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Abstract— Automatic segmentation of high-resolution remote
sensing imagery is an important problem in urban applications
because the resulting segmentations can provide valuable spatial
and structural information that are complementary to pixel-
based spectral information in classification. We present a method
that combines structural information extracted by morphological
processing with spectral information summarized using principal
components analysis to produce precise segmentations that are
also robust to noise. First, principal components are com-
puted from hyper-spectral data to obtain representative bands.
Then, candidate regions are extracted by applying connected
components analysis to the pixels selected according to their
morphological profiles computed using opening and closing by
reconstruction with increasing structuring element sizes. Next,
these regions are represented using a tree, and the most mean-
ingful ones are selected by optimizing a measure that consists of
two factors: spectral homogeneity, which is calculated in terms
of variances of spectral features, and neighborhood connectivity,
which is calculated using sizes of connected components. The
experiments show that the method is able to detect structures
in the image which are more precise and more meaningful than
the structures detected by another approach that does not make
strong use of neighborhood and spectral information.

I. INTRODUCTION

Due to the constantly increasing public availability of high-
resolution data sets, automatic content extraction and classifi-
cation on satellite images for urban applications have become
important research problems. There is an extensive literature
on classification of remotely sensed imagery where pixel level
processing has been the common choice for remote sensing
image analysis systems. However, a recent study [1] showed
that there has not been any significant improvement in the
performance of classification methodologies over the last 15
years. The main reason is that the use of only pixel level
data often does not meet the expectations as the resolution in-
creases. Even though high success rates have been published in
the literature using limited ground truth data, visual inspection
of the results can show that most of the urban structures still
cannot be delineated as accurately as expected.

Pixel-based approaches assume that similar land structures
will cluster together and behave similarly in terms of pixel
level features. However, the assumptions for distribution mod-
els often do not hold for high-resolution data. We believe
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that, in addition to pixel-based spectral data, structural in-
formation should also be used to interpret land cover and
land use. A common method for incorporating structure in-
formation into classification is through the use of regions.
This is also referred to as object-oriented classification in
the remote sensing literature. For example, Bruzzone and
Carlin [2] performed classification using the spatial context
of each pixel according to a complete hierarchical multi-
level representation of the scene. In a similar approach [3],
we obtained a multi-resolution representation using wavelet
decomposition, segmented images at each resolution, and
used region-based spectral, textural and shape features for
classification. Benediktsson et al. [4] applied morphological
operators with different structuring element sizes to obtain a
multi-scale representation of structural information, and used
neural network classifiers to label pixels according to their
morphological profiles.

In this work, our goal is to develop a segmentation algorithm
for partitioning images into spatially contiguous regions so
that the structural information can be modeled using the
properties of these regions. Most of the segmentation work in
the remote sensing literature are based on merging neighboring
pixels according to user-defined thresholds on their spectral
similarity. Proximity filtering and morphological operations
can also be used as post-processing techniques to pixel-based
classification results for segmenting regions [5]. In a related
work, Pesaresi and Benediktsson [6] performed segmentation
using morphological characteristic of pixels in the image. In
their approach, opening and closing operations with increasing
structuring element sizes were successively applied to an
image to generate morphological profiles for all pixels, and
the segment label of each pixel was assigned as the structuring
element size corresponding to the largest derivative of these
profiles. A problem with that approach is that it assumes all
the pixels in a particular structure have only one significant
derivative maximum occurring at the same structuring element
size. However, our experiments have shown that many pixels in
most structures often have more than one significant derivative
maximum. Furthermore, even though morphological profiles
are sensitive to different pixel neighborhoods, the segmenta-
tion decision is performed by evaluating pixels individually
without considering the neighborhood information.

