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Automatic Detection of Compound Structures by
Joint Selection of Region Groups from a

Hierarchical Segmentation
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Abstract—A challenging problem in remote sensing image
analysis is the detection of heterogeneous compound structures
such as different types of residential, industrial, and agricultural
areas that are comprised of spatial arrangements of simple
primitive objects such as buildings and trees. We describe a
generic method for the modeling and detection of compound
structures that involve arrangements of unknown number of
primitives in large scenes. The modeling process starts with a
single example structure, considers the primitive objects as ran-
dom variables, builds a contextual model of their arrangements
using a Markov random field, and learns the parameters of this
model via sampling from the corresponding maximum entropy
distribution. The detection task is formulated as the selection
of multiple subsets of candidate regions from a hierarchical
segmentation where each set of selected regions constitutes an
instance of the example compound structure. The combinatorial
selection problem is solved by joint sampling of groups of regions
by maximizing the likelihood of their individual appearances
and relative spatial arrangements. Experiments using very high
spatial resolution images show that the proposed method can
effectively localize unknown number of instances of different
compound structures that cannot be detected by using spectral
and shape features alone.

Index Terms—Object detection, spatial relationships, context
modeling, Markov random field, maximum entropy distribution,
Gibbs sampling, Swendsen-Wang sampling

I. INTRODUCTION

The increasing spatial and spectral resolution of the images
acquired from new-generation satellites have improved the
capability to capture additional details about the objects of
interest, and have increased the feasibility of new applica-
tions that rely on effective identification of these objects. A
common approach to object-based image classification and
object recognition is to assume the existence of homoge-
neous regions that can be modeled with spectral or shape
features alone. However, as the spatial resolution increases,
such homogeneous regions often correspond to very small
details. Consequently, a new requirement for semantic image
understanding has become the modeling and identification of
image regions that are intrinsically heterogeneous. Examples
of such regions, also called compound structures, include
different types of residential, industrial, and agricultural areas
that are comprised of spatial arrangements of simple primitive
objects such as buildings and trees [1]–[3] as shown in Figure
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Fig. 1. Examples of compound structures in WorldView-2 images. Each
150×150 pixel window includes one or more examples for residential, indus-
trial, and agricultural structures composed of various spatial arrangements of
primitives (buildings and trees) with different color and shape characteristics.

1. However, detection of these structures is a challenging
problem because there is no single color, shape, or texture
feature that can effectively model their appearances.

One of the most common alternatives is to use a window-
based approach where the image is divided into tiles and
these tiles are classified according to their features. The bag-
of-words (BoW) model has been popular in recent years for
modeling the tile content. First, visual words are formed by
quantizing local features. Then, each tile is described by the
frequency of these words, and is classified [4]–[6] or retrieved
[7], [8]. The main problem in the BoW representation is that it
does not consider spatial arrangements that can be very crucial
for many types of compound structures. In other words, BoW
is a first-order-model that primitives contribute independently
of their position and independently from each other.

In an attempt to exploit spatial information, Vaduva et al.
[9] modeled relative positions between objects by extracting
object pair signatures as words that characterize the tiles. How-
ever, the tile-based modeling still enforces artificial boundaries
on the image. Segmentation algorithms can produce flexible
boundaries and promise to be adaptive to the image content.
For example, Kurtz et al. [10] extracted heterogeneous objects
in multiple levels of details where the segmentation in the high
resolution image was provided by clustering the segmentation
in a lower resolution image. Gaetano et al. [11] performed
hierarchical texture segmentation by iteratively merging neigh-
boring homogeneous regions that had frequently co-occurring
region types. In both approaches, certain segments in certain
scales may correspond to compound structures, but the group-
ing criteria still do not involve spatial arrangements, and hence,



2

may fail in detecting and delineating many other structures.
Another problem with tile-based modeling is the assumption

that the whole window corresponds to a compound struc-
ture where feature extraction is performed holistically. To
identify structure-sensitive neighborhoods, Vanegas et al. [12]
proposed a graph-based method to determine aligned groups
of objects from a given segmentation. However, this method
was designed for specific arrangements such as alignment and
parallelism. It also worked in a single scale and was sensitive
to segmentation errors. The use of multiple partitionings of the
image via segmentation hierarchies has been identified as an
important problem in remote sensing. However, it is mainly
addressed as the problem of selecting individual regions from
a set of candidates [13]–[17] with no consideration of the
contextual interactions between neighboring regions.

In this paper, we propose a generic method for the modeling
and detection of compound structures that can involve the
arrangements of an unknown number of primitive objects. The
procedure starts with a single example compound structure that
contains primitive objects that are used to estimate a prob-
abilistic appearance and arrangement model. The modeling
process considers the primitive objects as random variables
in a Markov random field (MRF) where potentially related
objects are connected. MRFs have been used in the literature to
model contextual information in neighborhoods of pixels [18]
or regions [19], [20]. Our aim is to learn a flexible arrangement
model with a small number of examples that can distinguish
between different types of compound structures inside a large
scene instead of dedicating the MRF to model the whole scene
with only a limited set of relationships. The parameters of
the proposed MRF model are learned via sampling from the
corresponding maximum entropy distribution.

The detection task is formulated as the selection of mul-
tiple coherent subsets of candidate regions obtained from a
hierarchical segmentation where each set of selected regions,
when grouped together, constitutes an instance of the example
compound structure. This differs from our earlier work [3]
that did not need an initial segmentation of the primitives but
required that their number is given a priori. The proposed
selection algorithm models the spatial relationships among
the candidate regions by using the multi-scale neighborhood
graph. Our algorithm uses a sampling procedure to maximize
the likelihood of groups of regions where the decision of
selecting or not selecting regions is done jointly as groups
instead of individual decisions. Furthermore, our algorithm
does not have any a priori knowledge of the number of regions
to be selected. It also enables the detection of regions that
cannot be detected by using spectral and shape features alone,
thanks to the contextual information that the model captures.
In summary, our major contributions are threefold. First, we
describe a model for the individual appearance properties
of primitive objects as well as their spatial arrangements
within compound structures. Second, we propose a solution
to the combinatorial region selection problem for detecting
and localizing an unknown number of instances of a given
compound structure in a large scene. Third, to avoid over-
or under-segmentation of candidate regions, we seamlessly
integrate multi-scale information, and search for the most
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Fig. 2. Object/process diagram of the proposed approach. Rectangles rep-
resent objects and rounded rectangles represent processes. The details of all
steps are presented in the following sections.

meaningful regions appearing at different scales of a hierar-
chical segmentation.

An overview of the proposed approach is shown in Figure
2. The rest of the paper is organized as follows. Section II
introduces the representation for primitive objects and the
probabilistic model for their spatial arrangement and shape
characteristics. Section III describes the learning algorithm
for the estimation of the parameters in the proposed model.
Section IV describes the selection algorithm for finding the
structures with similar arrangements among a set of candidate
regions. Section V presents experimental results, followed by
conclusions in Section VI.

II. COMPOUND STRUCTURE MODEL

Compound structures arise from local interactions between
primitive objects as well as their individual properties. The
set of factors that make the individual primitives members
of a compound structure can be motivated by the Gestalt
rules that attempt to model the perceptual grouping process
in the human vision system. In the following, we present the
representation for the primitives, propose a generic spatial
arrangement model for grouping these primitives according
to semantic cues such as proximity, continuity, parallelism,
alignment, etc., and describe a statistical model that encodes
the spatial arrangement properties of these groupings into a
probabilistic region process.

