employ a generic mask in the form of a chessboard to
capture the general layout of the image scene. The chessboard
structure consists of alternating square cells that correspond to
valid (available) and invalid (masked) image regions. The con-
trollable cell size in the chessboard grid is a hyperparameter
that we investigate in the ablation study in Section IV-D.

The input to the MAT architecture is the input image
X € R¥>*HXW and the binary mask M € {0,1}7*W_ The
convolutional head produces the down-scaled image X' ¢
R180xH/8xW/8 "Each transformer layer Tj,7 = 1,...,5, uses
an attention module with shifted windows and dynamic mask
updating. The attention module uses the swin transformer strat-
egy [34] where non-local interactions are efficiently computed
using only the valid tokens as determined by the mask at
that layer. The swin transformer blocks use different sizes of
shifted windows to capture different ranges of relationships
between masked and unmasked image regions. The mask
updating module automatically updates the mask at each layer
so that all tokens in a window become valid after attention
as long as there exists at least one valid token whereas they
remain invalid if all tokens are invalid in the window.

The transformer layers follow an encoder-decoder design
with the largest receptive field in the central layer. The token
sequence in each layer is reshaped into the corresponding
image size at that layer to construct the contextual fea-
ture maps that form the outputs of the transformer layers
XTI e RBOHIWE where HT x WT = H/8 x W/8,
HI x Wi = H/16 x W/16, HY x Wi = H/32 x W/32,
HI x Wl = H/16 x W/16, and HI x WT = H/8 x W/8.
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Fig. 3: Architecture of the contextual fusion module. X/ (top-
left input) is the representation obtained from the FPN level
F; and XjT (top-right input) is the output of the matching
transformer layer 7 after the transposed convolution. The
resulting feature map X (bottom output) is used to construct
the contextual pyramid network.

Each layer has 180 feature channels, and for an example image
of 512 x 512 pixels, the five layer outputs have sizes 64 x 64,
32 x 32, 16 x 16, 32 x 32, and 64 x 64 pixels, respectively.
The input images for MAT are down-scaled to half size for
computational reasons, to keep the number of tokens at a
reasonable level.

C. Contextual feature fusion

The goal of the fusion module is to effectively combine
the object-specific local feature representations encoded in the
FPN levels of the oriented object detector with the contextual
feature representations captured by the transformer layers of
the inpainting model. During fusion, we match the FPN levels
with the transformer layers based on the compatibility of the
resolutions of their feature maps. First, we apply transposed
convolutions to the outputs of the transformer layers 75, Ty,
and T5 so that their outputs are upsampled by a factor of
2. Then, the FPN levels Fi, F5, and F3 are paired with the
transformer layers 73, Ty, and T5 with matching resolutions
of H/32 x W/32, H/16 x W/16, and H/8 x W/8 pixels,
respectively. Since there is elementwise addition between T}
and 75 and between 75 and Ty in the inpainting model, all
layers effectively contribute to the fusion process even though
only three layers are directly paired with the FPN levels.

The proposed fusion module architecture is given in Figure
3. The input tensor pair (X[, XT) for the two branches
in the fusion module correspond to the paired feature maps
(XF, xXI), (XF, XT), and (XI, XT). Our design contains
sequences of convolution blocks for learning of latent spaces
for effective fusion of information from both sources. Each
convolution block includes two convolution layers with batch
normalization and ReLU activation applied after each con-
volution. These convolutions do not modify the number of



channels in the input tensors to preserve the relative amount
of contribution of each source before concatenation, as we
hypothesize that the object-specific feature representations
(with 256 channels in X %) should have a higher weight in
the fusion than the contextual feature representations (with
180 channels in X7T). For combination of the outputs of the
two branches, we use channel-wise concatenation rather than
element-wise addition to both handle this difference in the
number of channels, and allow the following convolution block
to learn an effective combination of the two individual sets of
channels representing the learned latent spaces in the earlier
branches. The final convolution layer maps the concatenated
436 channels back to 256 so that these feature maps form the
contextual pyramid network (CPN) that can directly replace
the FPN as the input to the oriented RPN in the oriented object
detector. As shown in Figure 2, the resulting CPN consists of
four levels constructed as follows: X = Fusion(X{", XTI,
X§ = Fusion(X{, XT), X{ = Fusion(X{, X7T), and
X§ = XF. The feature map X[ that corresponds to the
lowest FPN level F} is used directly in the CPN as it captures
the finest object-specific local feature representations.

The design in the fusion module adds the skip connection
after the ReLU activation as opposed to the traditional residual
approach [35] that applies the activation function after the skip
connection. Let x be the input to the convolution block, f(z)
be the mapping learned until the ReLU activation, and y be
the output resulting from adding the skip connection as

y = ReLU(f(z)) + . (1)

In the forward pass, this design ensures that only the activated
features from f(x) contribute to the output. Moreover, adding
the original input x helps that the essential information is
preserved and propagated to subsequent layers, balancing the
complexity introduced by the nonlinear transformation. During
backpropagation, the derivative of the loss function L (to be
discussed later) with respect to the input x becomes
L L L
O = SURELU () (@) +
where the gradient flows directly through the identity path
OL /0y regardless of the activation state of f(z). In contrast,
the traditional residual block [35] that is defined as

2

y = RelLU(f(z) +x) 3)
yields the derivative
oL 0L , ,
or oyt (f (@) +2)(f(x) + 1) )

where the gradient passing through the skip connection is
adjusted by the derivative of the ReLU activation. The design
in (1) that is used in our fusion module provides an unaltered
gradient path through the residual connection and helps mit-
igating vanishing gradient issues. Thus, the derivative in (2)
facilitates more stable training as opposed to (4) that has no
backpropagation when the ReLU activation is O.

He et al. [36] presents a comprehensive study regarding the
placement and ordering of different blocks (e.g., convolution,
batch normalization, ReLU activation) in the design of skip

connections in residual models. They conclude that, among
different alternatives, moving the ReLU before the addition
leads to better convergence in the optimization process and
lower training errors compared to the original version in [35].
Our observations regarding the improvements in training and
overall performance are consistent with those in [36].

