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Texture has been one of the most popular representations in image retrieval. Our
image database retrieval system uses two sets of textural features, first one being
the line-angle-ratio statistics which is a macro texture measure that uses a texture
histogram computed from the spatial relationships of intersecting lines as well as
the properties of their surroundings, second one being the variances of gray level
spatial dependencies computed from co-occurrence matrices as micro texture mea-
sures. This paper also discusses a line selection algorithm to eliminate insignificant
lines and statistical feature selection methods to select the best performing subset
of features to adjust the parameters of the feature extraction algorithms. Average
precision is used to evaluate the retrieval performance in comparative tests with
three other texture analysis algorithms. Experiments on a database of approxi-
mately 10,000 images show that low-level textural features can help in grouping
images into semantically meaningful categories and our method is fast and effective
with an average precision of 0.73 when 12 images are retrieved.

1 Introduction

Texture has been one of the most important characteristics which have been
used to classify and recognize objects and scenes. Haralick and Shapiro 16

defined texture as the uniformity, density, coarseness, roughness, regularity,
intensity and directionality of discrete tonal features and their spatial relation-
ships. Haralick 14 gave a review of two main approaches to characterize and
measure texture: statistical approaches and structural approaches. A recent
texture survey was done by Tuceryan and Jain, 30 where texture models were
classified into statistical methods, geometrical methods, model-based methods
and signal processing methods.

Image databases are becoming increasingly popular due to the large
amount of images that are generated by various applications and the ad-
vances in computer technology. Initial work on content-based retrieval fo-
cused on using low-level features like color and texture. One of the first
systems that used texture in finding similarities between images is the IBM’s
QBIC Project, where Flickner et al. 12 used features based on coarseness,
contrast, and directionality that were proposed by Tamura et al. 29 In the
MIT Photobook Project, Pentland et al. 27 used 2-D Wold-based decompo-
sitions 22 as texture descriptions. In the Los Alamos National Lab.’s CAN-
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DID Project, Kelly et al. 19 used Laws’ texture energy maps and a sum of
weighted Gaussians to model the texture. Manjunath and Ma 24 used Gabor
filter-based multi-resolution representations to extract texture information.
Li and Castelli 20 used 21 different spatial features like gray level differences,
co-occurrence matrices, moments, autocorrelation functions and fractals on
remote sensing images. Smith 28 used energies of the quadrature mirror filter
wavelet filter bank outputs at different resolutions as textural features. The
main disadvantages of these approaches are that they are either ineffective
when a large database of images with non-homogeneous textures are used, or
require a lot of computation.

More recent approaches by Carson et al. 7 and Ma and Manjunath 23 de-
veloped region-based query systems which involve image segmentation based
on color and texture but the region segmentation algorithms are still too slow
to be used in an image retrieval application. Even though there have been
further approaches that use post-processing methods like relevance feedback
to improve retrieval accuracy, these methods still depend heavily on the fea-
ture representations and therefore it is crucial to improve the low-level feature
extraction algorithms to improve overall retrieval.

In this paper we attempt to improve retrieval efficiency using easy-to-
compute low-level features that combine macro and micro aspects of the tex-
ture in the image. The first set of texture features are the line-angle-ratio
statistics. These are macro texture measures that use spatial relationships
between lines as well as the properties of their surroundings. A statistical
line selection algorithm to eliminate insignificant lines is part of the method.
The second set of texture features consist of the variances of gray level spatial
dependencies. These are micro texture measures that use second-order (co-
occurrence) statistics of gray levels of pixels in particular spatial relationships.
Both sets of features are integrated for a multi-scale texture analysis which is
crucial for a compact representation, especially for large databases containing
different types of complex images.

We use a two-class pattern classification approach to find statistical mea-
sures of how well some of the features perform better than others to avoid
having less significant or even redundant features that increase computation
but contribute very little in the decision process. Retrieval performance is
evaluated using average precision computed for the manually groundtruthed
data set.