A. Primitive representation

In this paper, compound structures are defined as high-
level heterogeneous objects that are composed of spatial ar-
rangements of multiple, relatively homogeneous, and compact
primitive objects. The set of primitives includes objects that
can be relatively easily extracted using low-level operations
that exploit spectral, textural, or morphological information.
These objects, such as buildings and trees, can be used as
building blocks of more complex structures. In this paper,
each primitive object vi is represented by an ellipse vi =
(li, si, θi) where li = (lxi , l

y
i ) ∈ [0, Xmax − 1]× [0, Ymax − 1]

represents the ellipse’s center location, si = (shi , s
w
i ) ∈
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(a) (b) (c)

Fig. 3. Neighborhood graph. (a) RGB image. (b) Primitive objects (blue
ellipses) and the edges (green lines) representing the neighbors of one
primitive. (c) The graph for all primitives.
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Fig. 4. Pairwise feature examples. φ1, φ2, φ3, φ4 are described in the text.

[shmin , s
h
max ] × [swmin , s

w
max ] contains the ellipse’s major and

minor axis lengths, respectively, and θi ∈ [0, π) is the
orientation measured as the angle between the major axis of
the ellipse and the horizontal image axis. Here, Xmax and
Ymax are the width and height of the image, respectively,
and (shmin , s

h
max ) and (swmin , s

w
max ) are the minimum and

maximum major and minor axis lengths, respectively.
Ellipses have often been used as the image primitives in

perceptual organization [21] and object recognition [22] tasks
in the computer vision literature, and the underlying assump-
tion that the primitives have relatively compact shapes also
holds for many objects of interest in remotely sensed scenes.
Ellipses provide simple but sufficiently flexible approximations
that can model the most fundamental object characteristics like
location, scale, and orientation, and can generalize to other
shapes such as circles, rectangles, and line segments with
additional constraints on specific parameters. The following
sections show that they also enable effective and efficient
feature extraction and model estimation steps.

B. Spatial arrangement model

For a given compound structure consisting of M primitive
objects, we construct a neighborhood graph G = (V,E)
where the vertices V = {v1, . . . , vM} correspond to the
individual primitive objects, and the edges E model their
spatial relationships (Figure 3). The neighborhood information
is obtained by proximity analysis where a threshold on the
distance between the closest pixels of each object pair is used
to determine the neighbors. In particular, let Pi denote the
set of pixels inside the ellipse vi. Then, (vi, vj) ∈ E if and
only if the distance between the closest pixels of vi and vj
is less than a proximity threshold δ, i.e., E = {(vi, vj) ∈
V × V : ∃(pi, pj) ∈ Pi × Pj such that ∀(p′i, p′j) ∈ Pi ×
Pj , d(pi, pj) ≤ d(p′i, p

′
j) and d(pi, pj) ≤ δ} where d(pi, pj)

denotes the Euclidean distance between two pixels pi and pj .

For each neighboring primitive object pair (vi, vj) ∈ E, we
compute the following four features (Figure 4):

• Distance between the closest pixels, φ1ij =
min

pi∈Pi,pj∈Pj

d(pi, pj),

• Relative orientation, φ2ij = min{|θi−θj |, 180−|θi−θj |},
• Angle between the line joining the centroids of the two

objects and the major axis of a reference object, φ3ij =
min{|αij − θi|, 180− |αij − θi|} where αij is the angle
of the line segment connecting the centroids of vi and vj ,

• Distance between the closest antipodal pixels that lie on
the major axes, φ4ij = min

pi∈Pa
i ,pj∈Pa

j

d(pi, pj) where P ai

denotes the two antipodal pixels on the major axis of vi.

These features capture various Gestalt properties such as
proximity, parallelism, directional continuity, and proximal
continuity, respectively. Furthermore, φ2 and φ3 together mea-
sure how much the two objects are aligned. In addition to
the pairwise features, we also compute the following two
individual features for each primitive object vi:

• Area, φ5i = π(shi /2)(swi /2),
• Eccentricity, φ6i =

√
1− (swi /s

h
i )2.

Then, given the set of primitives V and the corresponding
features, a one-dimensional marginal histogram Hk is con-
structed for each φk, k = 1, . . . , 6, calculated over all V and
E. We append all marginal histograms and use H(V ) =(
H1(E), H2(E), H3(E), H4(E), H5(V ), H6(V )

)T
, where

E is assumed to be deterministically computed from V , as a
non-parametric approximation to the distribution of the feature
values of the primitive objects in the compound structure. The
vector length |H(V )| is the total number of bins in all marginal
histograms.

C. Probabilistic region processes

The diversity of the patterns in different scenes and the
richness of details in each scene entails the use of statistical
approaches. In our model, each primitive object vi (i.e.,
the ellipse parameters) is considered a vector-valued random
variable. Hence, a compound structure is represented by a set
of random variables that leads to a region process that follows
some true unknown distribution.

When there is incomplete information about a probabil-
ity distribution, it is desired to use the least informative
distribution that makes the fewest number of assumptions.
The principle of maximum entropy states that the desired
distribution is the one that has the largest possible entropy
while still being consistent with the information available in
the data [23]. Given N independent and identically distributed
observations V = {V 1, . . . , V N} and their histogram-based
representations H(V n), n = 1, . . . , N , as described in the
previous section, the information in the training data can be
summarized using the empirical expectation

EV [H(V )] =
1

N

N∑
n=1

H(V n). (1)
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The consistency of the desired model with the evidence in the
training data can be enforced by equating the expectation

Ep[H(V )] =

∫
V

H(V )p(V )dV (2)

with respect to the model distribution p(V ) to the empirical
expectation in (1). Then, given P as the set of all probability
distributions on the random variable V , the maximum entropy
distribution is obtained as the solution to the constrained
optimization problem

p∗ = arg max
p∈P
−
∫
V

p(V ) log p(V )dV

subject to Ep[H(V )] = EV [H(V )].

(3)

The region process is governed by the optimal solution p∗,
that is also known as the Gibbs distribution, and by calculus
of variations, takes the form

p(V |β) =
1

Zv
exp

{
βTH(V )

}
(4)

where β =
(
β1, β2, β3, β4, β5, β6

)T
is the parameter vector

controlling each histogram bin, and Zv is the partition function
[24]. A region process is equivalent to a Markov random field
(MRF) according to the following proposition.

Proposition 1. Let G define an MRF. p in (4) satisfies the
conditional independence properties of G.

Proof. We show that p can be represented as a product of
factors, one per maximal clique in the graph. Note that we
can restrict the parametrization to the edges and vertices of
the graph, rather than the maximal cliques. Let p(V |β) =
1
Zv

∏
e∈E ϕ

1(e)ϕ2(e)ϕ3(e)ϕ4(e)
∏
v∈V ϕ

5(v)ϕ6(v) where
Zv is the partition function. We define the edge and vertex
factors as ϕk(e) = exp{(βk)THk(e)}, k = 1, 2, 3, 4,
and ϕk(v) = exp{(βk)THk(v)}, k = 5, 6, where Hk,
k = 1, . . . , 6, are one-dimensional marginal histograms
computed for the features φk, k = 1, . . . , 6. The proof is
complete by the Hammersley-Clifford theorem [24].