D. Training strategy

The loss function that is used for the oriented object detector
[11] considers both the class labels and the bounding boxes
for the predicted objects. First, each object anchor is assigned
a binary label where the anchor is labeled positive if its
intersection over union (IoU) with any ground truth box
exceeds 0.7, or if it has the highest IoU among all anchors
when its IoU with a matched ground truth box is between
0.3 and 0.7. Anchors with IoU scores below 0.3 are labeled
negative and are ignored in the training process. As in [11],
we adopt a cross-entropy term L for classification over all
sampled anchors and a smooth L; term L, for refining the
bounding boxes, applied only to positive anchors. The overall
loss for the oriented RPN in the detector is given by

M M
1 x
Lot = iV Z:ZI Ecls(Pz',pf) + % Z:ZI Ereg(biy b:) (5)

where M denotes the number of sampled anchors, p; repre-
sents the predicted class label for the i’th anchor, p; is the
ground truth label for that anchor, b; is the set of predicted
offsets of the oriented bounding box, and b corresponds to the
ground truth offsets that enable the network to learn accurate
rotation and shape adjustments.

The inpainting model employs a versatile loss framework
that includes an adversarial loss, R; regularization, and a
perceptual loss. The adversarial loss £, has two parts: a
generator loss that aims to produce realistic images that fool
the discriminator, and a discriminator loss that distinguishes
between real and generated images. The R; regularization
penalizes the discriminator’s gradient magnitude relative to its
input, stabilizing the training by preventing overconfidence.
The perceptual loss £, ensures that the generated images align
with the target images not only in pixel intensity but also in
texture, style, and contextual semantics, ultimately enhancing
the visual coherence of the inpainted regions. Finally, the
overall loss for the inpainting model is defined as

Ling = Lg + YR1 + AL, ©6)

where the coefficients y (set as 10) and A (set as 0.1) adjust
the contributions of R; regularization and perceptual loss,
respectively.

As the overall training strategy, first, the inpainting model
is trained using the loss function Ly, in (6). Then, this model
is used in the inference mode while the parameters of the
object detector and the fusion module are learned using the
loss function Lge in (5).

IV. EXPERIMENTS AND RESULTS

This section presents the datasets used in performance eval-
uation, implementation details, experimental results, ablation
studies, and discussion of experimental findings.



A. Dataset

We use the DOTA [37], HRSC2016 [38], and DIOR-R [39]
datasets that are widely recognized benchmarks supporting
oriented annotations for remote sensing object detection. The
DOTA dataset provides multi-class high-quality annotations
for the following 15 object categories: plane (PL), baseball
diamond (BD), bridge (BR), ground track field (GTF), small
vehicle (SV), large vehicle (LV), ship (SH), tennis court
(TC), basketball court (BC), storage tank (ST), soccer ball
field (SBF), roundabout (RA), harbor (HA), swimming pool
(SP), and helicopter (HC). It has 188,282 object instances
with rotated bounding box annotations in 2806 images with
sizes around 4000 x 4000 pixels. Consistent with [11], we
split the images into 1024 x 1024 pixel tiles with 200-pixel
strides for single-scale experiments. Similarly, we resize the
original images at three scales (0.5, 1.0, and 1.5) and split
them into 1024 x 1024 pixel tiles with 500-pixel strides for
multi-scale experiments. The oriented object detector takes
the 1024 x 1024 pixel images as input during both training
and inference. The inpainting model uses resized images of
512x 512 pixels due to computational reasons. We present both
single- and multi-scale experiments for the DOTA dataset.

The HRSC2016 dataset provides challenging maritime
scenes, including coastal areas, harbors, and open seas. The
rotated bounding box annotations in 1061 images capture ship
orientations and scale variations. Also consistent with [11],
we resize the shorter sides of the images to 800 pixels while
the longer sides become less than or equal to 1333 pixels
without any splitting. The inpainting model also uses resized
images due to computational reasons. All HRSC2016 images
are processed at a single scale.

The DIOR-R dataset is a large-scale oriented object de-
tection benchmark. It provides rotated bounding box anno-
tations for 23,463 images and 192,518 object instances across
20 categories: airplane (APL), airport (APO), baseball field
(BF), basketball court (BC), bridge (BR), chimney (CH),
dam (DAM), expressway service area (ESA), expressway toll
station (ETS), golf field (GF), ground track field (GTF), harbor
(HA), overpass (OP), ship (SH), stadium (STA), storage tank
(STO), tennis court (TC), train station (TS), vehicle (VE), and
windmill (WM). All images have a fixed size of 800 x 800
pixels. The dataset provides 5862 images for training, 5863
for validation, and 11,738 for testing. All DIOR-R images are
processed at a single scale without any splitting.

B. Implementation details

For all datasets, we use horizontal and vertical flipping as
well as color normalization for data augmentation. For the
chessboard mask used as input to the inpainting model, we
use 32 x 32 pixel square grid cells that alternate as valid and
invalid image regions in our default setting. For the DOTA
example, this corresponds to 16 squares along both horizontal
and vertical axes for an input image of 512 x 512 pixels.
We train the inpainting model using only the DOTA dataset.
The experiments for the HRSC2016 and DIOR-R datasets use
this model to further demonstrate the generalizability of the
approach. We set the class probability threshold to 0.01 for all

datasets. Both the mask grid size and the probability threshold
are further evaluated in the ablation experiments in Section
IV-D.

We use the authors’ code provided for the oriented R-
CNN detector [11] as the baseline model. The code is used
to train the model on our server with its original settings.
All experiments are performed by using a single RTX 4090
GPU accompanied with 24 GB RAM. We use a ResNet-
50 backbone to allow faster training and inference with a
convenient batch size.

During the training process for all datasets, we utilize
stochastic gradient descent with a momentum parameter of 0.9,
an initial learning rate of 0.02, and a weight decay coefficient
of 0.00013. To maintain numerical stability, we incorporate
gradient clipping with a maximum L2 norm of 35. A stepwise
learning rate schedule is implemented, reducing the learning
rate by a factor of 10 at epochs 12 and 16 for DOTA and
DIOR-R, and at epochs 36 and 48 for HRSC2016. Addi-
tionally, a linear warm-up is employed over 500 iterations,
commencing at 0.001 of the initial learning rate to mitigate
early gradient explosions. The models are trained for 18
epochs on DOTA and DIOR-R and 54 epochs on HRSC2016,
using a batch size of 8. For the inpainting training stage, we
employ a learning rate of 0.001 with a reduced batch size of
4.

