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Texture
n An important approach to image description is to 

quantify its texture content.
n Texture gives us information about the spatial 

arrangement of the colors or intensities in an 
image.
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Texture
n Although no formal definition of texture exists, 

intuitively it can be defined as the uniformity, 
density, coarseness, roughness, regularity, 
intensity and directionality of discrete tonal 
features and their spatial relationships.

n Texture is commonly found in natural scenes, 
particularly in outdoor scenes containing both 
natural and man-made objects.
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Texture
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Texture
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Texture
n Whether an effect is a texture or not depends on 

the scale at which it is viewed.
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Texture
n The approaches for characterizing and measuring 

texture can be grouped as:
n structural approaches that use the idea that textures 

are made up of primitives appearing in a near-regular 
repetitive arrangement,

n statistical approaches that yield a quantitative measure 
of the arrangement of intensities.

n While the first approach is appealing and can work 
well for man-made, regular patterns, the second 
approach is more general and easier to compute, 
and is used more often in practice.
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Structural approaches
n Structural approaches model texture as a set of 

texture primitives (also called texels (texture 
elements) or textons) in a particular spatial 
relationship (also called lattice or grid layout).

n A structural description of a texture includes a 
description of the primitives and a specification of 
their placement patterns.

n Of course, the primitives must be identifiable and 
their relationships must be efficiently computable.
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Structural approaches

Examples of periodic patterns that are extended in two linearly independent directions 
to cover the 2D plane. These patterns are also known as wallpaper patterns.
Y. Liu, et al., “A Computational Model for Periodic Pattern Perception Based on Frieze and Wallpaper Groups”, IEEE 
Trans. On Pattern Analysis and Machine Intelligence, 2004
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Structural approaches

A structural texture analysis method that involves detecting interesting elements in the 
image, matching elements with their neighbors, and grouping the elements.
T. Leung, J. Malik, “Detecting, Localizing and Grouping Repeated Scene Elements from an Image”, ECCV 2004



Structural approaches
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A method that involves the detection of interest points, clustering of these points, voting for 
consistent lattice unit proposals, and iterative fitting of a lattice structure.

M. Park, et al., “Deformed Lattice Detection in Real-World Images Using Mean-Shift Belief Propagation”, IEEE 
Trans. On Pattern Analysis and Machine Intelligence, 2009



Structural approaches
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Examples from two different structural texture analysis methods.
M. Park, et al., “Deformed Lattice Detection in Real-World Images Using Mean-Shift Belief Propagation”, IEEE 
Trans. On Pattern Analysis and Machine Intelligence, 2009



Structural approaches
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A method that involves forming a 
hierarchical representation of the 
image and searching for texels within 
this hierarchy.

N. Ahuja, S. Todorovic, “Extracting Texels in 
2.1D Natural Textures”, ICCV 2007



Structural approaches
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I. Z. Yalniz, S. Aksoy, “Unsupervised Detection and Localization of Structural Textures Using Projection Profiles”, 
Pattern Recognition, 2010

A method for localization of natural structural textures using multi-orientation and multi-scale 
regularity analysis of textons detected using Laplacian of Gaussian filters (top: orientation 
estimates, bottom: scale estimates).



Structural approaches
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I. Z. Yalniz, S. Aksoy, “Unsupervised Detection and Localization of Structural Textures Using Projection Profiles”, 
Pattern Recognition, 2010

Examples of natural structural texture detection in images taken from Google Earth (top: input 
images, bottom: localized structural textures).
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Statistical approaches
n Usually, segmenting out the texels is difficult or 

even impossible in real images.
n Instead, numeric quantities or statistics that 

describe a texture can be computed from the gray 
tones or colors themselves.

n This approach can be less intuitive, but is 
computationally efficient and often works well.
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Statistical approaches
n Some statistical approaches for texture:

n Edge density and direction
n Co-occurrence matrices
n Local binary patterns
n Statistical moments
n Autocorrelation
n Markov random fields
n Autoregressive models
n Mathematical morphology
n Interest points
n Fourier power spectrum
n Gabor filters
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Edge density and direction
n The number of edge pixels in a fixed-size region 

tells us how busy that region is.
n Edge directions also help characterize the texture.
n Edge-based texture measures:

n Edgeness per unit area
Fedgeness =  | { p |  gradient_magnitude(p) ³ threshold } | / area

n Edge magnitude and direction histograms
Fmagdir = ( Hmagnitude, Hdirection )

n Two histograms can be compared by computing 
their L1 or L2 distance.
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Edge texture

Satellite images sorted according to the amount of land development (left). Properties of the 
arrangements of line segments can be used to model the organization in an area (right).
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Co-occurrence matrices
n Co-occurrence, in general form, can be specified 

in a matrix of relative frequencies P(i, j; d, θ) with 
which two texture elements separated by distance 
d at orientation θ occur in the image, one with 
property i and the other with property j.

n In gray level co-occurrence, as a special case, 
texture elements are pixels and properties are 
gray levels.
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Co-occurrence matrices
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Co-occurrence matrices
n If a texture is coarse and the distance d used to compute 

the co-occurrence matrix is small compared to the sizes of 
the texture elements, pairs of pixels at separation d should 
usually have similar gray levels.

n This means that high values in the matrix P(i, j; d, θ) 
should be concentrated on or near its main diagonal.