D. Dynamic topology of probabilistic region processes

Unlike the traditional MRFs, the neighborhood structure of
a region process in our model is not determined a priori. The
topology of the underlying graph depends on the values of the
variables in the process. Assigning a new value to a primitive
object (e.g., moving, scaling, or rotating the corresponding
ellipse) may change its set of neighbors, i.e., produce new
neighbors and remove existing ones. An important observation
is that using neighborhood structures based on Voronoi tessel-
lations or k-nearest neighbors may cause changes in the neigh-
borhood relations of other variables whenever a variable is
modified. Conversely, determining the neighborhood structure
using proximity makes the neighborhood relations between the
other variables remain unchanged. Using the above property
and Proposition 1, we derive the corollary below that helps
the estimation procedure in the following section.

Corollary 1. The conditional distribution for each individual
variable vi depends only on its neighbors given a realization
of the process V = {v1, . . . , vM} as

p(vi|V \vi) =
p(V )∑

v′i
p(v′i ∪ V \vi)

=

∏
cvi∈C(G) ϕ(cvi)

∏
c\vi∈C(G) ϕ(c\vi)∑

v′i

∏
cv′

i
∈C(G′) ϕ(cv′i)

∏
c\v′

i
∈C(G′) ϕ(c\v′i)

= p(vi|nb(vi))
(5)

where C(G) represents the cliques of graph G, cvi and c\vi
represent each clique that involves and does not involve vi,
respectively, nb(vi) denotes the neighbors of vi, and G′ in
the denominator represents the graph that is formed for the
current value of v′i.

The equality in (5) follows from the observation that all
terms that do not involve vi cancel out between the numerator
and denominator, so only the products of cliques that contain
vi are left. However, if we use Voronoi tessellations or k-
nearest neighbors, the cancellations would not occur because
the c\v′i would be different for every assignment of v′i in the
summation.

III. LEARNING

A. Maximum likelihood estimation

Suppose that we observe a set of region processes V =
{V 1, . . . , V N} that are assumed to be independent and identi-
cally distributed realizations of the same compound structure.
These observations can be manually marked on an image or
drawn by a human analyst. We can estimate a compound
structure model via maximum likelihood estimation (MLE)
of the unknown parameter vector β by maximizing the log-
likelihood of the data

`(β|V) =

N∑
n=1

log p(V n|β). (6)

The gradient of the log-likelihood is given by

d`(β|V)

dβ
= Ep[H(V )]− 1

N

N∑
n=1

H(V n). (7)

Since the MLE problem is differentiable and jointly concave
in the vector β, gradient ascent algorithms are guaranteed
to converge to the global optimum. We use the stochastic
gradient ascent algorithm where the expectation Ep[H(V )] in
(7) is approximated by a finite sum of histograms of samples
V (s), s = 1, . . . , S, drawn independently from the distribution
p(V |β), as

Êp[H(V )] =
1

S

S∑
s=1

H(V (s)). (8)

The pseudocode for the resulting method is shown in Algo-
rithm 1. In the next section, we describe a Markov chain Monte
Carlo-based (MCMC) method for generating each sample V (s)

in line 5 of the algorithm.
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Algorithm 1 Stochastic gradient ascent for maximum likeli-
hood estimation of β.
Input: V = {V 1, . . . , V N}
Output: β

1: Initialize weights β randomly
2: η ← 1
3: repeat
4: for s← 1 to S do
5: Sample V (s) ∼ p(V |β)
6: end for
7: Êp[H(V )]← 1

S

∑S
s=1H(V (s))

8: β ← β + η
(
Êp[H(V )]− 1

N

∑N
n=1H(V n)

)
9: Decrease step size η by a factor of 0.5

10: until log-likelihood in (6) unchanged

B. Sampling region processes

We use a Gibbs sampler that samples a variable conditioned
on the values of all the other variables in the distribution
parameterized by β in a particular iteration of the stochas-
tic gradient ascent procedure. Given a joint sample Ṽ t =
{vt1, . . . , vtM} of M variables at the t’th sampling iteration, the
next step involves replacing the value of a particular variable
vti by a new value vt+1

i drawn from the full conditional
distribution p(vi|Ṽ t\vti , β). We move from vti to vt+1

i by
sampling only one ellipse component (i.e., either one of li,
si, or θi) at a time. That is, we choose either one of li, si, or
θi to be updated at random, with equal probability, and then
a candidate value is randomly generated for that component
from a uniform proposal distribution over the object parameter
space defined in Section II-A. This corresponds to randomly
translating, scaling, or rotating an ellipse at each sampling
iteration. The new value of the selected component together
with the old values of the remaining components produce
a candidate sample v∗i . Since the proposal distribution is
symmetric, the acceptance probability [25] of the candidate
sample is obtained as

α = min

(
1,
p(v∗i |Ṽ t\vti , β)

p(vti |Ṽ t\vti , β)

)
. (9)

If the proposal is accepted, vt+1
i is set to v∗i ; otherwise, vt+1

i

stays the same as vti . All the other variables remain unchanged,
i.e., vt+1

j = vtj for j 6= i and j = 1, . . . ,M .
By Corollary 1, to sample a variable, we only need to

know the values of its neighbors before and after the pro-
posal. Thus, the acceptance probability reduces to α =

min
(

1,
p(v∗i |nb(v

∗
i ),β)

p(vti |nb(vti),β)

)
. Since p can be represented as a prod-

uct of potentials over vertices and edges, it can be further
shown that p(vi|nb(vi), β) = 1

Zv
exp

{
βTH(vi ∪ nb(vi))

}
,

and we can write α = min
(

1,
exp{βTH(v∗i ∪nb(v

∗
i ))}

exp{βTH(vti∪nb(vti))}

)
. As

a result, when evaluating α, we do not need to calculate
the normalization constant Zv . The sampling procedure is
summarized in Algorithm 2 and is illustrated in Figure 5.

Algorithm 2 Gibbs sampler for producing a particular V (s).
Input: β
Output: V (s)

1: Initialize Ṽ 0 = {v01 , . . . v0M}
2: for t← 0, 1, 2, . . . , T − 1 do
3: Choose one vi at random, with equal probability
4: Choose li, si, or θi at random, with equal probability
5: if li is chosen then
6: Sample l∗i ∼ U([0, Xmax − 1]× [0, Ymax − 1])
7: v∗i ← (l∗i , s

t
i, θ

t
i)

8: end if
9: if si is chosen then

10: Sample s∗i ∼ U([shmin , s
h
max ]× [swmin , s

w
max ])

11: v∗i ← (lti , s
∗
i , θ

t
i)

12: end if
13: if θi is chosen then
14: Sample θ∗i ∼ U([0, π))
15: v∗i ← (lti , s

t
i, θ
∗
i )

16: end if
17: vt+1

i ← UPDATEPRIMITIVE(v∗i , Ṽ
t, β)

18: vt+1
j ← vtj for j 6= i and j = 1, . . . ,M

19: end for
20: V (s) ← Ṽ T

21: procedure UPDATEPRIMITIVE(v∗i , Ṽ , β)
22: Compute nb(vi) ∈ Ṽ \vi and nb(v∗i ) ∈ Ṽ \vi
23: Compute acceptance probability α
24: Sample q ∼ U(0, 1)
25: if q < α then
26: return v∗i
27: else
28: return vi
29: end if
30: end procedure

(a) (b) (c)

(d) (e) (f)

Fig. 5. Illustration of the Gibbs sampler in Algorithm 2. (a) The compound
structure V given as input to stochastic gradient ascent in Algorithm 1. (b)-(f)
Samples Ṽ t at iterations t = 0, 50, 200, 500, 1000 in Algorithm 2.
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(a) (b)

Fig. 6. Hierarchical region extraction. The candidate regions (V ) at three
levels are shown in gray. (a) The edges that represent parent-child relationship
are shown in red. (b) The edges E that represent the final neighbor relationship
are shown in blue. For clarity, we do not show the edges between two levels
that are not consecutive even though there are edges between all level pairs.