C. Results

We employ mean average precision (mAP) as the perfor-
mance metric used in comparative experiments. We use both
the sampling-based interpolated average precision computed
from the precision-recall curve (PASCAL VOC 2007 definition
[40]) and the version that uses all data points on the curve
(PASCAL VOC 2012 definition [41]). In particular, DOTA’s
evaluation server that implements the PASCAL VOC 2012
definition is used for the DOTA test results. Consistent with
the literature, we use both PASCAL VOC 2007 and 2012
definitions for the HRSC2016 experiments.

The first set of experiments compares CODI with well-
known one-stage and two-stage object detection methods on
the DOTA dataset. Table I presents both class-specific and
overall mAP scores for all methods. We present the results
corresponding to a ResNet-50 backbone and multi-scale pro-
cessing whenever applicable for fair comparison. We also
present the results for both the baseline model (oriented R-
CNN) and CODI using both single-scale and multi-scale data
preparation settings. The results show that the proposed model
outperforms the baseline model for both single-scale (with
an mAP of 71.24% versus 70.57%) and multi-scale (with an
mAP of 76.61% versus 76.01%) experiments according to the
scores obtained from the official DOTA evaluation servers. The
improvements for both settings show the effectiveness of the
proposed integration of contextual information in the detection
process. CODI also obtains the highest performance compared
to all of the other detection methods in Table I.

When individual classes are considered, the results confirm
that our model delivers its most significant gains over the
baseline for both single- and multi-scale settings for the classes



TABLE I: Comparison of the proposed model CODI with various one-stage and two-stage object detectors in terms of both
classwise and overall mean average precision (mAP) scores on the DOTA dataset. Horizontal bounding box (HBB) results
are given when oriented bounding box (OBB) results are not available. Both single-scale and multi-scale results are provided
for both the baseline oriented R-CNN (O-RCNN) model and our model CODI. The methods are ordered according to overall

mAP.
Method BBox PL BD BR GTF SV LV SH TC BC ST SBF RA HA Sp HC mAP
One-stage
SSD [37] HBB 41.06 2431 455 17.10 1593 7.72 1321 3996 12.05 4688 9.09 30.82 136 350 000 17.84
YOLO_v2 [37] HBB 5275 2424 10.60 3550 1436 241 737 5179 4398 3135 2230 36.68 14.61 2255 11.89 2549
PloU [42] OBB 80.90 69.70 24.10 60.20 3830 6440 64.80 90.90 7720 7040 46.50 37.10 57.10 6190 64.00 60.50
RetinaNet-0 [11] OBB 88.67 77.62 4181 5817 7458 71.64 79.11 9029 82.18 7432 5475 60.60 6257 69.67 60.64 68.43
DRN [43] OBB 89.71 8234 4722 64.10 7622 7443 8584 90.57 86.18 84.89 57.65 6193 69.30 69.63 5848 73.23
M2FE-YOLO [44] OBB 9440 77.50 5570 4920 69.60 83.80 90.2 97.50 70.60 84.10 69.50 47.60 88.00 86.00 4540 73.90
DHRec [45] OBB 8858 77.90 53.84 7293 7845 78.84 87.64 90.88 88.78 8546 56.11 66.74 67.58 7025 57.53 74.57
SASM [46] OBB 8642 7897 5247 69.84 7730 7599 86.72 90.89 82.63 85.66 60.13 6825 7398 7222 6237 7492
Two-stage
Faster RCNN [37] HBB 7942 77.13 17.70 64.05 3530 38.02 37.16 8941 69.64 5928 50.30 5291 47.89 4740 46.30 54.13
Faster R-CNN-0 [11] OBB 8844 73.06 44.86 59.09 7325 7149 77.11 90.84 7894 8390 4859 6295 62.18 6491 56.18 69.05
Faster R-CNN-0+OAN [15] OBB 8844 7633 4631 59.70 7330 72.13 7790 90.72 79.02 81.60 4480 58.66 6128 67.51 6287 69.37
Rol Transformer [47] OBB 83.64 7852 4344 7592 6881 73.68 83.59 90.74 7727 8146 5839 5354 6283 5893 47.67 69.56
CAD-Net [5] OBB 87.80 8240 4940 73.50 71.10 63.50 76.70 90.90 79.20 7330 4840 60.90 62.00 67.00 62.20 69.90
ICN [48] OBB 8997 77.71 5338 7326 7346 6502 7822 90.79 79.05 8481 57.20 62.11 7345 7022 58.08 7245
EAMSDet [49] OBB 83.86 77.19 51.82 63.84 8025 7671 87.20 9090 8472 8523 6531 6507 6672 70.65 5496 73.96
ARS-DETR [23] OBB 8697 7556 4832 69.20 77.92 7794 87.69 90.50 7731 82.86 60.28 64.58 7488 71.76 66.62 74.16
DFDet [24] OBB 8892 79.25 4840 70.00 8022 78.85 87.21 90.90 83.13 8398 60.07 6649 6827 76.78 58.11 74.71
OrientedFormer [22] OBB 88.14 79.13 5196 6734 81.02 8326 8829 9090 8557 8625 60.84 6636 7381 7123 5649 75.37
OSKDet [50] OBB 8998 86.99 53.13 7555 7287 7697 87.63 90.74 7887 86.97 60.13 70.68 7570 71.53 65.60 76.22
COBB [51] OBB - - - - - - - - - - - - - - 76.53
O-RCNN [11] (single) OBB 89.28 7449 5347 7175 63.67 8139 8624 90.88 8295 84.17 5635 4200 67.09 62.00 5283 70.57
Our model (single) OBB 89.19 75.69 5478 7254 6586 81.63 8570 90.89 83.93 84.11 57.65 41.11 7247 6277 50.14 71.24
O-RCNN [11] (multi) OBB 89.86 8298 59.65 77.96 61.50 83.67 8725 90.86 85.83 87.12 7139 43.09 7837 6997 70.63 76.01
Our model (multi) OBB 89.97 8394 60.63 79.07 5879 8341 8742 90.84 87.00 87.62 69.09 4729 79.13 69.63 7529 76.61

whose identities are reinforced by distinctive environments.
Harbors, for example, are uniquely framed by docks, water,
and quaysides, bridges are signaled by a road span over a
river or valley, and sports venues such as baseball diamonds,
ground track fields, and basketball courts present characteristic
line markings, grass boundaries, and surrounding stands and
open areas. When CODI can attend to these characteristic
scene layouts, detection accuracy increases remarkably relative
to the baseline. Conversely, classes whose instances appear
in isolation or in visually cluttered backgrounds, such as
small and large vehicles, planes, and storage tanks, derive
limited benefit and, under multi-scale inference, may even lose
accuracy over the baseline because the added context has the
risk of diluting discriminative object cues and inflating false
positives with respect to the class probability threshold.

