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Abstract— A challenging problem in image content extraction
and classification is building a system that automatically learns
high-level semantic interpretations of images. We describe a
Bayesian framework for a visual grammar that aims to reduce
the gap between low-level features and high-level user semantics.
Our approach includes modeling image pixels using automatic
fusion of their spectral, textural and other ancillary attributes;
segmentation of image regions using an iterative split-and-merge
algorithm; and representing scenes by decomposing them into
prototype regions and modeling the interactions between these
regions in terms of their spatial relationships. Naive Bayes clas-
sifiers are used in the learning of models for region segmentation
and classification using positive and negative examples for user-
defined semantic land cover labels. The system also automatically
learns representative region groups that can distinguish different
scenes and builds visual grammar models. Experiments using
LANDSAT scenes show that the visual grammar enables creation
of high-level classes that cannot be modeled by individual pixels
or regions. Furthermore, learning of the classifiers requires only
a few training examples.

Index Terms— Image classification, visual grammar, image
segmentation, spatial relationships, data fusion

I. INTRODUCTION

THE amount of image data that is received from satellites
is constantly increasing. For example, NASA’s Terra

satellite sends more than 850GB of data to Earth every day [1].
Automatic content extraction, classification and content-based
retrieval have become highly desired goals for developing
intelligent databases for effective and efficient processing of
remotely sensed imagery. Most of the previous approaches try
to solve the content extraction problem by building pixel-based
classification and retrieval models using spectral and textural
features. However, there is a large semantic gap between low-
level features and high-level user expectations and scenarios.
This semantic gap makes a human expert’s involvement and
interpretation in the final analysis inevitable and this makes
processing of data in large remote sensing archives practically
impossible.

The commonly used statistical classifiers model image con-
tent using distributions of pixels in spectral or other feature
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domains by assuming that similar land cover structures will
cluster together and behave similarly in these feature spaces.
Schröder et al. [2] developed a system that uses Bayesian clas-
sifiers to represent high-level land cover labels for pixels using
their low-level spectral and textural attributes. They used these
classifiers to retrieve images from remote sensing archives
by approximating the probabilities of images belonging to
different classes using pixel level probabilities.

However, an important element of image understanding is
the spatial information because complex land cover structures
usually contain many pixels and regions that have different
feature characteristics. Furthermore, two scenes with similar
regions can have very different interpretations if the regions
have different spatial arrangements. Even when pixels and
regions can be identified correctly, manual interpretation is
often necessary for many applications of remote sensing image
analysis like land cover classification, urban mapping and
monitoring, and ecological analysis in public health studies
[3]. These applications will benefit greatly if a system can au-
tomatically learn high-level semantic interpretations of scenes
instead of classification of only the individual pixels.

The VISIMINE system [4] we have developed supports
interactive classification and retrieval of remote sensing images
by extending content modeling from pixel level to region
and scene levels. Pixel level characterization provides clas-
sification details for each pixel with automatic fusion of its
spectral, textural and other ancillary attributes. Following a
segmentation process, region level features describe properties
shared by groups of pixels. Scene level features model the
spatial relationships of the regions composing a scene using
a visual grammar. This hierarchical scene modeling with a
visual grammar aims to bridge the gap between features and
semantic interpretation.

This paper describes our work on learning the visual gram-
mar for scene classification. Our approach includes learning
prototypes of primitive regions and their spatial relation-
ships for higher-level content extraction. Bayesian classifiers
that require only a few training examples are used in the
learning process. Early work on syntactical description of
images includes the Picture Description Language [5] that is
based on operators that represent the concatenations between
elementary picture components like line segments in line
drawings. More advanced image processing and computer
vision-based approaches on modeling spatial relationships
of regions include using centroid locations and minimum
bounding rectangles to compute absolute and relative locations
[6]. Centroids and minimum bounding rectangles are useful
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when regions have circular or rectangular shapes but regions
in natural scenes often do not follow these assumptions. More
complex representations of spatial relationships include spatial
association networks [7], knowledge-based spatial models [8],
[9], and attributed relational graphs [10]. However, these
approaches require either manual delineation of regions by
experts or partitioning of images into grids. Therefore, they
are not generally applicable due to the infeasibility of man-
ual annotation in large databases or because of the limited
expressiveness of fixed sized grids.