IV. INFERENCE AND REGION SELECTION

Given a compound structure model with learned parameter
vector β, we would like to automatically detect all of its
instances in an input image I . We, first, propose a set of can-
didate primitive regions in the image, and then, an inference
algorithm is used to select a coherent subset of those regions
that optimize a probability function defined in terms of both
appearance and arrangement characteristics of region groups.

A. Hierarchical region extraction

The first step involves the identification of primitive regions
by using a segmentation algorithm. In this paper, we use
opening and closing by reconstruction operations as in [13].
Considering the fact that different objects of interest may
appear at different scales, we apply opening and closing by
reconstruction using structuring elements in increasing sizes.
These operations form a hierarchy in which the regions from
all levels are treated as candidate primitives, forming the set
V = {v1, . . . , vM}. Figure 6(a) illustrates the hierarchy.

The next step is to connect the potentially related vertices
at all levels to represent the neighbor relationships. Since
the candidate regions are fixed at the segmentation step, the
set of neighbors for each region can also be fixed, with no
need for the dynamic neighborhood definition for the sampling
problem in Section III-B. Thus, we use Voronoi tessellations
of boundary pixels of regions at each level to identify the
neighbors of each region at that level. Voronoi-based neigh-
borhood definition is preferred at this step as it does not require
any parameter like the proximity threshold or the number of
neighbors as in the proximity-based and k-nearest neighbor-
based definitions, respectively. After computing the Voronoi
tessellation at each level of the hierarchy independently, a
within-level edge (vi, vj) ∈ E is formed between two vertices
if the corresponding regions have neighboring Voronoi cells.
Furthermore, a between-level edge (v′i, v

′
j) ∈ E is also formed

if v′j is at a higher level compared to v′i and if any descendant
of v′j that is at the same level as v′i is a Voronoi neighbor of
v′i. Figure 6(b) illustrates the edges E.

B. Bayesian formulation

Given a graph G = (V,E) that represents the candidate
regions and their neighbor relationships in image I , our goal
is to search for coherent groups of regions that attain high
probability explanations of instances of compound structures
of interest in the image. This problem can be formulated as
the selection of a subset V ∗ among all regions V as

V ∗ = arg max
V ′⊆V

p(V ′|I) = arg max
V ′⊆V

p(I|V ′)p(V ′) (10)

where p(I|V ′) is the observed spectral data likelihood for the
compound structure in the image, and p(V ′) acts as the spatial
(both shape and arrangement) prior according to the model
defined in Section II. We use a simple spectral appearance
model where the spectral content of each primitive is assumed
to be independent and identically distributed according to a
Gaussian with mean µ and covariance Σ, so that p(I|V ′) =∏
vi∈V ′ p(yi|µ,Σ) where yi is the average spectral vector for

the pixels inside the i’th region vi. This formulation assumes
that the primitives in a compound structure have similar
spectral characteristics as the focus of this paper is to develop
a novel spatial data model. Different spectral models will be
studied as part of our future work. The spatial appearance
probability p(V ′) is computed as in (4) using ellipses that
have the same second moments as the regions in V ′.

C. CRF formulation

The selection problem in (10) can be formulated as a con-
ditional random field (CRF). Let X = {x1, . . . , xM} where
xi ∈ {0, 1}, i = 1, . . . ,M , be the set of indicator variables
associated with the vertices V of G so that xi = 1 implies
region vi being selected. Our CRF formulation defines a poste-
rior distribution for hidden random variables X given regions
V and their observed spectral features Y = {y1, . . . , yM} in
a factorized form as

p(X|I, V ) ∝ p(I|X,V )p(X,V )

=
1

Zx

∏
vi∈V

exp
{(
ψci + ψsi

)
xi

} ∏
(vi,vj)∈E

exp
{
ψaijxixj

}
(11)

where the vertex bias terms ψc and ψs representing color
and shape, respectively, and edge weights ψa representing
arrangement are defined as

ψci =
−1

2
(yi − µ)TΣ−1(yi − µ), ∀vi ∈ V, (12)

ψsi =

6∑
k=5

βk
hk
(
φk
i

), ∀vi ∈ V, (13)

ψaij =

4∑
k=1

βk
hk
(
φk
ij

), ∀(vi, vj) ∈ E. (14)

The feature φk is computed via the parameters of the ellipse
that has the second moments as the input region, hk is the
index of the histogram bin to which a given feature value
belongs in Hk, and βkj denotes the j’th component of the
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parameter vector βk controlling Hk. Then, selecting V ∗ in
(10) is equivalent to estimating the joint MAP labels given by

X∗ = arg max
X

p(X|I, V ). (15)

D. CRF inference

Exact inference of (15) is intractable in general graphs
but an approximate solution can be obtained by an MCMC
sampler. However, Gibbs sampling that updates one variable
at a time can be slow in such models requiring many updates to
produce significant changes in the global state, especially when
there is strong dependence between the components [24]. On
the contrary, the Swendsen-Wang algorithm [26] mixes much
faster by updating the labels of many variables at once.

In this paper, we adapt the Swendsen-Wang algorithm
that was designed for the Ising model parameterization, i.e.,
{−1,+1} variables, to sample {0, 1} variables. First, the orig-
inal {0, 1} indicator variables X are converted to {−1,+1}
variables Z = {zi = 2xi − 1, i = 1, . . . ,M}. Then, the
objective (11) is reformulated by variable substitution as

p(Z|I, V ) ∝ p(I|Z, V )p(Z, V )

=
1

Zz

∏
vi∈V

exp
{(1

2
ψci +

1

2
ψsi +

1

4
ψwi
)
zi

}
∏

(vi,vj)∈E

exp
{1

4
ψaijzizj

}
(16)

where a new term ψwi =
∑
vj∈V ψ

a
ij is added to the vertex

biases. We are interested in samples from p(Z|I, V ) so that
the most likely configuration for Z can be found.