The rest of the paper is organized as follows. First, the textural features
are presented in Sections 2, 3 and 4. Then, feature selection methods are
described in Section 5. Experiments and results are discussed in Section 6.
Finally, conclusions are given in Section 7.
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2 Line-Angle-Ratio Statistics

Experiments on various types of images showed us that one of the strongest
spatial features of an image is its line segments. Edge and line information
have been extensively used in both very early and recent approaches to tex-
ture. Our algorithm is composed of two stages; pre-processing and texture
histogram generation.

2.1 Pre-processing

Each image is processed by Canny’s edge detector, 6 Etemadi’s edge linker, 11

a line selection operator and a line grouping operator to detect line pairs to
associate with it a set of feature records. Edge detection followed by line
detection often results in many false alarms. It is especially hard to select
proper parameters for these operators if one does not have groundtruth in-
formation as training data. After line detection, we use hypothesis testing to
eliminate lines that do not have significant difference between the gray level
distributions in the regions on their right and left.

The algorithm we developed for line selection is given as follows. Let the
set of N gray levels x1, x2, . . . , xN be considered as iid N(µx, σ

2
x) samples from

the region to the right of a line and the set of M gray levels y1, y2, . . . , yM be
considered as iid N(µy, σ

2
y) samples from the region to the left of that line.

Define

x̄ =
1

N

N
∑

n=1

xn ∼ N

(

µx,
σ2x
N

)

and

ȳ =
1

M

M
∑

m=1

ym ∼ N

(

µy,
σ2y
M

)

.

Then the random variable z = x̄− ȳ has a distribution

N(µz, σ
2
z) = N

(

µx − µy,
σ2x
N

+
σ2y
M

)

.

Define the null hypothesis as H0 : µx = µy andσx = σy which means
both sets of gray levels come from the same distribution, and the alternative
hypothesis as H1 : µx 6= µy andσx 6= σy. To form the test statistic, define two
random variables A and B as

A =

(

z − µz
σz

)2

∼ χ21 (1)
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and

B =
1

N − 1

N
∑

n=1

(

x− x̄

σx

)2

+
1

M − 1

M
∑

m=1

(

y − ȳ

σy

)2

∼ χ2N+M−2. (2)

Then, define the test statistic F = A/1
B/(N+M−2) which, under the null hypoth-

esis, becomes

F =
z2 (N+M−2)

( 1
N+

1
M )

1
(N−1)

∑N
n=1(x− x̄)2 + 1

(M−1)

∑M
m=1(y − ȳ)2

∼ F1,N+M−2. (3)

Given a threshold for the F -value, if the null hypothesis H0 is true, the line
is rejected, if the alternative hypothesis H1 is true, the line is accepted as a
significant one.

After obtaining relatively significant lines, we use a line grouping oper-
ator to find intersecting and/or near-intersecting line pairs. We allow near-
intersection instead of exact end-point intersection because of the perturbation
due to noise.

Given two lines L1 and L2 with end-points (P1, P2) = ([r1 c1]
′, [r2 c2]

′)
and (P3, P4) = ([r3 c3]

′, [r4 c4]
′) respectively, equations of them can be written

as

L1 : P = P1 + λ1(P2 − P1), (4)

L2 : P = P3 + λ2(P4 − P3) (5)

where λ1 and λ2 are real constants between 0 and 1. The following conditions
should be satisfied for intersection:

r1 + λ1(r2 − r1) = r3 + λ2(r4 − r3), (6)

c1 + λ1(c2 − c1) = c3 + λ2(c4 − c3). (7)

If (r4 − r3)(c2 − c1) = (r2 − r1)(c4 − c3), lines L1 and L2 are parallel.
If also (r2 − r1)(c3 − c1) = (r3 − r1)(c2 − c1), end-points P1, P2, P3, P4 are
co-linear. If neither of these cases are true, λ1 and λ2 can be derived from
Eq. (6) and (7) as

λ2 =
(r2 − r1)(c3 − c1)− (r3 − r1)(c2 − c1)

(r4 − r3)(c2 − c1)− (r2 − r1)(c4 − c3)
(8)
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and

λ1 =
r3 − r1
r2 − r1

+ λ2
r4 − r3
r2 − r1

if r1 6= r2

or

=
c3 − c1
c2 − c1

+ λ2
c4 − c3
c2 − c1

if c1 6= c2.