Our work differs from other approaches in that recognition
of regions and decomposition of scenes are done automatically
after the system learns region and scene models with only a
small amount of supervision in terms of positive and negative
examples for classes of interest. The rest of the paper is
organized as follows. An overview of the visual grammar is
given in Section II. The concept of prototype regions is defined
in Section III. Spatial relationships of these prototype regions
are described in Section IV. Image classification using the
visual grammar models is discussed in Section V. Conclusions
are given in Section VI.

II. VISUAL GRAMMAR

We are developing a visual grammar [11], [12] for in-
teractive classification and retrieval in remote sensing image
databases. This visual grammar uses hierarchical modeling of
scenes in three levels: pixel level, region level and scene level.
Pixel level representations include labels for individual pixels
computed in terms of spectral features, Gabor [13] and co-
occurrence [14] texture features, elevation from DEM, and
hierarchical segmentation cluster features [15]. Region level
representations include land cover labels for groups of pixels
obtained through region segmentation. These labels are learned
from statistical summaries of pixel contents of regions using
mean, standard deviation and histograms, and from shape
information like area, boundary roughness, orientation and
moments. Scene level representations include interactions of
different regions computed in terms of their spatial relation-
ships.

The object/process diagram of our approach is given in
Fig. 1 where rectangles represent objects and ellipses represent
processes. The input to the system is raw image and ancillary
data. Visual grammar consists of two learning steps. First,
pixel level models are learned using naive Bayes classifiers
[2] that provide a probabilistic link between low-level image
features and high-level user-defined semantic land cover labels
(e.g., city, forest, field). Then, these pixels are combined
using an iterative split-and-merge algorithm to find region
level labels. In the second step, a Bayesian framework is
used to learn scene classes based on automatic selection of
distinguishing spatial relationships between regions. Details of
these learning algorithms are given in the following sections.
Examples in the rest of the paper use LANDSAT scenes of
Washington, D.C., obtained from the NASA Goddard Space
Flight Center, and Washington State and Southern British
Columbia obtained from the PRISM project at the University
of Washington. We use spectral values, Gabor texture features

Image and
ancillary data

Pixel level
classification Pixel labels

Iterative
region

segmentation

Region labels Spatial
analysis

Region
spatial

relationships

Scene
classification Scene labels

Fig. 1. Object/process diagram for the system. Rectangles represent objects
and ellipses represent processes.

(a) NASA data set (b) PRISM data set

Fig. 2. LANDSAT scenes used in the experiments.

and hierarchical segmentation cluster features for the first data
set, and spectral values, Gabor features and DEM data for the
second data set, shown in Fig. 2.

III. PROTOTYPE REGIONS

The first step in constructing the visual grammar is to find
meaningful and representative regions in an image. Automatic
extraction of regions is required to handle large amounts of
data. To mimic the identification of regions by analysts, we
define the concept of prototype regions. A prototype region is
a region that has a relatively uniform low-level pixel feature
distribution and describes a simple scene or part of a scene.
Ideally, a prototype is frequently found in a specific class of
scenes and differentiates this class of scenes from others.

In previous work [11], [12], we used automatic image
segmentation and unsupervised model-based clustering to au-
tomate the process of finding prototypes. In this paper, we
extend this prototype framework to learn prototype models
using Bayesian classifiers with automatic fusion of features.
Bayesian classifiers allow subjective prototype definitions to
be described in terms of easily computable objective attributes.
These attributes can be based on spectral values, texture, shape,
etc. Bayesian framework is a probabilistic tool to combine
information from multiple sources in terms of conditional and
prior probabilities.