The motivation behind the Swendsen-Wang algorithm is
that, sampling can sometimes be made easier by adding more
variables. Suppose we introduce auxiliary variables U = {uij :
(vi, vj) ∈ E}, one per edge, and define the extended model

p(Z,U |I, V ) ∝ p(I|Z, V )p(Z, V )p(U |Z, I, V ). (17)

A careful selection of P (U |Z, I, V ) can make the condi-
tionals P (U |Z, I, V ) and P (Z|U, I, V ) easy to sample from,
and samples for the joint model P (Z,U |I, V ) can be ob-
tained by alternately sampling these conditionals with con-
ventional MCMC techniques [27]. Then, marginalization will
produce valid Z samples from the original distribution because∑
U p(Z,U |I, V ) = p(Z|I, V ).
In the extended model in (17), we assume that uij are

conditionally independent given the vertex variables and are
uniformly distributed between 0 and exp

{
1
4ψ

a
ijzizj

}
. The

conditional distribution of the auxiliary variables can be ob-
tained as

p(U |Z, I, V ) =
∏

(vi,vj)∈E

1

exp
{

1
4ψ

a
ijzizj

}
1

[
0 ≤ uij ≤ exp

{1

4
ψaijzizj

}]
(18)

where 1 is an indicator function that is 1 when its argument
is true, and 0 otherwise. Our choice of this p(U |Z, I, V ) leads
to the joint distribution

p(Z,U |I, V ) ∝
∏
vi∈V

exp
{(1

2
ψci +

1

2
ψsi +

1

4
ψwi
)
zi

}
∏

(vi,vj)∈E

1

[
0 ≤ uij ≤ exp

{1

4
ψaijzizj

}]
. (19)

The conditional distribution of the vertex indicator variables
Z given the auxiliary variables U is also obtained as

p(Z|U, I, V ) ∝ p(Z,U |I, V ). (20)

That is, p(Z|U, I, V ) is equal to the product of the selected
vertex biases, restricted to the region where all constraints{

0 ≤ uij ≤ exp
{1

4
ψaijzizj

}
, ∀(vi, vj) ∈ E

}
(21)

are satisfied, and is 0 elsewhere.
In the following, we describe how we sample the ex-

tended model via Gibbs sampling from p(U |Z, I, V ) and
p(Z|U, I, V ) alternately. Note that the terms involving the
edge weights in (18) can only take two values according to
the choice of Z, i.e.,

exp
{1

4
ψaijzizj

}
=

{
exp

{
1
4ψ

a
ij

}
if zi = zj ,

exp
{−1

4 ψ
a
ij

}
if zi = −zj .

(22)

Consequently, when conditioning on U in (20), the terms
1
[
0 ≤ uij ≤ exp

{
1
4ψ

a
ijzizj

}]
may constrain the allowed

combinations of Z. In particular, when ψaij > 0:
• if uij > exp

{−1
4 ψ

a
ij

}
, we must have zi = zj ,

• if uij ≤ exp
{−1

4 ψ
a
ij

}
, there is no constraint on (zi, zj).

Similarly, when ψaij < 0:
• if uij > exp

{
1
4ψ

a
ij

}
, we must have zi = −zj ,

• if uij ≤ exp
{

1
4ψ

a
ij

}
, there is no constraint on (zi, zj).

Hence, the selection of U introduces constraints to the distri-
bution giving rise to form connected components of vertices
to act as a single bonded unit.

To simplify the notation, we replace each uij with a
binary indicator variable bij = 1

[
uij > exp

{−1
4 |ψ

a
ij |
}]

that denotes the presence of a bond. The conditional
p(B|Z, I, V ) for the set of all bond variables B = {bij :
(vi, vj) ∈ E} factorizes over the edges as p(B|Z, I, V ) =∏

(vi,vj)∈E p(bij |zi, zj , I, vi, vj). From (22), when ψaij > 0:

p(bij = 1|zi, zj , I, vi, vj)

=


exp{ 1

4ψ
a
ij}−exp{

−1
4 ψa

ij}
exp{ 1

4ψ
a
ij}

= 1− exp
{−1

2 ψ
a
ij

}
if zi = zj ,

0 if zi = −zj .
(23)

When ψaij < 0:

p(bij = 1|zi, zj , I, vi, vj)

=


exp{−1

4 ψa
ij}−exp{ 1

4ψ
a
ij}

exp{−1
4 ψa

ij)
= 1− exp

{
1
2ψ

a
ij

}
if zi = −zj ,

0 if zi = zj .

(24)
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Sampling from p(B|Z, I, V ), and equivalently from
p(U |Z, I, V ), is done by randomly selecting a subset of the
bond variables based on p(bij |zi, zj , I, vi, vj) and forming sets
of connected components C that are connected by edges with
bij = 1. The individual vertices that are not connected to any
other vertex are also included in this set. Then, sampling from
p(Z|U, I, V ) is done by randomly selecting some of these
connected components and simultaneously flipping the labels
of all vertices within these components so that the constraints
• zi = zj if ψaij > 0,
• zi = −zj if ψaij < 0

for bij = 1 are still satisfied. When sampling a connected com-
ponent C ′ ∈ C from p(Z|U, I, V ), the acceptance probability
for flipping the labels is given by

γ(C ′) =
p(−Z|U, I, C ′)

p(−Z|U, I, C ′) + p(Z|U, I, C ′)
(25)

where

p(−Z|U, I, C ′) =
∏
vi∈C′

exp
{(1

2
ψci +

1

2
ψsi +

1

4
ψwi
)
(−zi)

}
(26)

is the likelihood of the vertices in C ′ when their labels are
flipped (zi ← −zi), and

p(Z|U, I, C ′) =
∏
vi∈C′

exp
{(1

2
ψci +

1

2
ψsi +

1

4
ψwi
)
zi

}
(27)

is the likelihood when the labels stay the same.
The proposed region selection algorithm is summarized in

Algorithm 3 and is illustrated in Figure 7. We use a simulated
annealing procedure [24] as described in Section V to guide
the sampling iterations. The sampling procedure continues
until the change in the value of the objective (11) between
two consecutive iterations is significantly small, and a solution
to (15) is obtained by taking the most likely configuration
X∗ across all samples. Finally, the marginal probabilities for
the individual regions in the set V ∗ that corresponds to this
solution are obtained from the frequency of observation of
each primitive region during the sampling process.

V. EXPERIMENTS

A. Data set

The main experiments for quantitative and qualitative eval-
uation were performed using a multispectral WorldView-2 im-
age of Ankara, Turkey. The test scene consisted of 4000×2500
pixels and 2 m spatial resolution covering various kinds of
residential and industrial areas as shown in Figure 8(a).

The proposed compound structure detection algorithm was
evaluated using six scenarios where the first five scenarios cor-
respond to residential structures and the sixth one corresponds
to an industrial structure as shown in Table I. All scenarios
were formed by various arrangements of four buildings used as
the main primitive object of interest in the urban test scene. In
particular, the first scenario aimed the detection of rectangular
buildings that are spatially aligned with respect to their major
axes. The second scenario aimed the detection of a structure
composed of buildings placed in a diamond formation. The
third scenario aimed the detection of relatively small, dense,

Algorithm 3 Swendsen-Wang sampler for CRF inference for
estimating X∗. The number of iterations R is determined by
simulated annealing.
Input: ψci , ψsi , ψaij , i, j = 1, . . . ,M
Output: X∗

1: Initialize labels Z = {zi = −1, i = 1, . . . ,M}
2: for r ← 1, 2, . . . , R do
3: for all (vi, vj) ∈ E do
4: bij ← SAMPLEBONDGIVENVERTICES(zi, zj , ψ

a
ij)

5: end for
6: Form connected components C using bonds bij = 1
7: Pick component C ′ ∈ C uniformly at random
8: Flip labels for all vi ∈ C ′ with probability γ(C ′)
9: Compute Xr = {xi = (zi + 1)/2, i = 1, . . . ,M}

10: end for
11: X∗ ← arg maxX∈{X1,...,XR} p(X|I, V )

12: procedure SAMPLEBONDGIVENVERTICES(zi, zj , ψaij)
13: if (zi = zj & ψaij > 0)or (zi = −zj & ψaij < 0) then
14: Sample q ∼ U(0, 1)
15: if q < 1− exp

{−1
2 |ψ

a
ij |
}

then
16: return 1
17: end if
18: end if
19: return 0
20: end procedure

(a) (b)