We also compare our model against the oriented R-CNN
baseline using two complementary statistical analyses on the
DOTA dataset. Using the test set performance presented in
Table I, we perform paired comparisons of per-class average
precision values for 15 object categories, both for single-scale
and multi-scale settings. In both cases, the mean difference
in average precision is positive (approximately +0.66 AP
for single-scale and +0.60 AP for multi-scale), indicating
that, on average, our method consistently improves over the
baseline across object categories. To obtain a more robust
assessment, we also conduct a non-parametric bootstrap anal-
ysis on the validation set (containing 5297 images in the
single-scale split), where ground truth annotations are available
and statistics can be computed over thousands of images.
Using 500 bootstrap repetitions at the image level with each

TABLE II: Comparison of the proposed model CODI with
various object detectors with respect to mean average precision
(mAP) (both PASCAL VOC 2007 and 2012 versions) on the
HRSC2016 dataset. Information on the backbone architecture
used is provided. The methods are ordered according to mAP
VOC 2007 version and the best results are highlighted in bold.

Method Backbone mAP07) mAP(2)
Rotated RPN [52] ResNet-101-FPN 79.08 85.64
Rol Transformer [47]  ResNet-101-FPN 86.20 -
Gliding Vertex [53] ResNet-101-FPN 88.20 -
PloU [42] DLA-34 89.20 -
R3Det [54] ResNet-101-FPN 89.26 96.01
DAL [55] ResNet-101-FPN 89.77 -
CenterMap-Net [56] ResNet-50-FPN 89.83 92.10
SZANet [57] ResNet-101-FPN 90.17 95.01
OrientedFormer [22] ResNet-50-FPN 90.17 96.48
DETR-ORD [58] ResNet-50-FPN 90.21 96.80
DFDet [24] ResNet-50-FPN 90.25 96.51
O-RCNN [11] ResNet-50-FPN 90.30 96.52
AOPG [59] ResNet-50-FPN 90.34 96.22
OASL [60] ResNet-50-FPN 90.36 -
Oriented DETR [21] ResNet-50-FPN 90.52 97.73
Our model ResNet-50-FPN 90.57 96.73

repetition consisting of 5297 samples with replacement, we
obtain a mean improvement of 0.97% in mAP in favor of
our method. Importantly, the 95% confidence interval for this
improvement, [0.27,1.76], lies entirely above zero, and the
probability that the improvement is non-positive is only 0.2%
(two-sided p = 0.004 < 0.05). This provides strong evidence
that the observed performance gains over oriented R-CNN are
statistically significant.



The second set of experiments compares CODI with other
object detection methods on the HRSC2016 dataset. Table II
presents the mAP scores for all methods. The methods are
ordered according to mAP VOC 2007 version as all methods
used for comparison provide the scores for that version. We
use the same hyperparameters as those used for the DOTA
dataset. We also use the inpainting model trained on the DOTA
dataset for these experiments. CODI outperforms the oriented
R-CNN baseline when using a ResNet-50 backbone with mAP
scores of 90.57% and 96.73% according to the PASCAL VOC
2007 and 2012 version of the performance metric, respectively.
When all methods are considered, CODI achieves the best
score under the 2007 metric. It also has the third highest score
with a very competitive performance based on the 2012 metric
among all methods with scores available in Table II.

The third set of experiments compares CODI with other
object detection methods on the DIOR-R dataset. Table III
presents the mAP scores for all methods. Both our model and
the oriented R-CNN baseline are trained on the union of the
training and validation sets, and evaluation is done on the test
set. We use the same hyperparameters as those used for the
DOTA dataset. We also use the inpainting model trained on
the DOTA dataset for these experiments. CODI outperforms
the oriented R-CNN baseline with an overall mAP difference
of 1.97%. When individual classes are considered, CODI has a
higher score than oriented R-CNN for 16 of the 20 categories.
Consistent with the DOTA results, more significant gains are
obtained for classes, such as dam, golf field, harbor, and train
station, with characteristic scene layouts. CODI also obtains
the highest performance compared to all of the other detection
methods in Table III.

For qualitative evaluation and explainability of how fusion
of contextual information captured by the transformer layers
in the inpainting model enhances the object representations in
the feature pyramid network, we visualize the corresponding
feature and attention maps in Figure 4. These maps illustrate
the parts of the scene that the model focuses on using different
receptive fields. In particular, the upper layers correspond to
higher-level semantics and larger objects whereas the lower
layers capture smaller details in the scene. We observe that the
FPN feature maps and the transformer attention maps in the
same level have compatible resolutions in the corresponding
heatmaps, confirming our decision for pairing these particular
maps in the fusion process. When the FPN levels of the
baseline model are considered, the focus moves from the
taxiway on the upper levels to individual airplane details on
the lower levels. When the FPN levels of the proposed model
are considered, we can already see improved contrast due
to the effect of backpropagation during learning the whole
contextual model. Furthermore, when the attention maps of
the inpainting model are considered, the focus moves from
larger taxiway and apron regions on the upper layers to small
details on the lower layers. Finally, when the fused levels in
the contextual pyramid network are considered, we see more
consistent activations and better localization of the taxiway
and surrounding grass regions that correspond to the general
context of the scene environment on the upper levels to rows
of airplanes, taxiway markings, and individual object details
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Fig. 4: Visualization of the feature pyramid network (FPN)
levels of the oriented object detector and the attention maps
of the transformer layers of the inpainting model as well as
the proposed fusion result as the contextual pyramid network
(CPN) levels. The FPN levels of the baseline oriented R-CNN
model are also shown.

on the lower levels. These enhanced representations lead to
improved precision in the final output image compared to that
of the baseline model. Through finding an effective balance
among both within-level and between-level relationships of the
scene content in the contextual pyramid network, the proposed
model improves both precision and recall with better object
localization in the detection process.