Learning of prototypes starts with pixel level classification
(the first process in Fig. 1). Assume there are k prototype
labels, w1, . . . , wk, defined by the user. Let x1, . . . , xm be the
attributes computed for a pixel. The goal is to find the most
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probable prototype label for that pixel given a particular set of
values of these attributes. The degree of association between
the pixel and prototype wj can be computed using the posterior
probability

p(wj |x1, . . . , xm)

=
p(x1, . . . , xm|wj)p(wj)

p(x1, . . . , xm)

=
p(x1, . . . , xm|wj)p(wj)

p(x1, . . . , xm|wj)p(wj) + p(x1, . . . , xm|¬wj)p(¬wj)

=
p(wj)

∏m

i=1 p(xi|wj)

p(wj)
∏m

i=1 p(xi|wj) + p(¬wj)
∏m

i=1 p(xi|¬wj)
(1)

under the conditional independence assumption. The condi-
tional independence assumption simplifies learning because
the parameters for each attribute model p(xi|wj) can be
estimated separately. Therefore, user interaction is only re-
quired for the labeling of pixels as positive (wj) or negative
(¬wj) examples for a particular prototype label under training.
Models for different prototypes are learned separately from
the corresponding positive and negative examples. Then, the
predicted prototype becomes the one with the largest posterior
probability and the pixel is assigned the prototype label

w∗
j = arg max

j=1,...,k
p(wj |x1, . . . , xm). (2)

We use discrete variables in the Bayesian model where
continuous features are converted to discrete attribute values
using an unsupervised clustering stage based on the k-means
algorithm. The number of clusters is empirically chosen for
each feature. Clustering is used for processing continuous
features (spectral, Gabor and DEM) and discrete features
(hierarchical segmentation clusters) with the same tools. (An
alternative is to use a parametric distribution assumption,
e.g., Gaussian, for each individual continuous feature but
these parametric assumptions do not always hold.) In the
following, we describe learning of the models for p(xi|wj)
using the positive training examples for the j’th prototype
label. Learning of p(xi|¬wj) is done the same way using the
negative examples.

For a particular prototype, let each discrete variable xi have
ri possible values (states) with probabilities

p(xi = z|θi) = θiz > 0 (3)

where z ∈ {1, . . . , ri} and θi = {θiz}
ri

z=1 is the set of
parameters for the i’th attribute model. This corresponds to a
multinomial distribution. Since maximum likelihood estimates
can give unreliable results when the sample is small and the
number of parameters is large, we use the Bayes estimate of
θiz that can be computed as the expected value of the posterior
distribution.

We can choose any prior for θi in the computation of
the posterior distribution but there is a big advantage to use
conjugate priors. A conjugate prior is one which, when multi-
plied with the direct probability, gives a posterior probability
having the same functional form as the prior, thus allowing
the posterior to be used as a prior in further computations
[16]. The conjugate prior for the multinomial distribution is the

Dirichlet distribution [17]. Geiger and Heckerman [18] showed
that if all allowed states of the variables are possible (i.e.,
θiz > 0) and if certain parameter independence assumptions
hold, then a Dirichlet distribution is indeed the only possible
choice for the prior.

Given the Dirichlet prior p(θi) = Dir(θi|αi1, . . . , αiri
)

where αiz are positive constants, the posterior distribution of
θi can be computed using the Bayes rule as

p(θi|D) =
p(D|θi)p(θi)

p(D)

= Dir(θi|αi1 + Ni1, . . . , αiri
+ Niri

)

(4)

where D is the training sample and Niz is the number of cases
in D in which xi = z. Then, the Bayes estimate for θiz can
be found by taking the conditional expected value

θ̂iz = Ep(θi|D)[θiz] =
αiz + Niz

αi + Ni

(5)

where αi =
∑ri

z=1 αiz and Ni =
∑ri

z=1 Niz .
An intuitive choice for the hyper-parameters αi1, . . . , αiri

of the Dirichlet distribution is the Laplace’s uniform prior [19]
that assumes all ri states to be equally probable (αiz = 1,∀z ∈
{1, . . . , ri}) which results in the Bayes estimate

θ̂iz =
1 + Niz

ri + Ni

. (6)

Laplace’s prior was decided to be a safe choice when the
distribution of the source is unknown and the number of
possible states ri is fixed and known [20].