In this paper, we present a method that uses the neighbor-
hood and spectral information as well as the morphological
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information. We first apply principal components analysis to
hyper-spectral data to obtain representative bands. Then, we
extract candidate regions on each principal component by
applying opening and closing by reconstruction operations. For
each principal component, we represent the extracted regions
by a hierarchical tree, and select the most meaningful regions
in that tree by optimizing a measure that consists of two
factors: spectral homogeneity, which is calculated in terms
of variances of multi-spectral features, and neighborhood
connectivity, which is calculated using sizes of connected
components.

The rest of the paper is organized as follows. Data and
features used are introduced in Section II. Morphological
profiles used for modeling structural information are described
in Section III. Hierarchical extraction of regions using these
profiles is proposed in Section IV. Algorithm for selecting
the most meaningful regions within the hierarchy is presented
in Section V. Experiments are discussed in Section VI and
conclusions are given in Section VII.

II. FEATURE EXTRACTION

We will illustrate our algorithms with two data sets:
1) DC Mall: HYDICE (Hyperspectral Digital Image Col-

lection Experiment) image with 1, 280× 307 pixels and
191 spectral bands corresponding to an airborne data
flightline over the Washington DC Mall area. False color
image is given in Figure 1(a).

2) Centre: DAIS (Digital Airborne Imaging Spectrometer)
and ROSIS (Reflective Optics System Imaging Spec-
trometer) data with 1, 096×715 pixels and 102 spectral
bands corresponding to the city center in Pavia, Italy.
False color image is given in Figure 2(a).

Since morphological operations have traditionally been de-
fined for single band binary or gray scale images, we apply
principal components analysis (PCA) and keep the top princi-
pal components that represent the 99% variance of the whole
data. This corresponds to the first three bands for both data
sets (shown in Figures 1(b)–1(d) and 2(b)–2(d)). Considering
the fact that different structures may appear more clearly in
different principal components, we analyze each PCA band
separately for region extraction.

III. MORPHOLOGICAL PROFILES

Morphological opening and closing operations are used to
model structural characteristics of pixel neighborhoods. These
operations are applied using increasing structuring element
sizes to generate multi-scale characteristics called morphologi-
cal profiles. The derivative of the morphological profile (DMP)
is defined as a vector where the measure of the slope of the
opening-closing profile is stored for every step of an increasing
SE series [6].

In their segmentation scheme, Pesaresi and Benediktsson [6]
define an image segment as a set of connected pixels showing
the greatest value of the DMP for the same SE size. That is,
the segment label of each pixel is assigned according to the
SE size corresponding to the largest derivative of its profiles.

(a) False color (b) 1st PCA band (c) 2nd PCA band (d) 3rd PCA band

Fig. 1. False color image (generated using the bands 63, 52 and 36) and the
PCA bands of the DC Mall data set.

Their scheme works well in images where the structures in the
image are mostly flat so that all pixels in a structure have only
one derivative maximum. A drawback of this scheme is that
neighborhood information is not used while assigning segment
labels to pixels. This results in lots of small noisy segments in
images with non-flat structures where the scale with the largest
value of the DMP may not correspond to the true structure
(see Figure 3 for an illustration). In our approach, we do not
consider pixels alone while assigning segment labels. Instead,
we also take into account the behavior of the neighbors of the
pixels.

IV. HIERARCHICAL REGION EXTRACTION

Morphological opening and closing operations are known
to isolate structures that are brighter and darker than their
surroundings, respectively. Contrary to opening (respectively,
closing), opening by reconstruction (respectively, closing by
reconstruction) preserves the shape of the structures that are
not removed by erosion (respectively, dilation). In other words,
image structures that the SE cannot be contained are removed
while others remain.

In our segmentation approach, our aim is to determine the
regions by applying opening and closing by reconstruction
operations. We assume that pixels with a positive DMP value
at a particular SE size face a change with respect to their
neighborhoods at that scale. The main idea is that a neighbor-
ing group of pixels that have a similar change for a particular
SE size is a candidate region for the final segmentation.
These groups can be found by applying connected components
analysis to the DMP at each scale. The connected components
whose average DMP values are greater than 0.5 and the
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Fig. 2. False color image (generated using the bands 68, 30 and 2) and the
PCA bands of the Centre data set. (A missing vertical section in the middle
was removed.)

numbers of pixels are greater than 10 are considered in the
rest of the analysis.