(c) (d)

Fig. 7. Illustration of the Swendsen-Wang procedure in Algorithm 3. In each
figure, the labels of the primitives are shown in red for selected (zi = +1)
and blue for not selected (zi = −1). (a) The labels at the beginning of a
particular sampling iteration. The Voronoi edges (E) are shown in green.
(b) The edges with positive bond probabilities as candidates for forming
connected components of their corresponding vertices. (c) The sampled edges
that form connected components of vertices bonded together. (d) The result of
randomly flipping the labels of the primitives in some of these components.
A single scale is shown for simplicity even though the algorithm normally
runs on the graph for the whole candidate region hierarchy.
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(a) (b)

(c) (d)

Fig. 8. Data set used for quantitative evaluation. (a) RGB image. (b) Manually delineated polygons reflecting compound structures of interest. (c) Manually
delineated buildings inside these polygons. These buildings are used as the primitives in the validation data. The colors of the polygons and buildings correspond
to the scenarios given in Table I. (d) Candidate regions obtained by the morphological profile hierarchy. Regions appearing in different levels of the hierarchy
are shown with different pseudocolors.

TABLE I
DETECTION SCENARIOS FOR THE EXPERIMENTS. EXAMPLE PRIMITIVES

USED FOR LEARNING THE COMPOUND STRUCTURE MODEL FOR EACH
SCENARIO ARE SHOWN IN A DIFFERENT COLOR. THE NUMBER OF

POLYGONS AND BUILDINGS IN THE VALIDATION DATA ARE ALSO GIVEN.

Scenario 1 2 3 4 5 6

Example
primitives
# polygons 162 98 48 195 60 16
# buildings 1519 870 1117 1796 771 219

regularly arranged, square-like buildings. The fourth scenario
aimed the detection of parallel rectangular buildings that are
aligned with respect to their minor axes. The fifth scenario
aimed the detection of sparse, randomly located, square-like
buildings that are slightly larger than those in scenario three.
The sixth scenario aimed the detection of a structure composed
of regularly arranged large industrial buildings.

The validation data that were used to evaluate the per-
formance of the method on these scenarios were obtained
by manual delineation of polygons corresponding to com-
pound structures (Figure 8(b)) as well as buildings inside

these polygons as primitive objects (Figure 8(c)). Table I
presents the number of compound structures (polygons) and
the corresponding primitives (buildings) in the validation data
for each scenario. The learning process for building the
compound structure model uses manual selection of four of
these primitives for each structure of interest. This corresponds
to triggering the whole learning and inference process using
only four individual objects, and can be considered a very
moderate requirement as only a few individual objects need
to be delineated as opposed to relatively large training sets
needed for supervised detection and classification algorithms.

B. Experimental protocol

The experimental procedure for building the example com-
pound structure model (Section II) and learning its parameters
(Section III) used a single example structure (N = 1) with
only four primitive objects (M = 4) as described above. The
proximity threshold δ was set to 100 pixels. The corresponding
arrangement and shape histograms were constructed with
five equal length bins between the minimum and maximum
possible values for each feature. The minimum and maximum
major and minor axis lengths (shmin , s

h
max ) and (swmin , s

w
max )

for sampling the ellipses were both set to (2, 80). This interval
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was chosen so that it covered the expected smallest and
largest primitive axis lengths. The parameters of the maximum
entropy model p(V |β) were obtained using Algorithm 1. The
number of samples S that were used to approximate the
expectation Ep[H(V )] was set to 20. The number of Gibbs
sampler iterations T in Algorithm 2 was set to 100.

The experimental procedure for inference and region se-
lection (Section IV) starts with morphological profiles for
hierarchical region extraction. For residential structures, disk
structuring elements with radii 2 and 3 were used for con-
structing the closing profile of the saturation band of the
HSV color space computed from the RGB bands of the
multispectral image, and for the industrial structures, disk
structuring elements with radii from 5 to 10 were used for
constructing the opening profile of the HSV value band, as
these bands gave good contrast for the primitives of interest
(i.e., red roof buildings and industrial buildings, respectively)
in our image. A tree structure was constructed from the
corresponding profile to extract candidate regions for each sce-
nario. For the residential structures, the number of candidate
regions M in two scales was 70,644, and for the industrial
structures, the number of candidate regions in six scales was
22,195. This makes a very large pool of candidate regions that
we should select from as shown in Figure 8(d). A Voronoi
neighborhood between regions was constructed for each scale
and the neighbors of a region at lower scales were obtained
through its descendants in these scales. The resulting graph
constructed for the residential scenarios contained 752,754
edges whereas the graph constructed for the industrial scenario
contained 490,222 edges. Considering the total number of the
candidate regions in all scales and the number of regions in the
validation data, the challenge for the selection problem is that
it is expected to select a significantly small fraction of these
candidate regions; hence, it should be very selective. Finally,
the simulated annealing procedure that was used to help the
convergence of Algorithm 3 divided the exponents in the
posterior probability in (16) by a certain power called temper-
ature. This temperature was slowly decreased in each iteration
according to a cooling schedule such that τk = 0.995 τk−1
where the initial temperature τ0 was set to 1.

C. Baselines for comparison
The first baseline method used sliding windows similar to

the tile-based classification tasks in the literature. In particular,
we used overlapping 150 × 150 pixel windows, and using
all primitive objects in each window, we extracted marginal
histograms, H(V ), as described in Section II-B, that modeled
the shape and arrangement characteristics of the primitives at
each scale of the hierarchy. Then, we computed the probability
that a particular spatial arrangement existed in that window
by using p(V |β), as described in Section II-C, for each
scale, and obtained the overall probability for each window
as the maximum of the probabilities obtained from all scales.
Finally, the marginal probability for each primitive object was
obtained as the maximum of the probabilities of the windows
that it appeared. This baseline method aimed to evaluate the
effectiveness of the proposed selection process by combining
the shape and arrangement information from all primitives.

The second baseline method performed selection of regions
satisfying only color and shape properties by dropping the
arrangement terms in the maximum entropy model. Thus, the
baseline result was obtained by computing the probability of
the candidate regions as p(X|I, V ) ∝ 1

Zx

∏
vi∈V exp

{(
ψci +

ψsi
)
xi

}
instead of (11). This choice for the baseline aimed to

evaluate the effectiveness of the generic spatial arrangement
model in the proposed probabilistic region process compared
to the commonly used color and shape-only detectors.

D. Evaluation criteria

The detection scores resulting from the inference procedure
consist of the marginal probabilities of the selected regions
(primitives) at the end of Algorithm 3. Thresholding of the
score of each region produces a binary detection map. We used
precision and recall as the quantitative performance criteria as
in [3], [28] to compare the binary detection maps obtained
using a uniformly sampled range of thresholds to the validation
data for each scenario that was described in Section V-A.
Recall (producer’s accuracy), that is computed as the ratio
of the number of correctly detected pixels to the number of
all pixels in the validation data, can be interpreted as the
number of true positives detected by the algorithm, while
precision (user’s accuracy), that is computed as the ratio of
the number of correctly detected pixels to the number of all
detected pixels, evaluates the algorithm’s tendency for false
positives. In addition to the precision-recall curves that used a
full range of thresholds, we used a particular threshold value
of 0.9 to provide example detection results for all scenarios in
the following section. We observed that the particular choice
for this threshold was not very critical because, as discussed in
the following sections, the inference procedure assigned very
high probabilities to most of the selected regions.