Given the current state of the classifier that was trained
using the prior information and the sample D, we can easily
update the parameters when new data D′ is available. The new
posterior distribution for θi becomes

p(θi|D,D′) =
p(D′|θi)p(θi|D)

p(D′|D)
. (7)

With the Dirichlet priors and the posterior distribution for
p(θi|D) given in (4), the updated posterior distribution be-
comes

p(θi|D,D′) = Dir(θi|αi1+Ni1+N ′
i1, . . . , αiri

+Niri
+N ′

iri
)

(8)
where N ′

iz is the number of cases in D′ in which xi =
z. Hence, updating the classifier parameters involves only
updating the counts in the estimates for θ̂iz . Figs. 3 and
4 illustrate learning of prototype models from positive and
negative examples.

The Bayesian classifiers that are learned as above are used
to compute probability maps for all semantic prototype labels
and assign each pixel to one of the labels using the maximum
a posteriori probability (MAP) rule. In previous work [21],
we used a region merging algorithm to convert these pixel
level classification results to contiguous region representations.
However, we also observed that this process often resulted
in large connected regions and these large regions with very
fractal shapes may not be very suitable for spatial relationship
computations.

We improved the segmentation algorithm (the second pro-
cess in Fig. 1) using mathematical morphology operators [22]
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Fig. 3. Training for the city prototype. Positive and negative examples of
city pixels in the image on the left are used to learn a Bayesian classifier that
creates the probability map shown on the right. Brighter values in the map
show pixels with high probability of being part of a city. Pixels marked with
red have probabilities above 0.9.

Fig. 4. Training for the park prototype using the process described in Fig. 3.

to automatically divide large regions into more compact sub-
regions. Given the probability maps for all labels where each
pixel is assigned either to one of the labels or to the reject
class for probabilities smaller than a threshold (latter type of
pixels are initially marked as background), the segmentation
process proceeds as follows:

1) Merge pixels with identical labels to find the initial set
of regions and mark these regions as foreground,

2) Mark regions with areas smaller than a threshold as
background using connected components analysis [22],

3) Use region growing to iteratively assign background
pixels to the foreground regions by placing a window
at each background pixel and assigning it to the label
that occurs the most in its neighborhood,

4) Find individual regions using connected components
analysis for each label,

5) For all regions, compute the erosion transform [22] and
repeat:

a) Threshold erosion transform at steps of 3 pixels in
every iteration,

b) Find connected components of the thresholded
image,

c) Select sub-regions that have an area smaller than a
threshold,

d) Dilate these sub-regions to restore the effects of
erosion,

e) Mark these sub-regions in the output image by
masking the dilation using the original image,

until no more sub-regions are found,
6) Merge the residues of previous iterations to their small-

est neighbors.
The merging and splitting process is illustrated in Fig. 5.

The probability of each region belonging to a land cover label
can be estimated by propagating class labels from pixels to
regions. Let X = {x1, . . . , xn} be the set of pixels that are
merged to form a region. Let wj and p(wj |xi) be the class
label and its posterior probability, respectively, assigned to
pixel xi by the classifier. The probability p(wj |x ∈ X ) that
a pixel in the merged region belongs to the class wj can be
computed as

p(wj |x ∈ X )

=
p(wj , x ∈ X )

p(x ∈ X )
=

p(wj , x ∈ X )
∑k

t=1 p(wt, x ∈ X )

=

∑

x∈X p(wj , x)
∑k

t=1

∑

x∈X p(wt, x)
=

∑

x∈X p(wj |x)p(x)
∑k

t=1

∑

x∈X p(wt|x)p(x)

=
Ex{Ix∈X (x)p(wj |x)}

∑k

t=1 Ex{Ix∈X (x)p(wt|x)}
=

1

n

n
∑

i=1

p(wj |xi)

(9)

where IA(·) is the indicator function associated with the set
A. Each region in the final segmentation are assigned labels
with probabilities using (9).