Considering the fact that different structures have different
sizes, we apply opening and closing by reconstruction using
SEs in increasing sizes from 1 to m. However, a connected
component appearing for a small SE size may be appearing be-
cause heterogeneity and geometrical complexity of the scenes
as well as other external effects such as shadows produce
texture effects in images and result in structures that can be
one to two pixels wide [6]. In this case, there is most probably
a larger connected component appearing at the scale of a larger
SE and to which the pixels of those noise components belong.
On the other hand, a connected component that corresponds
to a true structure in the final segmentation may also appear
as part of another component at larger SE sizes. The reason
is that a meaningful connected component may start merging
with its surroundings and other connected components after
the SE size in which it appears is reached. Figure 4 illustrates
these cases.
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Fig. 3. The greatest value in the DMP of the pixel marked with a blue + in
(b) is obtained for SE size 2 (derivative of the opening profile of the 3rd PCA
band is shown in (a)). (c) shows the region that we would obtain if we label
the pixels with the SE size corresponding to the greatest DMP. The region in
(d) that occurs with SE size 3 is more preferable as a complete structure but
it does not correspond to the scale of the greatest DMP for all pixels inside
the region.

(a) False color image (b) A small connected component
that is part of (c)
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(d) A large connected component
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others

Fig. 4. Example connected components for a building structure. These
components appear for SE sizes 3, 5 and 6, respectively, in the derivative
of the opening profile of the 2nd PCA band.
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Fig. 5. Example connected components appearing for SE sizes from 2 to 10
in the derivative of the opening profile of the 3rd PCA band. These regions are
contained within each other in a hierarchical manner. Note that the components
do not change in some of the scales.
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Fig. 6. An example tree. Node i j is a connected component that exists for
SE size i. j denotes the sequence number of the node from left to right in
level i.

Through increasing SE sizes from 1 to m, each morphologi-
cal operation reveals connected components that are contained
within each other in a hierarchical manner where a pixel
may be assigned to more than one connected component
appearing at different SE sizes (see Figure 5). We treat each
component as a candidate meaningful region. Using these
candidate regions, a tree is constructed where each connected
component is a node and there is an edge between two nodes
corresponding to two consecutive scales (SE sizes differ by 1)
if one node is contained within the other. Leaf nodes represent
the components that appear for SE size 1. Root nodes represent
the components that exist for SE size m. Since we use a finite
number of SE sizes, there may be more than one root node. In
this case, there will be more than one tree and the algorithms
described in the next section are run on each tree separately.

Figure 6 shows an example tree where the nodes are labeled
as i j with i denoting the node’s level and j denotes the
number of the node from left to right in level i. For example,
node 3 3 has two children nodes 2 4 and 2 5, and its parent
is node 4 1. The reason of node 2 3 having only one child
may be that either no new connected component appears in
level 2 or node 2 3 is formed by merging of node 1 4 with
its surrounding pixels that are not included in any connected
component in level 1. The same reasons also hold for node
3 2.

V. REGION SELECTION

After forming the tree, our aim is to search for the most
meaningful connected components among those appearing
at different SE sizes in the segmentation hierarchy. With a
similar motivation in [7], Tilton analyzed hierarchical image
segmentations and selected the meaningful regions manually.
Then, Plaza and Tilton [8] investigated how different spectral,
spatial and joint spectral/spatial features of regions change
from one level to another in a segmentation hierarchy with
the goal of automating the selection process in the future. In
this paper, each node in the tree is treated as a candidate region
in the final segmentation, and selection is done automatically
as described below.