(9)

We define Tol as the tolerance, in number of pixels, for the end points
of the lines to intersect. We need to define this tolerance to allow near-
intersection instead of exact end-point intersection. To determine the toler-
ances for λ1 and λ2, two new tolerances τ1 and τ2 can be defined as

τ1 =
Tol

||P2P1||
and τ2 =

Tol

||P4P3||
. (10)

If τ1 ≤ λ1 ≤ 1 − τ1 and τ2 ≤ λ2 ≤ 1 − τ2, two lines cross each other, if
(τ1 ≤ λ1 ≤ 1 − τ1 and (|λ2| < τ2 or |λ2 − 1| < τ2)) or (τ2 ≤ λ2 ≤
1− τ2 and (|λ1| < τ1 or |λ1− 1| < τ1)), two lines have a T-like intersection,
and if (|λ1| < τ1 or |λ1 − 1| < τ1) and (|λ2| < τ2 or |λ2 − 1| < τ2), two lines
intersect at the end-points within the given tolerance. Then, the intersection
point [r c]′ can be found by substituting λ1 into the Eq. (4) as

[

r
c

]

=

[

r1
c1

]

+ λ1

[

r2 − r1
c2 − c1

]

. (11)

Examples for the pre-processing steps are given in Figure 1.

2.2 Texture Histogram

The features for each pair of intersecting line segments consist of the angle
between two lines and the ratio of mean gray level inside the region spanned
by that angle to the mean gray level outside that region. Angle values are in
the range [0◦, 180◦]. An example for region convention is given in Figure 2.
Since the possible range of ratio values is infinite, we restrict them to the
range [0, 1) by taking the reciprocal if the inner region is brighter than the
outer region.

The final features form a two-dimensional space of angles and the cor-
responding ratios, which is then partitioned into a fixed set of Q cells. The
feature vector for each image is designed to be the Q-dimensional vector which
has for its q’th component the number of angle-ratio pairs that fall into that
q’th cell. As can be seen in Figure 3(a), these features do not have a uniform
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(a) Grayscale image. (b) Extracted lines after line detection
operator.

(c) Accepted lines after line selection op-
erator.

(d) Resulting lines after line grouping op-
erator.

Figure 1. Line selection and grouping pre-processing steps.

distribution so we use vector quantization 21 to form the Q-cell partition. Re-
sulting partitions and their centroids for an example of 20 cells are given in
Figure 3(b).

3 Variances of Gray Level Spatial Dependencies

Structural approaches to texture analysis use the idea that texture is com-
posed of primitives with different properties appearing in particular spatial
arrangements. On the other hand, statistical approaches try to model texture
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(a) Pairs of intersecting lines. (b) Regions used for mean cal-
culation.

Figure 2. Examples of region convention for mean ratio calculation. Light and dark shaded
regions show the in and out regions respectively.
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(a) Distribution of the training samples.
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(b) Resulting partitions for 20 quantiza-
tion cells.

Figure 3. Line-Angle-Ratio feature space distribution and centroids of the resulting parti-
tions.

using statistical distributions either in the spatial domain or in a transform
domain. One way to combine these two approaches is to define texture as
being specified by the statistical distribution of the properties of different
textural primitives occurring at different spatial relationships.

This information can be summarized in two-dimensional co-occurrence
matrices that are matrices of relative frequencies P (i, j; d, θ) with which two
pixels separated by distance d at orientation θ occur in the image, one with
gray level i and the other with gray level j. These matrices are symmetric
and can be normalized by dividing each entry in a matrix by the number of
neighboring pixels used in computing that matrix.