Fig. 6 shows example segmentations. The number of clus-
ters in k-means clustering was empirically chosen as 25 both
for spectral values and for Gabor features. The number of clus-
ters for hierarchical segmentation features was automatically
obtained as 17. The probability threshold and the minimum
area threshold in the segmentation process were set to 0.2
and 50, respectively. Bayesian classifiers successfully learned
proper combinations of features for particular prototypes. For
example, using only spectral features confused cities with
residential areas and some parks with fields. Using the same
training examples, adding Gabor features improved some
of the models but still caused some confusion around the
borders of two regions with different textures (due to the
texture window effects in Gabor computation). We observed
that, in general, micro-texture analysis algorithms like Gabor
features smooth noisy areas and become useful for modeling
neighborhoods of pixels by distinguishing areas that may have
similar spectral responses but have different spatial structures.
Finally, adding hierarchical segmentation features fixed most
of the confusions and enabled learning of accurate models
from a small set of training examples.

In a large image archive with images of different sensors
(optical, hyper-spectral, SAR, etc.), training for the prototypes
can still be done using the positive and negative examples
for each prototype label. If data from more than one sensor
is available for the same area, a single Bayes classifier does



5

(a) LANDSAT image (b) A large connected region
formed by merging pixels la-
beled as residential

(c) More compact sub-regions

Fig. 5. Region segmentation process. The iterative algorithm that uses
mathematical morphology operators is used to split a large connected region
into more compact sub-regions.

automatic fusion for a particular label as given in (1) and
described above. If different sensors are available for different
areas in the same data set, different classifiers need to be
trained for each area (one classifier for each sensor group for
each label), again using only positive and negative examples.
Once these classifiers that support different sensors for a
particular label are trained and the pixels and regions are
labeled, the rest of the processes (spatial relationships and
image classification) become independent of the sensor data
because they use only high-level semantic labels.

IV. SPATIAL RELATIONSHIPS

After the images are segmented and prototype labels are
assigned to all regions, the next step in the construction of the
visual grammar is modeling of region spatial relationships (the
third process in Fig. 1). The regions of interest are usually the
ones that are close to each other.

Representations of spatial relationships depend on the rep-
resentations of regions. We model regions by their boundaries.
Each region has an outer boundary. Regions with holes also
have inner boundaries to represent the holes. Each boundary
has a polygon representation of its boundary pixels, and a
smoothed polygon approximation, a grid approximation and
a bounding box to speed up polygon intersection operations.
In addition, each region has an id (unique within an image)
and a label that is propagated from its pixels’ class labels as
described in the previous section.

Fig. 6. Segmentation examples from the NASA data set. Images on the left
column are used to train pixel level classifiers for city, residential area, water,
park and field using positive and negative examples for each class. Then, these
pixels are combined into regions using the iterative region split-and-merge
algorithm and the pixel level class labels are propagated as labels for these
regions. Images on the right column show the resulting region boundaries and
the false color representations of their labels for the city (red), residential area
(cyan), water (blue), park (green) and field (yellow) classes.

We use fuzzy modeling of pairwise spatial relationships
between regions to describe the following high-level user
concepts:

• Perimeter-class relationships:
– disjoined: Regions are not bordering each other.
– bordering: Regions are bordering each other.
– invaded by: Smaller region is surrounded by the

larger one at around 50% of the smaller one’s
perimeter.

– surrounded by: Smaller region is almost completely
surrounded by the larger one.

• Distance-class relationships:
– near: Regions are close to each other.
– far: Regions are far from each other.

• Orientation-class relationships:
– right: First region is on the right of the second one.
– left: First region is on the left of the second one.
– above: First region is above the second one.
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Fig. 7. Spatial relationships of region pairs: disjoined, bordering, invaded by,
surrounded by, near, far, right, left, above and below.

– below: First region is below the second one.
These relationships are illustrated in Fig. 7. They are divided
into sub-groups because multiple relationships can be used to
describe a region pair at the same time, e.g., invaded by from
left, bordering from above, and near and right, etc.