We perform an additional experiment regarding scene-level
prediction analysis to study how effectively our model captures
the scene context. Since the images in the DOTA dataset do
not have any scene label, we use the ground truth object class
distribution in each image as a feature to cluster the images
into different types of scenes. Figure 5 shows the cluster means
corresponding to the normalized object frequency histograms
when the images are grouped into 9 clusters by the k-means al-
gorithm. The number of clusters is chosen empirically consid-
ering different values from 5 to 15. After obtaining the scene
clusters, we analyze the individual object instances detected
within each image. If a false positive object instance has a class



TABLE III: Comparison of the proposed model CODI with various object detectors in terms of both classwise and overall
mean average precision (mAP) scores on the DIOR-R dataset. The methods are ordered according to overall mAP.

Method Backbone APL APO BF BC BR CH DAM ESA ETS GF GTF HA op SH STA STO TC TS VE WM mAP
RetinaNet-O [3] R-50-FPN  61.49 2852 73.57 81.17 2398 7254 1994 5820 7239 69.25 79.54 32.14 44.87 7771 67.57 61.09 8146 4733 38.01 60.24 57.55
Faster RCNN-O [1] R-50-FPN  62.79 26.80 71.72 80.91 3420 72.57 1895 65.75 6645 66.63 79.24 3495 4879 81.14 6434 7121 8144 4731 5046 6521 59.54
FCOS-O [61] R-50-FPN  54.01 40.04 71.76 80.99 3481 7237 2640 77.59 67.19 68.76 7538 34.10 51.16 80.44 58.11 61.57 8149 5271 42.07 64.95 59.80
Gliding Vertex [53] R-50-FPN  65.35 2887 7496 81.33 33.88 7431 19.58 64.70 70.72 7230 78.68 37.22 49.64 8022 69.26 61.13 8149 4476 4771 65.04 60.06
DFDet [24] R-50-FPN  61.92 38.83 77.41 8136 34.11 7497 2626 76.06 6231 7556 79.62 3826 52.76 8040 73.11 6827 8138 5223 44.11 6335 62.11
Rol Transformer [47] R-50-FPN  63.34 37.88 71.78 87.53 40.68 72.60 26.86 68.09 7871 68.96 8274 47.71 55.61 8121 7823 7026 81.61 54.86 4327 6552 63.87
AOPG [59] R-50-FPN 6239 37.79 71.62 87.63 4090 7247 31.08 77.99 6542 7320 8194 4232 5445 81.17 72.69 7131 8149 60.04 5238 69.99 6441
OriMamba [62] VMamba-T  72.08 35.74 80.55 81.30 36.73 72.61 32.62 79.65 6548 78.11 84.06 43.65 50.04 7225 81.61 70.61 81.55 64.70 41.58 6573 64.53
DOdet [63] R-50-FPN  63.40 4335 72.11 81.32 43.12 7259 3332 70.84 7877 74.15 7547 48.00 59.31 8541 74.04 7156 81.52 5547 51.86 6640 65.10
O-RCNN [11] R-50-FPN  65.38 37.81 78.14 88.83 4321 77.67 25.68 8451 67.81 7426 8542 41.17 5839 8740 7531 67.12 8854 55.11 45.14 6837 65.76
EOOD [64] R-50-FPN  66.44 39.67 73.19 87.51 4325 7745 3533 7946 70.62 7738 7642 4549 5630 8747 6297 71.81 8520 5622 53.75 70.04 65.80
ARS-DETR [23] R-50-FPN  68.00 54.17 7443 81.65 41.13 7566 34.89 8192 73.07 76.10 78.62 36.33 5541 8455 70.09 7223 8l1.14 61.52 50.57 70.28 66.12
AFDR-Det [65] R-50-FPN 7192 42.63 80.68 88.46 45.65 72.41 3928 79.83 7126 77.37 83.81 44.04 5875 8126 7694 70.05 8146 56.02 49.56 66.72 66.90
TAOD [66] R-50-FPN 6439 4473 7274 88.57 4271 73.65 3572 80.54 65.12 7476 83.44 47.65 58.81 8273 7681 73.79 89.74 6233 53.68 70.58 67.12
M-O YOLOX [67] CSP-Darknet - - - - - - - - - - - - - - - - - - - - 67.20
CR-HLDet [17] R-50-FPN  71.83 41.32 79.75 89.97 4385 77.47 3646 8479 70.15 76.62 84.62 4555 58.67 81.17 79.49 7095 8148 6130 4830 66.17 67.50
Our model R-50-FPN  68.55 40.47 79.40 89.38 4494 7833 3197 8497 6995 79.38 8534 46.88 60.08 86.83 74.65 66.07 89.19 62.18 4545 68.59 67.63
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Fig. 5: Object class distributions for 9 clusters to study
different scene types in the DOTA dataset. Different colors
represent different object classes as shown in the legend.
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Fig. 6: Ratios of contextual and non-contextual detections
among all false positive predictions for different scene types
(illustrated in Figure 5) for both the oriented R-CNN baseline
and the proposed model.

that is not among the ground truth classes in that image, that
false positive instance is considered as out-of-context (non-
contextual detection). Conversely, if the false positive object’s
class is among the ground truth annotations, it is considered as
in-context (contextual detection). This analysis aims to identify
how many false positive detections still have labels that are
consistent with the ground truth object class annotations that
exist in images belonging to different types of scenes. Figure 6
shows the ratios of contextual and non-contextual detections
among all false positives for different scene types for both
the proposed model and the oriented R-CNN baseline. Our
model has better contextual predictions for every scene type.

background features do not have such significant performance
difference between the proposed model and the baseline.

D. Ablation study

The ablation experiments use the training and validation
subsets of the DOTA dataset for training and testing the
proposed detection pipeline, respectively. We use the PASCAL
VOC 2007 definition for mean average precision for perfor-
mance evaluation. We also use individual precision and recall
values across various class probability thresholds to thoroughly
evaluate the differences in performance between our model
and the baseline. An IoU threshold of 0.5 is used for both
models.