Since our selection algorithm detects regions instead of in-
dividual pixels, we also performed an object-based evaluation
as in [29] in addition to pixel-based evaluation. This strat-
egy, which is called focus-of-attention, assumes that a single
correctly detected pixel inside a target object is sufficient to
attract the operator’s attention to that target and label it as
correctly detected, but any pixel outside the target is a false
alarm because it diverts attention away from true targets. Given
the binary detection map for a particular threshold, the union
of one or more pixels inside the mask of a validation (ground
truth) region was counted as a true positive, while the number
of connected components of pixels that did not overlap with
any validation region was counted as false positives. Precision
and recall used counts of connected groups of pixels instead
of individual pixels for object-based evaluation.

E. Results

The learning and inference procedures summarized in Al-
gorithms 1 and 3, respectively, were run for each of the six
scenarios on the data set described in Section V-A. The number
of selected regions were 3191, 1828, 3819, 3201, 2027, and
1612 for each scenario, respectively. To reconcile selection of
overlapping regions from multiple scales, we computed the
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maximum of the marginal probability values for each pixel
along all scales that it was selected. This operation reduced
the number of resulting regions to 1920, 1114, 2648, 1934,
1399, and 357, respectively. These numbers showed that, on
the average, only 4% of all candidate regions in all scales
were selected for all scenarios. This meant that most of the
regions in the input hierarchy were considered as irrelevant
by the proposed method that behaved very selectively even
when trained with a single example structure that contained
only four buildings for each scenario.

Figure 9 shows the marginal probabilities of the detected
regions for each scenario. The results showed that our selection
algorithm was able to detect coherent regions in the image
that had arrangements similar to the example structures. Note
that a region may belong to more than one type of compound
structure as it may form different arrangements with different
neighbors. For example, a region may have both close and
distant neighbors, and may be aligned with different neighbors
according to the major and the minor axes at the same time.

We observed high marginal probabilities, e.g., greater than
0.9, for most of the selected regions. This indicated that most
of the selected regions appeared in most of the sampling
iterations, and showed the power of our sampling procedure
compared to the traditional Gibbs sampler that samples an in-
dividual region at a time by considering only its neighbors. The
latter has a potential problem for regions with several irrelevant
neighbors that increase the uncertainty in the decision to flip
the selection label of a region, whereas our sampling algorithm
that sampled connected components and made the decision for
a particular region by the contribution of a larger context that
contained other regions that might be part of the same structure
behaved very selectively. This difference was especially more
clear for the boundary regions of compound structures where
the marginal probabilities of the boundary regions were as
high as the ones in the middle since their decisions were made
together through their corresponding connected components.

The next set of experiments was done to compare the
performances of the proposed detection algorithm and the
baseline methods as described in Sections V-B and V-C,
respectively. Figure 10 shows precision versus recall curves
obtained by applying different thresholds to the marginal prob-
abilities. The results showed that the proposed algorithm that
jointly exploited spectral, shape and arrangement information
performed significantly better than the baselines that did not
use either selection or arrangement. Even though the two less
restricted baselines could approach higher recall levels (bottom
right corner of the precision-recall curves) with a sacrifice of
substantially reduced precision by accepting more buildings in
the output, the proposed method could achieve significantly
higher precision values at the same level of recall. The
observation that the baseline that used shape and arrangement
without selection performed worse than the one that used color
and shape-only selection with no arrangement also confirmed
the effectiveness of the proposed selection algorithm. When we
compared the results for different scenarios, we could observe
that the decreases in precision in the third and fifth scenarios
were faster than the others for increasing recall (corresponding
to decreasing detection threshold). This could be explained by

the observation that orientation-based features for square-like
buildings could be noisy so that more building groups that
were not in the validation data appeared in the output as we
decreased the detection threshold. This result could also be
justified by a smaller ratio of the number of buildings in the
validation data versus the number of selections for each of
these scenarios.

We also observed that the quantitative evaluation did not
always reflect the quality of the results very precisely because
the validation data remained approximate. We present zoomed
versions of the results for example areas to better illustrate the
details for high-resolution imagery. Figure 11 shows example
region hierarchies and selection results. As can be seen in
the hierarchies, different regions had better arrangements with
their neighbors and had better appearances in different scales
with respect to the structure of interest. This fact was reflected
in the algorithm by selecting only an appropriate subset of
the regions on a path from a leaf region to the highest scale
region. Note that misdetections would have occurred if we
had manually selected only one scale or attempted to find the
single best scale for all the regions. An important property
of our algorithm was that it could automatically select regions
from different scales. It also did not require a priori knowledge
of the number of regions to be selected.

Figure 12 shows more examples of the marginal probabil-
ities and the detections after thresholding these probabilities.
The marginal probability values were very strong indicators
of the goodness of the detections as the highest likelihood
values were obtained for the regions that were very similar to
the individual primitives in the example structures but also
satisfied the spatial arrangements. On the other hand, the
baseline method shown detected a wide range of individual
objects without any consideration of their spatial arrangements
as expected. This led to very low precision levels as well
as unsatisfactory localization of the structures of interest.
Furthermore, our method could select regions that would
have normally been misdetected if only individual properties
were used. For example, structures with diamond formation
involved some candidate regions with shorter major axes than
the example primitives. The baseline could not detect these re-
gions whereas our algorithm selected them since their selection
along with the others satisfied the arrangement distribution.
This was a good example for demonstrating the importance of
the local spatial context in the selection problem.

We also analyzed different sources of errors in the detec-
tions. One of the main reasons for the misdetections was
the errors in the input hierarchical segmentation. Some tar-
get primitives were never selected because a corresponding
candidate region never appeared clearly in the hierarchy. That
is, the candidate regions stayed too small until they merged
with their surroundings and got completely lost. For example,
the industrial regions had complex surfaces that made the
morphological operations unable to find some of these regions
precisely and prohibited the selection procedure from selecting
them. Using additional hierarchical segmentations obtained by
different algorithms and/or parameters can overcome this prob-
lem by introducing more than one possible set of candidates.
Detailed analysis of the results revealed another reason for
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Fig. 9. Marginal probabilities for the selected regions for each scenario. Brighter values indicate higher probabilities. The example primitives are also shown.
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Fig. 10. Precision-recall curves. The columns correspond to the scenarios one to six from left to right. The top row corresponds to the pixel-based evaluation
and the bottom row is for the object-based evaluation. The solid red curves correspond to the proposed approach, dashed green ones are for the first baseline
(shape and arrangement without selection), and dashed blue ones are for the second baseline (color and shape-only selection with no arrangement).
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Fig. 11. Zoomed detection examples. The first five rows correspond to the residential structures (scenarios one to five) and the last row corresponds to the
industrial structures (scenario six). The first column shows the RGB images for 500× 500 sub-scenes. The second column shows the hierarchy of candidate
regions (two-level hierarchy for the first five rows and six-level hierarchy from left to right and top to bottom for the last row). The selected regions are
colored with red. The third column shows the marginal probabilities at the end of selection. The fourth column shows the thresholded detections overlayed
as red and the validation polygons overlayed with the corresponding colors in Table I.
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Fig. 12. Additional zoomed detection examples. The image pairs show the marginal probabilities and the overlayed detection results. Each row corresponds
to a particular scenario. The first four pairs in each row show the results of our algorithm. The last pair corresponds to the results of the second baseline.

the misdetections where even though the arrangements of the
candidate regions were satisfying the arrangement distribution
of an example scenario, their color and shape properties were
not supportive enough for the decision for being selected.
Also, in particular, some of the misdetections for the fifth
scenario occurred because the primitives were relatively distant
from each other. For a candidate region in the image, its
closer neighbors might have prevented the distant neighbors
to appear in its Voronoi neighbors set. Then, this region was
not selected in the result because it could not connect to the
neighbors of interest. Some of the false alarms were caused
by single individual regions that had individual statistics that
were very similar to those of the example primitives so that
the arrangement cues were dominated by the appearance cues.
However, since the validation data were subjective, most of the
regions that were reflected as false alarms could actually be
accepted as true positives under different applications.