The initial work on co-occurrence matrices 15 and some comparative stud-
ies 10,26 showed that gray level spatial dependency matrices were very success-
ful in discriminating images with relatively homogeneous textures. Weszka et
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al. 31 discussed that if a texture is coarse and the distance d used to compute
the co-occurrence matrix is small compared to the sizes of the texture ele-
ments, pairs of pixels at separation d should usually have similar gray levels.
This means that high values in the matrix P (i, j; d, θ) should be concentrated
on or near its main diagonal. Conversely, for a fine texture, if d is compara-
ble to the texture element size, then the gray levels of points separated by d
should often be quite different, so that values in P (i, j; d, θ) should be spread
out relatively uniformly. Similarly, if a texture is directional, i.e. coarser in
one direction than another, the degree of spread of the values about the main
diagonal in P (i, j; d, θ) should vary with the orientation θ. Thus texture di-
rectionality can be analyzed by comparing spread measures of P (i, j; d, θ) for
various orientations. Example co-occurrence matrices are given in Figure 4.

Co-occurrence matrices

(a,d) = (0,2)

(a,d) = (0,4)(a,d) = (0,3)

(a,d) = (0,1)

(a,d) = (orientation,distance)

Grayscale image

(a) Co-occurrence matrices for an image with
a small amount of local spatial variations.

(a,d) = (0,2)(a,d) = (0,1)

(a,d) = (0,3)
Co-occurrence matrices

Grayscale image

(a,d) = (0,4)

(a,d) = (orientation,distance)

(b) Co-occurrence matrices for an image
with a large amount of local spatial varia-
tions.

Figure 4. Example co-occurrence matrices.

3.1 Pre-processing

Before computing co-occurrence matrices we use equal probability quantiza-
tion 15 to make the features invariant to distortions resulting in monotonic
gray level transformations. We use 64 quantization levels (Ng) which per-
formed the best among 16, 32 and 64 levels in terms of “total cost” that will
be defined in Section 5. In the literature, usually a small number of levels were
used because the images under consideration usually contained homogeneous
textures, but our images are much more complex than those images and a
small number of levels causes significant information loss.
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3.2 Co-occurrence Variance

In order to use the information contained in the gray level co-occurrence ma-
trices, Haralick et al. 15 defined 14 statistical measures. Since many distances
and orientations result in a large amount of computation, we decided to use
only the variance 3

v(d, θ) =

Ng−1
∑

i=0

Ng−1
∑

j=0

(i− j)2P (i, j; d, θ) (12)

which is a difference moment of P and measures the contrast in the image. It
will have a large value for images which have a large amount of local spatial
variation in gray levels and a smaller value for images with spatially uni-
form gray level distributions. Gotlieb and Kreyszig 13 used heuristic selection
methods to select the best subset of features for co-occurrence matrices and
found out that the variance feature performed the best.

4 Multi-Scale Texture Analysis

Line-angle-ratio features capture the global spatial organization in an image
by using relative orientations of lines extracted from it; therefore, they can
be regarded as a macro-texture measure but are not effective if the image
does not have any line content. On the other hand, co-occurrence variances
capture local spatial variations of gray levels in the image; therefore, they are
effective if the image is dominated by a fine, coarse, directional, or repetitive
texture and can be regarded as a micro-texture measure. Another important
difference is that line-angle-ratio features are invariant to rotation because
they use relative orientations. On the contrary, co-occurrence variances are
not rotation invariant because they are angularly dependent. If one also wants
rotation invariance for these features, the feature vector can be modified by
averaging the feature values for each distance over all orientations. 15

In order to approximately equalize ranges of the features and make them
have approximately the same effect in the computation of similarity, each
component x in the feature vector is normalized as y = Fx(x), where Fx(·)
is the cumulative distribution function of that component. This makes y
a random variable uniformly distributed in the [0, 1] interval. Then, both
feature vectors are appended to form the final vector. In the rest of the paper
size of a feature vector will be denoted by Q.
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5 Feature Selection

In a content-based retrieval system, features that are used to represent images
should have close values for similar images and significantly different values
for dissimilar ones. In many complex feature extraction algorithms, there
are many parameters that, when varied, result in a large number of possible
feature measurements. These high dimensional feature spaces may cause a
problem of having less significant or even redundant features that contribute
very little in the decision process.