The first set of ablation experiments evaluates the effect
of the class probability threshold on different performance
metrics during inference. Figure 7 shows the number of
detected objects and the resulting precision, recall, and mAP
values at different threshold levels for both the proposed model
and the oriented R-CNN baseline. When the class probability
threshold is decreased from the default value of 0.05 to 0.01,
the baseline model produces significantly more predictions (an
increase of 100%) that lead to an increase (from 0.8716 to
0.8893) in its recall performance. However, it also leads to
a significant decrease (from 0.3995 to 0.1744) in precision
because many of the newly detected objects are false positives.
On the other hand, when the threshold is decreased from
0.05 to 0.01, the proposed model predicts 39% more objects
with a similar increase in recall (from 0.8680 to 0.8835) but
with a much smaller decrease (from 0.4672 to 0.3127) in
precision. In particular, the recall score difference between the
baseline and our model is 0.005 or less in favor of the former
when the threshold is smaller than 0.05, but the difference in
precision increases to almost 0.14 to our model’s advantage
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Fig. 7: Effect of the class probability threshold on the number of detected objects and the resulting performance metrics
(precision, recall, and mAP) for the proposed model (blue) and the oriented R-CNN baseline (orange) on the DOTA dataset.
(a) Number of detected objects vs threshold. (b) Average precision vs threshold. (c) Average recall vs threshold. (d) Mean
average precision vs threshold. (e) Average precision vs average recall.

in the same setting. Furthermore, the proposed model has a
higher mAP score than that of the baseline model for all
threshold values, and achieves a higher precision score for
all recall levels. These experiments show that the proposed
fusion of the contextual information captured by the inpainting
model with the object embeddings computed by the feature
pyramid network leads to more selective and precise object
representations that help the second stage of the object detector
to identify the objects in the scene more accurately.

Tables IV, V, and VI present the details of the classwise
precision, recall, and mAP values at different thresholds, re-
spectively. Lowering the threshold reveals a notable difference
between the proposed model and the baseline, particularly
for classes such as plane, ship, storage tank, and harbor that
appear in relatively more consistent contexts compared to other
classes. With its effective utilization of this contextual infor-
mation, the proposed model achieves additional true detections
towards an increased recall when the threshold is relaxed. Al-
though this relaxation slightly reduces precision, the proposed
model’s precision and mAP scores remain high compared
to the baseline. In contrast, under identical conditions, the
oriented R-CNN baseline admits a significantly higher number
of false positives, resulting in a sharp deterioration in precision
despite an increase in recall. For example, for classes such as
helicopter, roundabout, basketball court, soccer ball field, and
bridge that are more rare compared to others, the proposed
model achieves a better precision-recall combination com-
pared to the baseline at higher threshold levels. Consequently,
lowering the threshold further detects a few additional object
instances and increases recall with only a moderate decrease
in precision. However, the baseline model cannot achieve a
similar precision-recall balance for such classes.

Qualitative illustration of the detection performance and the
improvement in both precision and recall for the proposed
model are presented in Figures 8, 9, 10, and 11. In Figure 8§,
decreasing the threshold from 0.05 to 0.01 results in a similar
recall performance with many more false positives that lead to
loss in precision for the baseline model. However, the proposed
model detects more objects with minimal false positives,
resulting in an improvement in recall at a very similar level
of precision. In Figure 9, the recall performances of both
models are similar at a threshold of 0.01 but the proposed
model achieves higher precision with fewer false positives.
Finally, in Figures 10 and 11, we see that the proposed

model achieves higher recall or precision while preserving
precision or recall, respectively, whereas the baseline model
has missing or false detections. Overall, by calibrating the
class probability threshold, we can have effective control
on enhancing the recall performance with minimal precision
trade-offs while filtering low-scoring predictions prior to non-
maximum suppression during inference.

The second set of ablation experiments evaluates the effect
of the chessboard mask sizes within the inpainting model. The
experiments presented earlier use 32 x 32 pixel grid cells in
the default setting. We also consider 8 x 8 and 64 x 64 pixel
cells as alternatives. When 8 x 8 cells are used, the inpainting
model tries to fill in the masked image regions by looking at
more local parts of the image. Even though this works well for
small objects, it is ineffective for larger-scale targets. On the
contrary, the inpainting model cannot capture the local details
when the larger 64 x 64 cells are used for learning the context.
This is consistent with the observations in [10] where the
model cannot effectively capture the local details when larger
masks are used. These observations are also supported by
quantitative results obtained in experiments done on a smaller
subset of the DOTA dataset. In these experiments, using 8 X 8
pixel, 32 x 32 pixel, and 64 x 64 pixel grid cells achieve
0.7422, 0.7482, and 0.7294 mAP scores, respectively. For 10
of the 15 object classes, the 32 x 32 pixel setting achieves
the highest average precision, and this setting has the second
highest score for the remaining 5 classes. Thus, the 32 x 32
pixel setting emerges as a good balance regarding the scale
of the details used for capturing the relationships between the
valid (available) and the invalid (masked) image regions.

The final set of ablation experiments illustrates how each
transformer layer in the inpainting model contributes to fill
in the missing regions. To emphasize the details, we employ
a larger mask as shown in Figure 12. The output of each
transformer block is illustrated by bypassing the remaining
transformer blocks and applying only upsampling before the
convolutional reconstruction tail. We observe that, after the
convolution head with 3 x 3 partial convolutions fills the gen-
eral background as part of the inpainting task, the transformer
blocks fill in the masked regions in an increasingly detailed
fashion.
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TABLE IV: Comparison of the proposed model CODI with the baseline oriented R-CNN (O-RCNN) model in terms of
classwise precision scores at various detection thresholds on the DOTA dataset.