To find the relationship between a pair of regions repre-
sented by their boundary polygons, we first compute

• perimeter of the first region, πi

• perimeter of the second region, πj

• common perimeter between two regions, πij , computed
as the shared boundary between two polygons

• ratio of the common perimeter to the perimeter of the
first region, rij =

πij

πi

• closest distance between the boundary polygon of the first
region and the boundary polygon of the second region,
dij

• centroid of the first region, νi

• centroid of the second region, νj

• angle between the horizontal (column) axis and the line
joining the centroids, θij

where i, j ∈ {1, . . . , n} with n being the number of regions
in the image. Then, each region pair can be assigned a degree
of their spatial relationships using the fuzzy class membership
functions given in Fig. 8.

For the perimeter-class relationships, we use the perimeter
ratios rij with trapezoid membership functions. The motiva-
tion for the choice of these functions is as follows. Two regions
are disjoined when they are not touching each other. They are
bordering each other when they have a common boundary.
When the common boundary between two regions gets closer
to 50%, the larger region starts invading the smaller one. When
the common boundary goes above 80%, the relationship is
considered an almost complete invasion, i.e., surrounding. For
the distance-class relationships, we use the perimeter ratios rij

and boundary polygon distances dij with sigmoid membership
functions. For the orientation-class relationships, we use the

angles θij with truncated cosine membership functions. Details
of the membership functions are given in [12]. Note that the
pairwise relationships are not always symmetric. Furthermore,
some relationships are stronger than others. For example,
surrounded by is stronger than invaded by, and invaded by is
stronger than bordering, e.g., the relationship “small region
invaded by large region” is preferred over the relationship
“large region bordering small region”. The class membership
functions are chosen so that only one of them is the largest
for a given set of measurements to avoid ambiguities. The
parameters of the functions given in Fig. 8 were manually
adjusted to reflect these ideas.

When an area of interest consists of multiple regions,
this area is decomposed into multiple region pairs and the
measurements defined above are computed for each of the
pairwise relationships. Then, these pairwise relationships are
combined using an attributed relational graph [22] struc-
ture. The attributed relational graph is adapted to our visual
grammar by representing regions by the graph nodes and
their spatial relationships by the edges between such nodes.
Nodes are labeled with the class (land cover) names and the
corresponding confidence values (posterior probabilities) for
these class assignments. Edges are labeled with the spatial
relationship classes (pairwise relationship names) and the
corresponding degrees (fuzzy membership values) for these
relationships.

V. IMAGE CLASSIFICATION

Image classification is defined here as a problem of as-
signing images to different classes according to the scenes
they contain (the last process in Fig. 1). The visual grammar
enables creation of high-level classes that cannot be modeled
by individual pixels or regions. Furthermore, learning of these
classes require only a few training images. We use a Bayesian
framework that learns scene classes based on automatic se-
lection of distinguishing (e.g., frequently occurring, rarely
occurring) region groups.

The input to the system is a set of training images that
contain example scenes for each class defined by the user.
Denote these classes by w1, . . . , ws. Our goal is to find
representative region groups that describe these scenes. The
system automatically learns classifiers from the training data
as follows:

1) Count the number of times each possible region group
(combinatorially formed using all possible relationships
between all possible prototype regions) is found in the
set of training images for each class. A region group of
interest is the one that is frequently found in a particular
class of scenes but rarely exists in other classes. For
each region group, this can be measured using class
separability which can be computed in terms of within-
class and between-class variances of the counts as

ς = log

(

1 +
σ2

B

σ2
W

)

(10)

where σ2
W =

∑s
i=1 vivar{zj | j ∈ wi} is the within-

class variance, vi is the number of training images for
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Fig. 8. Fuzzy membership functions for pairwise spatial relationships.

class wi, zj is the number of times this region group
is found in training image j, σ2

B = var{
∑

j∈wi
zj | i =

1, . . . , s} is the between-class variance, and var{·} de-
notes the variance of a sample.