Most of the times this feature selection process is done heuristically. For-
mal methods from the statistical pattern recognition literature include algo-
rithms to form a new set of features from a set of available ones either by
selecting a subset or by combining them into new features. 9,32,25,17 Only a
few researchers 27,24,7 presented feature selection algorithms in their papers
on database retrieval. Manjunath and Ma 24 used the total spectral energy to
select among many possible Gabor filters and Carson et al. 7 used the mini-
mum description length principle to select the number of Gaussians that best
model the feature space.

We use a two-class pattern classification approach to find statistical mea-
sures of how well some of the features perform better than others. In doing
so, we define two classes, the relevance class A and the irrelevance class B, in
order to classify image pairs as similar or dissimilar. Assume that we are given
two sets of image pairs for the relevance and irrelevance classes respectively. 4,2

Differences of feature vectors for each image pair are assumed to have a normal
distribution and sample means µA and µB and sample covariance matrices ΣA

and ΣB are estimated using the training data. According to our experiments,
the line-angle-ratio feature differences follow double-exponential distributions
and the co-occurrence feature differences follow normal distributions.5 Mod-
eling the joint feature differences using a multivariate normal density worked
better than using independently fitted double-exponentials or normals because
of the covariance matrix that captures the correlation between features.

5.1 Classification Tests

Given a groundtruth image pair (n,m) with Q-dimensional feature vectors
x(n) and y(m) respectively, first the difference d = x(n) − y(m) is com-
puted. From Bayes’ law, the probability that these images are relevant
is P (A|d) = P (d|A)P (A)/P (d) and that they are irrelevant is P (B|d) =
P (d|B)P (B)/P (d).

The image pair is assigned to the relevance class if P (A|d) > P (B|d), and
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to the irrelevance class otherwise. This can be written as

Assign to A if
P (A|d)

P (B|d)
> 1. (13)

Assuming that both classes are equally likely, (13) becomes the likelihood
ratio

P (d|A)

P (d|B)
=
P (d|µA,ΣA)

P (d|µB,ΣB)

=

1
(2π)Q/2|ΣA|1/2 e

−(d−µA)
′Σ−1
A
(d−µA)/2

1
(2π)Q/2|ΣB|1/2 e

−(d−µB)′Σ
−1
B
(d−µB)/2

> 1.

(14)

After taking the natural logarithm of (14) and eliminating some constants,
we obtain

(d− µA)
′Σ−1

A (d− µA)/2 < (d− µB)
′Σ−1

B (d− µB)/2 + ln
|ΣB|

1/2

|ΣA|1/2
. (15)

Therefore, if the difference d of the feature vectors of two images satisfy the
inequality in (15), this image pair is assigned to the relevance class, otherwise
it is assigned to the irrelevance class.

5.2 Experimental Set-up

Suitable measures for the classification performance are misdetection and false
alarm. In content-based retrieval we are more concerned with misdetection
because we want to retrieve all the images similar to the query image. False
alarm rate is also important because the purpose of querying a database is
to retrieve similar images only, not all of them. We define total cost as 3
misdetection and 2 false alarm and use it as the criterion for “goodness”, i.e.
if a subset of features has a small total cost compared to others, it is called
“good”.

If the dimension of the feature space is large, it is computationally too
expensive to do classification tests using all possible subsets of the features. In
our work, first, we do tests using only one of the features at a time. The second
test, which shrinks down feature sets, is done by first computing the total cost
using all Q features. The feature with the worst total cost is discarded and
the total cost using the remaining Q-1 features is computed. Then, the worst
feature among the remaining Q-1 features is discarded and this procedure
continues until one feature is left. A third test, which builds up feature sets,
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is done by starting with the total cost for each individual feature and selecting
the best one. Given this best one, pairs of features are formed using one of the
remaining features and this best feature. Total cost is computed for each pair
and the one having the smallest cost is selected. Given the best two features,
next, triplets of features are formed using one of the remaining features and
these two best features. This procedure continues until all or a preselected
number of features are used. These tests do not guarantee the optimal subset
of features is found but they allow us to select a suboptimal subset without
doing an exhaustive search.