Method Threshold PL BD BR GTF Sv LV SH TC BC ST SBF RA HA SpP HC

O-RCNN 0.01 0.2671  0.1405 0.0293 0.0784 0.2219 0.1473 0.4115 0.5099 0.0981 0.2108 0.0628 0.0912 0.1532 0.1802 0.0128
Our Model 0.01 0.7021  0.2284 0.0865 0.1271 0.2973 0.2130  0.6057 0.6490 0.1824 0.5311 0.0958 0.1746 0.3758 0.2723  0.1492
O-RCNN 0.02 0.7054 0.2218 0.0791 0.1166 0.2652 0.2364 0.6131 0.6252 0.1830 0.4782 0.0918 0.1306 0.3924 0.2827 0.1462
Our Model 0.02 0.7715 0.2985 0.1207 0.1796 0.3382 0.2790 0.6838 0.7302 0.2432 0.5925 0.1347 0.2415 0.4604 0.3363 0.2125
O-RCNN 0.03 0.7653  0.2719 0.0986 0.1438 0.3304 02799 0.6671 0.6707 0.2279 0.5218 0.1159 0.1591 0.4671 0.3302 0.1770
Our Model 0.03 0.8038 0.3448 0.1467 02159 0.3648 0.3228 0.7225 0.7683 0.2903 0.6261 0.1706 0.2800 0.5025 0.3795 0.2571
O-RCNN 0.04 0.7846  0.3088 0.1148 0.1650 0.3524 0.3108 0.6964 0.7028 0.2632 0.5522 0.1362 0.1835 0.5023 0.3648 0.2054
Our Model 0.04 0.8245 0.3877 0.1665 0.2443 0.3837 0.3570 0.7488 0.7895 0.3213 0.6569 0.1990 0.3156 0.5361 0.4099 0.2880
O-RCNN 0.05 0.8011 0.3351 0.1276  0.1876 0.3691 0.3369 0.7192 0.7257 0.3002 0.5809 0.1565 0.2013 0.5278 0.3869  0.2355

Our Model 0.05 0.8417 0.4244 0.1826 0.2683 0.3990 0.3838 0.7681 0.8112 0.3569 0.6749 0.2251 0.3449 0.5631 0.4426 0.3212

TABLE V: Comparison of the proposed model CODI with the baseline oriented R-CNN (O-RCNN) model in terms of classwise
recall scores at various detection thresholds on the DOTA dataset.

Method Threshold PL BD BR GTF Sv LV SH TC BC ST SBF RA HA SP HC

O-RCNN 0.01 0.9599 0.8846 0.7377 0.9023 09146 0.9532 0.9286 09610 0.8370 0.9306 0.9888 0.8824 0.8315 0.8618 0.7662
Our Model 0.01 0.9558 0.8798 0.7236  0.9022 0.9122 0.9421 0.9269 0.9569 0.8000 0.9131 0.9662 0.9058 0.8463 0.8812 0.7402
O-RCNN 0.02 09583 0.8798 0.7283 0.9023 0.9127 0.9482 0.9266 09597 0.8296 0.9274 0.9775 0.8706 0.8301 0.8618 0.7273
Our Model 0.02 0.9546 0.8653 0.7236  0.9022 09115 0.9384 0.9242 0.9569 0.8000 0.9104 0.9662 0.8823 0.8463 0.8790 0.7012
O-RCNN 0.03 0.9563 0.8798 0.7190 0.9023 09112 0.9445 0.9260 09583 0.8222 0.9243 0.9663 0.8706 0.8291 0.8596 0.7013
Our Model 0.03 0.9546 0.8605 0.7096 0.8947 0.9103 0.9338 0.9237 09543 0.8000 0.9094 0.9662 0.8764 0.8449 0.8747 0.7012
O-RCNN 0.04 0.9550 0.8702 0.7119 0.8947 0.9107 09412 09252 0.9570 0.8074 0.9206 0.9551 0.8647 0.8262 0.8596 0.6883
Our Model 0.04 09518 0.8557 0.7049 0.8947 0.9088 0.9284 0.9219 09529 0.7925 0.9067 0.9662 0.8764 0.8410 0.8747 0.6883
O-RCNN 0.05 0.9546 0.8702 0.7096 0.8947 0.9094 0.9369 0.9246 0.9570 0.8074 0.9195 0.9551 0.8647 0.8243 0.8575 0.6883

Our Model 0.05 09522 0.8509 0.6908 0.8796 0.9078 0.9251 0.9218 0.9529 0.7851 0.9062 0.9662 0.8764 0.8410 0.8747 0.6883

TABLE VI: Comparison of the proposed model CODI with the baseline oriented R-CNN (O-RCNN) model in terms of both
classwise and overall mean average precision (mAP) scores at various detection thresholds on the DOTA dataset.

Method Threshold PL BD BR GTF Sv LV SH TC BC ST SBF RA HA Sp HC mAP

O-RCNN 0.01 0.9037 0.7333  0.4966 0.7435 0.7651 0.8346 0.8969 0.9083 0.7094 0.8778 0.7789 0.7245 0.7479 0.7392 0.5845 0.7629
Our Model 0.01 0.9023 0.7495 0.5304 0.7598 0.7701 0.8336 0.8971 0.9086 0.7038 0.8769 0.7929 0.7628 0.7577 0.7484 0.6506 0.7763
O-RCNN 0.02 0.9037 0.7333  0.4966 0.7435 0.7651 0.8346 0.8969 0.9083 0.7094 0.8778 0.7789 0.7245 0.7479 0.7392 0.5845 0.7629
Our Model 0.02 0.9023  0.7500 0.5300 0.7597 0.7705 0.8340 0.8969 0.9086 0.7035 0.8769 0.7919 0.7589 0.7582 0.7485 0.6497 0.7746
O-RCNN 0.03 0.9037 0.7333  0.4966 0.7435 0.7651 0.8346 0.8969 0.9083 0.7094 0.8778 0.7789 0.7245 0.7479 0.7392 0.5845 0.7629
Our Model 0.03 0.9022 0.7495 0.5309 0.7405 0.7698 0.8337 0.8970 0.9086 0.7023 0.8773 0.7908 0.7394 0.7578 0.7488 0.6496 0.7732
O-RCNN 0.04 0.9037 0.7333  0.4966 0.7302 0.7651 0.8346 0.8969 0.9083 0.7094 0.8778 0.7789 0.7245 0.7479 0.7392 0.5684 0.7610
Our Model 0.04 0.9023 0.7503 0.5303 0.7394 0.7704 0.8336 0.8971 0.9086 0.6767 0.8769 0.7912 0.7402 0.7567 0.7477 0.6255 0.7698
O-RCNN 0.05 0.9037 0.7333  0.4966 0.7302 0.7651 0.8346 0.8969 0.9083 0.7094 0.8778 0.7789 0.7245 0.7479 0.7392 0.5684 0.7610

Our Model 0.05 0.9023 0.7500 0.5147 0.7389 0.7704 0.8336 0.8970 0.9086 0.6741 0.8770 0.7910 0.7441 0.7553 0.7493 0.6270 0.7690

Fig. 8: Effect of the class probability threshold on the detection results on the DOTA dataset. Each row shows a different
scene. Green indicates correct detections, yellow indicates detections with wrong class labels, red indicates false positives. Left
to right: ground truth, detections of the oriented R-CNN baseline when threshold is 0.05, detections of the proposed model
when threshold is 0.05, detections of the oriented R-CNN baseline when threshold is 0.01, detections of the proposed model
when threshold is 0.01. The proposed model has higher recall at a similar precision level when the threshold is lowered but
the baseline suffers from increased false positives without any improvement in recall.