n Conversely, for a fine texture, if d is comparable to the 
texture element size, then the gray levels of points 
separated by d should often be quite different, so that 
values in P(i, j; d, θ) should be spread out relatively 
uniformly.
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Co-occurrence matrices
n Similarly, if a texture is directional, i.e., coarser in 

one direction than another, the degree of spread 
of the values about the main diagonal in P(i, j; d, 
θ) should vary with the orientation θ.

n Thus texture directionality can be analyzed by 
comparing spread measures of P(i, j; d, θ) for 
various orientations.
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Co-occurrence matrices
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Co-occurrence matrices
n In order to use the information contained in co-

occurrence matrices, Haralick et al. (SMC 1973) 
defined 14 statistical features that capture textural 
characteristics such as homogeneity, contrast, 
organized structure, and complexity.
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Co-occurrence matrices
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Co-occurrence matrices

n Zucker and Terzopoulos (CGIP 1980) suggested 

using a chi-square statistical test to select the 

values of d that have the most structure for a 

given class of images.

Nd(i,j): unnormalized co-occurrence of gray level i

and j for distance d.

n As N gets closer to a diagonal matrix, the test 

gives larger values.
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Co-occurrence matrices

Example building groups (first column), the contrast features for 0 and 67.5 degree 
orientations (second and third columns), and the chi-square features for 0 and 67.5 degree 
orientations (fourth and fifth columns). X-axes represent inter-pixel distances of 1 to 60. The 
features at a particular orientation exhibit a periodic structure as a function of distance if the 
neighborhood contains a regular arrangement of buildings along that direction. On the other 
hand, features are very similar for different orientations if there is no particular arrangement 
in the neighborhood.
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Local binary patterns
n For each pixel p, create an 8-bit number b1 b2 b3

b4 b5 b6 b7 b8, where bi = 0 if neighbor i has value 
less than or equal to p’s value and 1 otherwise.

n Represent the texture in the image (or a region) 
by the histogram of these numbers.
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Local binary patterns
n The fixed neighborhoods were later extended to 

multi-scale circularly symmetric neighbor sets.
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Autocorrelation
n The autocorrelation function of an image can be 

used to
n detect repetitive patterns of texture elements, and
n describe the fineness/coarseness of the texture.

n The autocorrelation function r(dr,dc) for 
displacement d=(dr,dc) is given by
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Autocorrelation
n Interpreting autocorrelation:

n Coarse texture à function drops off slowly
n Fine texture à function drops off rapidly
n Can drop differently for r and c
n Regular textures à function will have peaks and 

valleys; peaks can repeat far away from [0,0]
n Random textures à only peak at [0,0]; breadth of peak 

gives the size of the texture
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Fourier power spectrum
n The autocorrelation function is related to the 

power spectrum of the Fourier transform.
n The power spectrum contains texture information 

because
n prominent peaks in the spectrum give the principal 

direction of the texture patterns,
n location of the peaks gives the fundamental spatial 

period of the patterns.
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Fourier power spectrum
n The power spectrum, represented in polar 

coordinates, can be integrated over regions 
bounded by circular rings (for frequency content) 
and wedges (for orientation content).
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Fourier power spectrum
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Gabor filters
n Gabor filters can be considered as orientation and 

scale tunable edge and line detectors.
n A 2D Gabor function g(x,y) and its Fourier 

transform G(u,v) can be written as

where                     and                   .
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Gabor filters
n Let Ul and Uh denote the lower and upper center 

frequencies of interest, K be the number of 
orientations, and S be the number of scales, the 
filter parameters can be selected as

where W = Uh and m = 0, 1, …, S-1.
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Gabor filters
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Gabor filters

Filters at multiple 
scales and 
orientations.
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Gabor filters

Gabor filter responses for a satellite image.
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Gabor filters

Gabor filter responses for a satellite image.
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Gabor filter responses for a satellite image.
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Gabor filters
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How well the kernel machines can model/learn shapes?

83 x 64 = 5312 pixels 
(the training data size) 

σ = 100
#SVs = 1036 (~20%)
PixelError = 309

σ = 20
#SVs = 1084 (~20%)
PixelError = 119

σ = 3.3
#SVs = 3261 (~61%) 
PixelError = 51

σ = 1.4
#SVs = 4778 (~90%)
PixelError = 31

σ = 1.0
#SVs = 4974 (~94%)
PixelError = 17

SVM:
(libSVM) T = 0.05

#SVs = 1082 
(~20%)
PixelError = 0

Use pixel coordinates in 2D 
as input:
X=[(x1,y1)… (x5312,y5312)] 
Y={black, white}
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Visualization of the kernel parameters

T = 0.05
#SVs = 1082
PixelError = 0

83 x 64 = 
5312 pixels 
(the training 
data size) 

#SVs = 342 
(~6%)
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#SVs = 1082 
(~20%)



#SVs = 342 
(~6%)

Original Image Approximation Error

One-Class 
Approximation
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σi2 < 1.29 σi2 > 1.29 σi2 > 5.09 σi2 > 8.90      σi2 > 14.60       σi2 > 16.51      σi2 > 18.41 

Data 
Analysis

#SVs = 342 
(~6%)
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Computing Skeleton with SDs
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Use only SDs to compute skeletons
• Save computational time