6 Experiments and Results

6.1 Feature Selection

The images in our database come from the Fort Hood Data 1 of the RADIUS
Project and also from the LANDSAT and Defense Meteorological Satellite
Program (DMSP) Satellites. The RADIUS images consist of visible light
aerial images of the Fort Hood area in Texas, USA. The LANDSAT images
are from a remote sensing image collection. The test database for feature
selection contains 10,410 256× 256 images with a total of 38,240 groundtruth
image pairs. Therefore, experiments for each parameter combination tested
consist of classifying approximately 38,000 image pairs.
Line-Angle-Ratio Statistics:

The goal of these feature selection tests is to select the quantizer that
performs the best. In order to reduce the search space, we consider only 15,
20 and 25 as the possible number of quantization cells. The quantizer with
15 cells resulted in a total cost of 30.20% whereas quantizers with 20 and 25
cells had 30.05% and 30.22% total costs respectively. As a result, we decided
to use the quantizer with 20 cells.
Co-occurrence Variances:

The goal of our feature selection tests is to select the set of distances,
among distances of 1 to 20 pixels, that perform the best according to the
classification criteria. Each distance considered here is a combination of four
features which correspond to variances computed at 0, 45, 90 and 135 degree
orientations for that distance.

Results of the feature selection tests are given in Figure 5. In the experi-
ments, building up feature sets decreased the total cost faster than shrinking
down the set of all features. Another observation was that after using approx-
imately 2 or 3 distances, total cost did not decrease much. As a result, using
the distances 1 and 20 together had the minimum total cost of 29.36% among
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all the possible combinations of 2 distances. This resulted in an 8-dimensional
feature vector.

When we consider the Remote Sensing Dataset and the Fort Hood Dataset
separately, smaller distances resulted in smaller total costs for Remote Sensing
images, while smaller total costs were obtained using large distances for Fort
Hood images. This is consistent with the results of Weszka et al. 31 who
stated that co-occurrence matrices computed for small distances performed
better for a LANDSAT dataset. We believe that the reason for this is the
strong micro-scale texture information in Remote Sensing images in contrast
to larger structures in the Fort Hood images.

Although these feature selection tests do not guarantee to have an optimal
solution, they resulted in a suboptimal one in 1,560 classification tests without
using exhaustive search which would then require 220 − 1 classification tests.

6.2 Retrieval Performance

Two traditional measures for retrieval performance in the information retrieval
literature are precision and recall. Precision is defined as the percentage
of retrieved images that are actually relevant and recall is defined as the
percentage of relevant images that are retrieved. For these tests, we randomly
selected 340 images from the total of 10,410 and formed a groundtruth of 7
categories; parking lots, roads, residential areas, landscapes, LANDSAT USA,
DMSP North Pole and LANDSAT Chernobyl. Likelihood values 2 which
were derived from Eq. (15) were used to rank the database images. Average
precision was used to evaluate the retrieval performance.

For comparison, UCSB’s Gabor texture features, 24 IBM’s QBIC tex-
ture features 12 and TUT’s moments texture features 8 were also tested with
Euclidean distance as the distance measure. Gabor features result in a 60-
dimensional vector of means and variances of the image values filtered by a
Gabor filter bank of 5 scales and 6 orientations. QBIC features result in a
4-dimensional vector of coarseness, contrast, directionality and orientation.
Moments features result in a 36-dimensional vector of the means, variances,
medians and absolute median deviations of the image values filtered by mo-
ment filters of up to 3rd order (which makes 9 2-dimensional filters).