Fig. 9: Effect of the class probability threshold on the detection
results on the DOTA dataset. Each row shows a different scene.
Green indicates correct detections, yellow indicates detections
with wrong class labels, red indicates false positives. Left to
right: ground truth, detections of the oriented R-CNN baseline
when threshold is 0.01, detections of the proposed model when
threshold is 0.01. The proposed model has similar recall but
better precision compared to the baseline.

Fig. 10: Effect of the class probability threshold on the detec-
tion results on the HRSC2016 dataset. Each row shows a dif-
ferent scene. Green indicates correct detections, red indicates
false positives. Left to right: ground truth, detections of the
oriented R-CNN baseline when threshold is 0.05, detections
of the proposed model when threshold is 0.01. On the top two
rows, the proposed model shows higher recall while preserving
precision. On the bottom two rows, the proposed model shows
higher precision while preserving recall.
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Fig. 11: Effect of the class probability threshold on the
detection results on the DIOR-R dataset. Each row shows
a different scene. Green indicates correct detections, yellow
indicates detections with wrong class labels, red indicates
false positives. Left to right: ground truth, detections of the
oriented R-CNN baseline when threshold is 0.05, detections
of the proposed model when threshold is 0.01. On the top
three rows, the proposed model shows higher recall while
preserving precision. On the bottom three rows, the proposed
model shows higher precision while preserving recall.




Fig. 12: Contribution of different transformer units in the inpainting task. Each row shows a different scene. Left to right:

original image, mask, outputs of transformer units 1 to 5.

E. Discussion

The experiments show that the proposed architecture that
fuses contextual information captured by the inpainting model
and the object features computed in the feature pyramid
network layers of the oriented detector outperforms the base
model for each of the DOTA, HRSC2016, and DIOR-R
datasets. The most significant improvements are obtained for
the classes whose identities can be consistently associated
with specific environments, whereas the classes that can
appear in isolation or in a wide variety of cluttered back-
grounds do not receive such performance gains. Comparative
experiments with recent one-stage and two-stage detection
models also show that the proposed architecture achieves
better overall mAP scores for all datasets. We hypothesize
that modeling both local and global contextual information
in the transformer-based inpainting model is more effective
than competitor models that derive the scene-level contextual
information using extra modules attached to the main feature
extraction backbone. Visualization of the feature pyramid
network and the contextual pyramid network show better
emphasis of the global scene features as well as higher contrast
for important local object details after fusion. Furthermore,
even when the proposed model produces false positives, their
labels are still more consistent with the overall scene con-
tent compared to the out-of-context predictions made by the
baseline model. Finally, ablation experiments show that the
proposed model has a higher mAP score compared to the
baseline model for all values of the score probability threshold,
and achieves a higher precision score for all recall levels. This
enables a reliable control of the performance by calibrating
the class probability threshold to achieve an effective trade-off
between precision and recall. Of course, these improvements
come at an increase in the computational overhead where it
takes 3.6 times long for the proposed architecture to produce
an output compared to the baseline model. However, the
overall architecture can benefit from a leaner model that
focuses only on the contextual feature extraction stage as
opposed to the currently implemented full inpainting pipeline.

In terms of the design choices regarding the fusion module,
one consideration is which particular transformer layers are
matched with which FPN levels. When we use only the output

of the last transformer layer X7 with each of the FPN levels
XF, XI and XF, the mAP score is reduced by 6.23%. Thus,
using different transformer layers according to their compat-
ibility with FPN levels is more effective as shown in both
quantitative and qualitative results in Section IV-C. Another
set of design choices includes the selected activation functions,
normalization types, skip connection strategies, number of
convolution layers, and feature map fusion strategies in the fu-
sion module in Figure 3. First, we consider using Smish activa-
tion [68] instead of ReLLU. This necessitates the use of smaller
batch sizes due to memory requirements. Even with group
normalization [69] and gradient accumulation, the lightweight
ReLU activation and batch normalization perform better using
the settings in this paper. Furthermore, quantitative results
support the discussion on Section III-C regarding different
skip connection strategies similar to the original ResNet model
[35] where the proposed design results in trainings that are
more stable and more consistent under several runs. Next, we
consider varying the number of convolution blocks before and
after concatenation. Results show that applying more than two
convolution blocks before concatenation and one convolution
block after concatenation lead to only minor changes in the
evaluation scores, and the proposed setting achieves the best
performance with a lightweight design. Finally, we evaluate
three different strategies, element-wise addition, channel-wise
concatenation, and cross-attention, to fuse the tensors coming
from the transformer units and FPN levels. Channel-wise
concatenation performs better than element-wise addition,
where the latter convolutes the individual contributions of
the two feature representations with different characteristics.
The third alternative, cross-attention, necessitates reduction in
batch sizes due to memory constraints, and leads to inferior
performance compared to the proposed design. Overall, the
proposed fusion module is empirically shown to be more
effective and efficient among different alternatives.

V. CONCLUSIONS

This paper presented CODI, a contextual object detec-
tion framework that integrates image inpainting-based context
modeling into oriented object detection for remote sensing
images. By fusing object-specific features from a two-stage



detector with semantic contextual representations learned inde-
pendently by an inpainting model, CODI provides a contextual
pyramid network that benefits both proposal generation and
classification/regression stages. Experimental results on the
DOTA, HRSC2016, and DIOR-R datasets demonstrated that
CODI achieves state-of-the-art performance, outperforming
existing methods in mean average precision. Ablation studies
further confirmed the capability of the model in enhancing pre-
cision and recall with effective control of the score probability
threshold. These findings highlight the potential of improving
object detection by exploiting contextual information via in-
painting in challenging remote sensing scenes. Future work
will investigate alternative inpainting architectures and fusion
strategies.
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