In addition to the quantitative experiments using the urban
scene in the WorldView-2 image presented in this section, we
performed qualitative evaluation by using two additional very
high spatial resolution images to illustrate the effectiveness
of the proposed approach in detecting different compound

structures that are composed of different primitive objects in
other types of settings such as agricultural and rural scenes.
In particular, we used a multispectral WorldView-2 image
of Kusadasi, Turkey for the detection of fruit orchards as
agricultural structures composed of trees as the primitive
objects, and a panchromatic GeoEye-1 image of Darfur, Sudan
for the detection of refugee camps as rural structures composed
of fences as the primitive objects. Example results for orchard
detection are presented in Figure 13. Target orchards are made
up of circularly shaped tree primitives appearing in a near-
regular repetitive arrangement. Individual trees were localized
as candidate regions by using the top-hat transform of the
normalized difference vegetation index that had sufficient
contrast between the trees and the background. We used
a disk structuring element with a radius of 1 pixel in the
opening operation. The results show that the method was very
successful in identifying the regions corresponding to orchards
with only minor misdetections due to a few missing trees in
the top-hat transform outputs.

Example results for the detection of refugee camps are
shown in Figure 14. The goal was to identify the refugee
camps consisting of dwellings surrounded by fences made
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Fig. 13. Example results for the detection of orchards as agricultural structures
in two 500×500 pixel WorldView-2 images with 2 m spatial resolution. The
left column shows the marginal probabilities at the end of selection. The
example primitives used in the learning step are shown on the bottom left
corner. The right column shows the thresholded detections overlayed as red.
We used a 21 × 21 pixel Gaussian smoothing filter to enhance the binary
detection results before overlaying.

of clay or straw. The fences appear as dark rectangular
outlines with one or more entrances (so that the outlines are
not closed). More information about the test scene can be
obtained from [30]. We aimed to model the fences in terms
of spatial arrangements of line segments. Thus, we performed
line fitting to the edge detection outputs, and the resulting
line segments were considered as candidate primitives in
the selection process. The results show that the proposed
method could identify the perpendicular arrangement of the
fence segments with only a few false positives. A few fence
segments could not be detected because they were missing
in the line fitting result. Overall, these examples illustrate
that the ellipse-based primitive representation and the generic
spatial arrangement model together with the proposed learning
and inference algorithms were successful in the detection and
localization of various compound structures in different types
of scenes.

We believe that the output of the proposed method can be
particularly useful when the goal is to perform image mining
when we do not have a detailed labeling of example target
structures but are interested in finding similar structures using
a single example. The localization ability of the algorithm
is valuable when there is no clear boundary with respect to
low-level cues such as color and texture for the structure of
interest. This also conforms to the focus-of-attention strategy
that assumes that a single correctly detected pixel inside a
target object is sufficient to attract the operator’s attention
to that target. These results can also be given as input to
other algorithms so that more detailed labeling of the image

Fig. 14. Example results for the detection of refugee camps as rural structures
in a 1102×971 pixel GeoEye-1 image with 0.5 m spatial resolution (GeoEye-
1 c© 2009, DigitalGlobe, Inc.). The top image shows the marginal probabilities
as well as the example primitives used for learning on the bottom left corner.
The bottom image shows the thresholded detections overlayed as red. We used
dilation with a disk with radius of 3 pixels to enhance the line segments for
display.

can be produced. For example, the algorithm in [31] aims to
estimate the spatial extents of complex geospatial objects that
are composed of multiple land use and land cover classes.
However, the method requires that at least a single known
pixel is given as input for each object so that the procedure
can be initialized and the model that was learned from multiple
examples can compute its extent. The proposed method can
provide the initializations and the models for such complex
structures. As another example, the algorithm in [32] performs
detailed classification of urban land use according to the
shapes and spatial characteristics of buildings, but requires
that complete GIS data with individual parcel boundaries and
building polygons with detailed attributes are given as input
for parcel-based classification where each parcel is assumed to
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belong to a single, homogeneous land use class. The proposed
method can localize different urban, rural, or agricultural struc-
tures so that the availability of parcel boundaries is no longer
a requirement for high-level semantic land use classification.

Finally, we analyzed the execution times for different steps
of the proposed algorithm. The proposed learning and infer-
ence algorithms were implemented in Matlab with the only
exception of the Swendsen-Wang sampling step in Section
IV-D implemented in C. We performed a code profile analysis
to investigate the time spent in different steps. For the first
scenario used in the experiments, the learning process for the
example compound structure with four primitives took 774
seconds using the unoptimized Matlab code on a laptop with
a 2.67 GHz Intel Core i5 processor. The sampling process
in Section III took 99% of the time where the number of
samples was empirically set as described in Section V-B. More
samples can take longer but can produce a better model with
a higher likelihood. The inference and selection process for
an example 500 × 500 pixel image took 162 seconds. Of
the total time, hierarchical region extraction in Section IV-A
took 1% of the time to produce 854 candidate regions, feature
extraction in Section II-B took 2.5% of the time, finding the
Voronoi neighbors in Section IV-A took 26% of the time,
and region selection in Section IV-D took 62% of the time.
The hierarchical region extraction step can take longer if
the number of scales in the segmentation increases. Using
faster algorithms for computing the Voronoi tessellation for
the neighborhood graph could decrease the running time.

Another note regarding the implementation is that the
proposed algorithm can directly run on large images as the
selection algorithm considers only local interactions between
the regions within connected components of the large scene
graph. However, if the resulting segmentation tree structures
are very large with resulting large number of vertices and
edges in the neighborhood graph, sliding windows can be used
to process the image where the window size can be selected
based on the expected sizes of compound structures. Since
the decision in the selection algorithm is based on individual
connected components of the graph, it also does not matter
how many different structures exist in the same window as the
decision for each compound structure is made independently
from other structures. This is one of the major advantages
over traditional tile-based approaches with tiling being at the
core of the image representation where each tile is assumed
to correspond to a compound structure and the features are
extracted from whole tiles.

VI. CONCLUSIONS

We described a generic method for the modeling and detec-
tion of compound structures that consisted of arrangements
of unknown number of primitive objects in large scenes.
The modeling process used a single example structure, and
built a Markov random field-based contextual model for the
compound structure of interest whose parameters were learned
via sampling from the corresponding maximum entropy distri-
bution. The detection task involved a combinatorial selection
problem where multiple subsets of candidate regions from

a hierarchical segmentation were selected via joint sampling
of groups of regions by maximizing the likelihood of their
individual appearances and relative spatial arrangements. Ex-
periments using very high spatial resolution images showed
that the proposed method could effectively localize unknown
number of instances of different compound structures that
could not be detected by using spectral and shape features
alone.
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