Ideally, we expect a meaningful region to be as homoge-
neous as possible. However, in the extreme case, a single
pixel is the most homogeneous. Hence, we also want a region
to be as large as possible. In general, a region stays almost
the same (both in homogeneity and size) for some number
of SEs, and then faces a large change at a particular scale
either because it merges with its surroundings to make a
new structure or because it is completely lost. Consequently,
the size we are interested in corresponds to the scale right
before this change. In other words, if the nodes on a path in
the tree stay homogeneous until some node n, and then the
homogeneity is lost in the next level, we say that n corresponds
to a meaningful region in the hierarchy.

With this motivation, to check the meaningfulness of a
node, we define a measure consisting of two factors: spectral
homogeneity, which is calculated in terms of variances of
spectral features, and neighborhood connectivity, which is
calculated using sizes of connected components. Then, starting
from the leaf nodes (level 1) up to the root node (level m),
we compute this measure at each node and select a node as
a meaningful region if it is the most homogeneous and large
enough node on its path in the hierarchy (a path corresponds
to the set of nodes from a leaf to the root).

In order to calculate the homogeneity factor in a node, we
use the fact that pixels in a correct structure should have not
only similar morphological profiles, but also similar spectral
features. Thus, we calculate the homogeneity of a node as the
standard deviation of the spectral information of the pixels in
the corresponding region where the spectral information of a
pixel consists of the PCA components representing the 99%
variance of the whole data. However, while examining a node
from the leaf up to the root in terms of homogeneity, we do
not use the standard deviation of the node directly. Instead,
we consider the difference of the standard deviation of that
node and its parent. What we expect is a sudden increase in
the standard deviation. When the standard deviation does not
change much, it usually means that small sets of pixels are
added to the region or some noise pixels are cleaned. When
there is a large change, it means that the structure merged
with a larger structure or it merged with other irrelevant pixels
disturbing the homogeneity in the node. Hence, the difference
of the standard deviation in the node’s parent and the standard



deviation in the node should be maximized while selecting the
most meaningful nodes.

As discussed above, using only the homogeneity factor will
favor small structures. To overcome this problem, the number
of pixels in the region corresponding to the node is introduced
as another factor to create a trade-off. As a result, the goodness
measure M for a node n is defined as

M(n) = D(n, parent(n))× C(n) (1)

where the first term is the standard deviation difference be-
tween the node’s parent and itself, and the second term is
the number of pixels in the node. The node that is relatively
homogeneous and large enough will maximize this measure
and will be selected as a meaningful region.

Given the value of the goodness measure for each node, we
find the most meaningful regions as follows. Suppose T =
(N,E) is the tree with N as the set of nodes and E as the set
of edges. The leaf nodes are in level 1 and the root node is at
level m. Let P denote the set of all paths from the leaves to
the root, and M(n) denote the measure at node n. We select
N∗ ⊆ N as the final segmentation such that

1) ∀a, b ∈ N∗,
∀p ∈ P : a ∈ p → b /∈ p,
∀p ∈ P : b ∈ p → a /∈ p,

2) ∀a ∈ N∗,∀n ∈ N,
∃p ∈ P : a ∈ p ∧ n ∈ p → M(a) ≥ M(n).

The first condition requires that any two nodes in N∗ cannot
be on the same path (i.e., the corresponding regions cannot
overlap). The second condition requires that any node in N∗

must have the greatest measure on the paths it is included.
We use a two-pass algorithm for selecting the most mean-

ingful nodes (N∗) in the tree. The bottom-up (first) pass aims
to find the nodes whose measure is greater than all of its
descendants. The algorithm first marks all nodes in level 1.
Then, starting from level 2 up to the root level, it checks
whether each node in each level has a measure greater than or
equal to those of all of its children. The greatest measure, seen
so far in each path, is propagated to upper levels so that it is
enough to check only the children, rather than all descendants,
in order to find whether a node’s measure is greater than or
equal to all of its descendants’.