Precision averaged over all 340 images when 12 images were retrieved
was 0.73, 0.83, 0.48, and 0.51 for the ISL features, Gabor features, QBIC
features, and moments features respectively. In most of the groundtruth
groups, our features performed similarly to the Gabor features and both of
them always performed significantly better than both QBIC and moments
features. Figure 6 shows the average precision for some of the groundtruth
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(a) Type 1 tests.
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(b) Type 2 tests.
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(c) Type 3 tests.
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(d) Type 4 tests.
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(e) Type 5 tests.
Figure 5. Feature selection tests for co-occurrence variances. Type 1 tests are done using
only one feature at a time, type 2 tests are done using all features first and discarding the
worst features one by one, type 3 tests are done using the best feature first and adding the
next best features one by one, type 4 tests are done using all possible combinations of 2
features, type 5 tests are done using all possible combinations of 3 features. The criterion
for “goodness” is the total cost which is plotted as (star,*).
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groups. The feature extraction time for our features was approximately 30
times faster than that of the Gabor features. Some example queries are shown
in Figure 7. More examples and our groundtruth data set can be found at
http://isl.ee.washington.edu/∼aksoy/research/database.shtml.
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(a) Parking lots.
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(b) Residential.
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(c) Landscape.
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(d) Chernobyl.
Figure 6. Average precision for some groundtruth groups.

Feature space visualizations for our features and the other features are
given in Figure 8. Each feature is first normalized by a transformation to
a Uniform[0,1] random variable using its marginal cumulative distribution
function. Then, the high-dimensional feature space is projected into the first
three principal components to reduce the dimensionality and Sammon’s non-
linear mapping algorithm 18 is used to refine the projections. These plots
show how the feature space is structured compared to the manually gener-
ated groundtruth. Although there is no perfect mapping to 3D, it can be seen
from Figure 8 that our features and Gabor features create a feature space
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(a) Example query for parking lots. (b) Example query for residential.

(c) Example query for landscape. (d) Example query for Chernobyl.
Figure 7. Retrieval examples with the upper left image as the query. Among the retrieved
images, first three rows show the 12 most relevant images in descending order of similarity
and the last row shows the 4 most irrelevant images in descending order of dissimilarity.

structure that is closer to the manual groundtruth. Some of the individual
query results look much better than the average precision results for some
groundtruth groups. The reason for this are the difficulties encountered dur-
ing assigning complex aerial images (e.g. roads and buildings) into single
categories. Another observation is that different features can represent dif-
ferent classes of images well so the retrieval performance can be improved
significantly if we can find effective ways of combining features from multiple
feature extraction algorithms.
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(a) ISL features.

0
1

2
3

4
5

6

−1.5
−1

−0.5
0

0.5
1

1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

d1d2

d3

(b) Gabor features.
Figure 8. Feature space projections. The groundtruth groups are: parking lots (point),
roads (circle), residential areas (x-mark), landscapes (plus), LANDSAT USA (star), DMSP
North Pole (diamond) and LANDSAT Chernobyl (triangle).
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(c) QBIC features.
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(d) Moments features.
Figure 8. Feature space projections (cont.).

7 Conclusions

We described easy-to-compute but effective low-level textural features. The
first set of features capture the global spatial organization in the image using
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the edge and line information. The second set of features are effective if the
image is dominated by a fine, coarse, directional, or repetitive texture. Some
key aspects of this work include a statistical line selection algorithm that uses
hypothesis testing to eliminate lines that do not have significant difference
between the gray level distributions in the regions on their right and left, and
also feature selection tests to determine the parameters of the feature extrac-
tion algorithms to avoid having less significant or even redundant features
that increase computation but contribute very little in the decision process.

Precision averaged over 340 randomly selected queries on a database of
approximately 10,000 images was used to evaluate the retrieval performance
in comparative tests with three other texture analysis algorithms. These tests
showed that our features had an average precision of 0.73 when 12 images were
retrieved and performed significantly better than two of the other features
while having similar performance as the third one. They can be combined with
other features to further improve the performance and make better inferences
about the high-level descriptions of the images.
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