2) Select the top t region groups with the largest class
separability values. Let x1, . . . , xt be Bernoulli random
variables1 for these region groups, where xj = T if
the region group xj is found in an image and xj = F

otherwise. Let p(xj = T ) = θj . Then, the number
of times xj is found in images from class wi has a
Binomial(vi, θj) =

(

vi

vij

)

θ
vij

j (1 − θj)
vi−vij distribution

where vij is the number of training images for wi

that contain xj . Using a Beta(1, 1) distribution as the
conjugate prior, the Bayes estimate for θj becomes

p(xj = T |wi) =
vij + 1

vi + 2
. (11)

Using a similar procedure with Multinomial distributions
and Dirichlet priors, the Bayes estimate for an image
belonging to class wi (i.e., containing the scene defined
by class wi) is computed as

p(wi) =
vi + 1

∑s

i=1 vi + s
. (12)

3) For an unknown image, search for each of the t region
groups (determine whether xj = T or xj = F, ∀j) and
assign that image to the best matching class using the
MAP rule with the conditional independence assumption
as

w∗ = arg max
wi

p(wi|x1, . . . , xt)

= arg max
wi

p(wi)

t
∏

j=1

p(xj |wi).
(13)

Classification examples from the PRISM data set that in-
cludes 299 images are given in Figs. 9–11. In these examples,
we used four training images for each of the six classes
defined as “clouds”, “residential areas with a coastline”, “tree
covered islands”, “snow covered mountains”, “fields” and
“high-altitude forests”. Commonly used statistical classifiers

1Finding a region group in an image can be modeled as a Bernoulli trial
because there are only two outcomes: the region group is either in the image
or not.

require a lot of training data to effectively compute the
spectral and textural signatures for pixels and also cannot do
classification based on high-level user concepts because of the
lack of spatial information. Rule-based classifiers also require
significant amount of user involvement every time a new class
is introduced to the system. The classes listed above provide a
challenge where a mixture of spectral, textural, elevation and
spatial information is required for correct identification of the
scenes. For example, pixel level classifiers often misclassify
clouds as snow and shadows as water. On the other hand, the
Bayesian classifier described above can successfully eliminate
most of the false alarms by first recognizing regions that
belong to cloud and shadow prototypes and then verify these
region groups according to the fact that clouds are often
accompanied by their shadows in a LANDSAT scene. Other
scene classes like residential areas with a coastline or tree
covered islands cannot be identified by pixel level or scene
level algorithms that do not use spatial information. While
quantitative comparison of results would be difficult due to
the unavailability of ground truth for high-level semantic
classes for this archive, our qualitative evaluation showed
that the visual grammar classifiers automatically learned the
distinguishing region groups that were frequently found in
particular classes of scenes but rarely existed in other classes.

VI. CONCLUSIONS

We described a visual grammar that aims to bridge the
gap between low-level features and high-level semantic inter-
pretation of images. The system uses naive Bayes classifiers
to learn models for region segmentation and classification
from automatic fusion of features, fuzzy modeling of region
spatial relationships to describe high-level user concepts, and
Bayesian classifiers to learn image classes based on automatic
selection of distinguishing (e.g., frequently occurring, rarely
occurring) relations between regions.

The visual grammar overcomes the limitations of traditional
region or scene level image analysis algorithms which assume
that the regions or scenes consist of uniform pixel feature
distributions. Furthermore, it can distinguish different interpre-
tations of two scenes with similar regions when the regions
have different spatial arrangements. The system requires only
a small amount of training data expressed as positive and
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(a) Training images for clouds

(b) Images classified as containing clouds

Fig. 9. Classification results for the “clouds” class which is automatically
modeled by the distinguishing relationships of white regions (clouds) with
their neighboring dark regions (shadows).

(a) Training images for residential areas with a coastline

(b) Images classified as containing residential areas with a coastline

Fig. 10. Classification results for the “residential areas with a coastline” class
which is automatically modeled by the distinguishing relationships of regions
containing a mixture of concrete, grass, trees and soil (residential areas) with
their neighboring blue regions (water).

negative examples for the classes defined by the user. We
demonstrated our system with classification scenarios that

(a) Training images for tree covered islands

(b) Images classified as containing tree covered islands

Fig. 11. Classification results for the “tree covered islands” class which is
automatically modeled by the distinguishing relationships of green regions
(lands covered with conifer and deciduous trees) surrounded by blue regions
(water).

could not be handled by traditional pixel, region or scene level
approaches but where the visual grammar provided accurate
and effective models.
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