After the bottom-up pass marks all such nodes, the top-
down (second) pass seeks to select the nodes whose measure
is the greatest on each of their corresponding paths. It starts
by marking all nodes as selected in the root level if they are
marked by the bottom-up pass. Then, in each level until the
leaf level, the algorithm checks for each node whether it is
marked in the bottom-up pass while none of its ancestors
is marked. If this condition is satisfied, it marks the node
as selected if its measure is greater than those of all of its
ancestors. For that purpose, we again propagate the greatest
measure, seen so far in each path, to lower levels. Finally, the
algorithm selects the nodes that are marked as selected in each
level as meaningful regions.

VI. EXPERIMENTS

We applied the proposed region selection algorithm to both
data sets. The tree structure was constructed for each PCA
band separately and the regions were selected from each
tree individually. Figures 7 and 8 show example segmenta-
tion results for DC Mall and Centre data sets, respectively.
Structuring element sizes from 1 to 10 were used for both
opening and closing profiles for both data sets. We present
the zoomed versions of the results for several example areas
to better illustrate the details for high-resolution imagery and
for clarity of the presentation on paper. The results obtained
by the algorithm in [6] are also given for the same areas.

The results show that our segmentation algorithm usually
finds structures as a whole but the method of [6] often
oversegments them and produces small regions. These small
regions occur because the segment label assignment is done
for each pixel individually by only considering the greatest
value in its DMP. Thus, noisy pixels that are different from
their neighborhoods may produce small regions because they
may have large values occurring at scales corresponding to
small SE sizes. However, our algorithm considers both the
morphological characteristics encoded in the DMP and the
spectral information measured in terms of the standard devia-
tion within contiguous groups of pixels. It also considers the
consistency of these values within neighboring pixels forming
large connected components. As a result, the combined mea-
sure that uses both spectral and neighborhood information is
both robust to noise and consistent within detailed structures in
high-resolution images. In all of the examples, our algorithm
is able to extract many meaningful regions as whole segments.

Another important observation is that different structures
are extracted more clearly in different principal components.
For example, the structures in both Figures 7(a) and 7(b) are
found in the second PCA band of the DC Mall data set like
many other buildings. The structures in both Figures 8(a) and
8(c) are found in the third PCA band of the Centre data set but
the structures in Figure 8(b) are found in the first PCA band.
The reason that a particular structure being extracted better
in a particular PCA band is that the pixels belonging to that
structure are found lighter or darker than their surroundings
on that PCA band. This motivates an important future work
on merging the results from individual PCA bands as a final
segmentation for an image. As a final note, we also observed
that the texture effects produced by vegetation in some of the
PCA bands result in small regions in those areas. We will
investigate additional multi-spectral features (e.g., NDVI) to
improve the segmentation for such regions.

VII. CONCLUSIONS

We described a method for segmentation of urban structures
in high-resolution images. The first step was to extract struc-
tural information using morphological opening and closing
by reconstruction operators. Principal components analysis
bands were used to summarize hyper-spectral data and the
morphological operators were applied to each band separately.
Then, candidate regions were extracted by applying connected



(a)
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Fig. 7. Example segmentation results for the DC Mall data set. The left
image shows the false color representation, the middle one shows the result
of the algorithm in [6], and the right one shows the result of the proposed
approach.

components analysis to the pixels selected according to their
morphological profiles obtained using increasing structuring
element sizes. Next, these regions were represented using a
tree, and the most meaningful ones were selected by op-
timizing a measure that consisted of two factors: spectral
homogeneity, which was calculated in terms of variances of
spectral features, and neighborhood connectivity, which was
calculated using sizes of connected components.

We evaluated the proposed approach on two data sets. The
experiments showed that our method that considers morpho-
logical characteristics, spectral information, and their consis-
tency within neighboring pixels is able to detect structures in
the image which are more precise and more meaningful than
the structures detected by another approach that does not make
strong use of neighborhood and spectral information.
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Fig. 8. Example segmentation results for the Centre data set. The left image
shows the false color representation, the middle one shows the result of the
algorithm in [6], and the right one shows the result of the proposed approach.
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